ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (DISASTER MANAGEMENT)

COURSE CODE: 147

Register Number :			
			Signature of the Invigilator (with date)
	28		

COURSE CODE: 147

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		triple bond between the carbon atom following shapes?	ns cau	ses acetylene, C ₂ H ₂ , to have which of
	(A)	Trigonal planar (pron: try-gon-al)	(B)	Linear
	(C)	Tetrahedral	(D)	Trigonal bipyramidal
2.	Whi	ch of the following four elements has	the lar	rgest atomic radius? Is it:
	(A)	strontium	(B)	francium
	(C)	calcium	(D)	bromine
3.	Whi		ster, m	nethyl salicylate, produce? Is the odor
	(A)	cinnamon	(B)	avocado
	(C)	orange	(D)	oil of wintergreen
4.	7	BrO ₃) ₂ (read: C - a, left parenthesis, script 2) is called:	B - r	- O - subscript 3, right parenthesis,
	(A)	calcium bromate	(B)	calcium bromite
	(C)	calcium dibromite	(D)	calcium bromide
5.	Whi	ich of the following are saturated alip	hatic ł	nydrocarbons?
	(A)	Alkanes	(B)	Alkenes
	(C)	Alkynes	(D)	Nixanes
6.	Suc	rose, ordinary table sugar, may be cla	assified	l as a:
	(A)	Monosaccharide	(B)	Disaccharide
	(C)	Polysaccharide	(D)	Oligosaccharide
7.	Pur	re water is approximately what molar	conce	ntration:
	. (A)	.55 Molar	(B)	5.5 Molar
	(C)	55 Molar	(D)	550 Molar
8.		e rate at which dissolution occurs is owing factors:	s LEA	ST dependent upon which one of the
	(A)	temperature	(B)	pressure
	(C)	solution concentration	(D)	solute surface area

9.	120	was the first American chemist to re his precise determination of atomic we		Nobel Prize? He was selected in 1914
	(A)	Edward Frankland	(B)	Theodore Richards
	(C).	John Bardeen	(D)	Paul Dirac
10.		he following, which has units of "Paso	al"?	
	(A)	Force	(B)	Volume
	(C)	Pressure	(D)	Viscosity
11.	Whi	ch one of the following pairs of specie	s have	the same bond order?
	(A)	CN- and NO+	(B)	CN- and CN+
	(C)	O- and CN-	(D)	NO+ and CN+
12.	acid The	. The product so obtained is diazotic reaction mixture so formed contains		is reduced with tin and hydrochloric d then heated with cuprous bromide.
	(A)	mixture of o- and p-bromotoluenes		
	(B)	mixture of o- and p-dibromobenzene	es	
	(C)	mixture of o- and p-bromoanilines		
	(D)	mixture of o- and m-bromotoluenes		
19	T		1:1:4	
13.		hanoids, the main reason being	xnibit	ed by the actinoids than those by the
	(A)	4f orbitals more diffused than the 5	f orbit	als
	(B)	lesser energy difference between 5f	and 6	d than between 4f and 5d orbitals
	(C)	more energy difference between 5f	and 6d	than between 4f and 5d orbitals
	(D)	more reactive nature of the actinoid	ls than	the lanthanoids
14.		ich of the following factors is of no s les and not subjecting the sulphide or		ance for roasting sulphide ores to the arbon reduction directly?
	(A)	Metal sulphides are thermodynami	cally n	nore stable than CS ₂
	(B)	CO2 is thermodynamically more sta	ble th	an CS ₂
	(C)	Metal sulphides are less stable that	n the c	orresponding oxides
	(D)	CO2 is more volatile than CS2		

15.	a-D-	(+)-g1ucose and β-D-(+)-gluco	ose are	
	(A)	conformers	(B)	epimers
	(C)	anomers	(D)	enantiomers
16.		ong the following substituted one polymer on hydrolysis is	silanes the or	ne which will give rise to cross linked
	(A)	R ₄ Si	(B)	RSiCl ₃
	(C)	R_2SiCl_2	(D)	R ₃ SiCl
17.	Fluo	probenzene (C ₆ H ₅ F) can be sy	nthesized in th	e laboratory
	(A)	by heating phenol with HF	and KF	
	(B)	from aniline by diazotisatio	n followed by h	neating the diazonium salt with HBF4
	(C)	by direct fluorination of ben	zene with F ₂ g	as
	(D)	by reacting bromobenzene v	with NaF solut	ion
18.		netal, M forms chlorides in it ements about these chlorides		xidation states. Which of the following
20	(A)	MCl2 is more volatile than l	MCl ₄	
	(B)	MCl2 is more soluble in anh	ydrous ethano	l than MCl4
	(C)	MCl2 is more ionic than MC	Cl ₄	
	(D)	MCl2 is more easily hydroly	sed than MCl ₄	
19.	Whi	ich of the following statement	ts is true?	
	(A)	H₃PO₃ is a stronger acid th	an H ₂ SO ₃	
	(B)	In aqueous medium HF is a	a stronger acid	than HCl
	(C)	HClO4 is a weaker acid tha	n HClO ₃	
	(D)	HNO3 is a stronger acid tha	an HNO2	
20.	The	E IUPAC name for the comple	x [Co(NO ₂)(NF	H ₃)5]Cl ₂ is
	(A)	nitrito-N-pentaamminecob	alt (III) chlorid	e
	(B)	nitrito-N-pentaamminecob	alt (II) chloride	
	(C)	pentaammine nitrito-N-cob	oalt (II) chlorid	e
	(D)	pentaammine nitrito-N-col	alt (III) chlori	de

21.	Whic	h one the follo	wing io	ns has the high	est val	ue of ionic rad	ius?			
	(A)	Li+	(B)	F-	(C)	O ₂ -	(D)	$\mathrm{B}_{3^{+}}$		
22.	The	ionic mobility	of alkali	i metal ions in a	aqueou	s solution is m	naximum			
	(A)	K+	(B)	Rb+	(C)	Li ⁺	(D)	Na+		
23.		sity of a 2.05 l	M soluti	on of acetic aci	d in w	ater is 1.02 g/	mL. The	molality	y of the	
	(A)	1.14 mol kg ⁻¹			(B)	3.28 mol kg ⁻¹				
	(C)	2.28 mol kg ⁻¹			(D)	0.44 mol kg-				
24.		many EDTA		nediaminetetra ch a Ca²+ ion?	acetic	aci(D) molecul	es are re	quired t	o make	
	(A)	Six	(B)	Three	(C)	One	(D)	Two		
25.		of glucose (C		is added to 178 at 100°C is	3.2 g o	f water. The v	apour pr	ressure (of water	
	(A)	759.00 Torr			(B)	7.60 Torr				
	(C)	76.00 Torr			(D)	752.40 Torr				
26.		Which one of the following countries has the longest international boundary with India?								
	(A)	Bangladesh			(B)	Bhutan				
	(C)	China			(D)	Pakistan				
27.	Ada	ım's bridge cor	nects							
	(A)	Amman and	Damas	cus						
	(B)	Dhanushko	di (Ram	esvaram) and T	alaim:	annar				
	(C)	Israel and J	erusale	m						
	(D)	Persian Gul	f and G	ulf of Oman						
28.	Ha	waiian Islands	s are loc	ated in						
	(A)	South Pacif	ic Ocear	1	(B)	North Pacif	ic Ocean	ı		
	(C)	South Atlar	ntic Oce	an	(D)) North Atlan	ntic Ocea	ın		

29.	The	Ocean between America and Europe	is calle	d
	(A)	Pacific	(B)	Arctic
	(C)	Atlantic	(D)	Southern
30.	Ljub	ljana is a part of		
	(A)	Yugoslavia	(B)	Portugal
	(C)	Romania	(D)	Russia
31.	Fiji	islands are a part of		
	(A)	Indonesia	(B)	Malaysia
	(C)	Polynes	(D)	Australia
32.	The	Strait connecting Arabian Sea and t	he Bay	of Bengal is
	(A)	Bering Strait	(B)	Dover Strait
	(C)	Palk Strait	(D)	Vermosa Strait
33.	Mya	anmar is a new name of		
	(A)	Burma	(B)	Philippines
	(C)	Thailand	(D)	Vietnam
0.4	000			
34.		he following, the country which is no		
	(A)	Fiji	(B)	Barbados
	(C)	New Zealand	(D)	Papua New Guinea
35.	Δm	ongst the following, which is the larg	roet jelo	nd?
50.	(A)	England	(B)	Japan
	(C)	Borneo	(D)	New Guinea
	(0)	Borneo	(1)	ivew Guinea
36.	Car	nary islands are dependencies of		
	(A)	Spain (B) Portugal	(C)	Germany (D) U.K
-			, ,	
37.	The	Strait which separates Asia from N	orth An	nerica is
	(A)	The Bering Strait	(B)	The Palk Strait
	(C)	The Strait of Gibraltar	(D)	The Strait of Malacca

38.	Long	treeless grassy	palms	are charact	eristics of			
	(A)	Campos	(B)	Llanos	(C)	Pampas	(D)	Prairies
39.	Whie	ch of the followi	ng is n	ot a desert?				
		Gobi		Kalahari	(C)	Sahara	(D)	Cotopaxi
40.	The	highest waterfa	ll of th	e world is				
	(A)	Niagara Falls			(B)	Boyomar Fal	lls	
	(C)	Salto Angel Fa	alls		(D)	Khone Falls		
41.	Whi	ch is the world's	larges	st desert?				
	(A)	Sahara			(B)	Gobi		
	(C)	Thar			(D)	Takala Mak	an	
42.	Whi	ch of the follow	ing is t	he largest ri	ver in the	world?		
	(A)	Nile	(B)	Congo	(C)	Ganges	(D)	Amazon
43.	Whi	ch of the follow	ing is t	he highest p	lateau in	the world?		
	(A)	Colorado Plate	eau		(B)	Pamir Plate	au	
	(C)	Patagonia Pla	teau		(D)	Potwar Plat	eau	
44.	Nia	gara Falls are i	n					
	(A)	Australia			(B)	U.K.		
	(C)	South Africa			(D)	USA		
45.	Whi	ich of the follow	ing pai	rs is not cor	rectly mat	ched?		
	(A)	Algeria - Nige	r		(B)	Brazil - Am	azon	
	(C)	Iraq - Tigris			(D)	Myanmar -	Irrawady	7
46.	Pet	roleum deposits	in Ind	ia are found	in			
	(A)	Granite			(B)	Basalt		
	(C)	Metamorphic	rocks		(D)	Sedimentar	y rocks	
47.	The	e equatorial rad	ius of t	he earth is a	pproxima	tely		
		12,700 km			(B)	6,900 km		
	(C)	6,400 km	Dan t		(D)	11,600 km		

48.	The l	layer of atmosphere cl	ose to the earth	s surf	ace is called		
	(A)	Exosphere		(B)	Ionosphere		
	(C)	Stratosphere		(D)	Troposphere		
49.	The	most abundant elemer	nt in the earth's	atmo	sphere is		
	(A)	Argon (B)	Nitrogen	(C)	Oxygen	(D)	Krypton
50.	Whi	ch of the following rive	er has the large	st basi	in?		
	(A)	Congo (B)	Amazon	(C)	Nile	(D)	None
51.	Why	is our vulnerability to	natural disast	ers gr	owing?		
	(A)	Because the frequence	cy of volcanic er	uption	ns is increasing		1
	(B)	Because the human	population is in	creasi	ng		
	(C)	Because the number	of earthquakes	each	year is increasin	ıg	
	(D)	Because the number	of floods each y	ear is	increasing		
52.	The	theory of plate tectoni	ics was not initi	ally w	idely accepted b	ecause	
	(A)	land bridges would h	ave blocked pla	te mo	vement		
* 1	(B)	rocks of the Earth's o	crust were cons	idered	too stiff for cont	tinents	to move though
	(C)	fossils on South Ame	erica and Africa	did n	ot match		
	(D)	ocean floor mapping	showed that ol	der ro	cks occur away f	rom m	id-ocean ridges
53.	Whi	ich of the following is	a non-renewable	e ener	gy resource?		
	(A)	Solar		(B)	Methane		
	(C)	Hydroelectric	•	(D)	Coal		
54.	The	amount of oil that ma	ay become avail	able fo	or use is called o	il ——	 .
	(A)	reserves		(B)	reservoirs		
	(C)	resources		(D)	traps		
55.	Ас	oal deposit that is no	t economical to	mine	today would be	consid	lered part of ou
	(A)	coal reserves		(B)	coal resources	3	
	(C)	coal reservoirs		(D)	none of these		

56.	Chemical reactions triggered by carbons.	transform organic material into hyd	ro
	(A) solar energy	(B) hydroelectric	
	(C) elevated temperatures	(D) decomposition	
57.	Energy resources derived from natu	aral organic materials are called ————.	
	(A) geothermal energy sources	(B) fossil fuels	
	(C) biomass	(D) all of these	
58.	A permeable rock that contains	hydrocarbon fluids and gasses is called a	(n)
	(A) oil trap	(B) source bed	
	(C) oil reservoir	(D) none of these	
59.	All oil traps contain ———.		
	(A) an impermeable layer	(B) an anticline	
	(C) a fault	(D) all of these	
60.	Which of the following is least like	v to contain an oil tran?	
00.	(A) an anticline	(B) fault	
	(C) natural stratigraphy	(D) syncline	
61.	Which of the following reals types	would most likely be the best oil reservoir?	
01.	(A) granite	(B) shale	
	(C) sandstone	(D) salt	
	(c) sandstone	(1)	
62.	An undeformed sedimentary la than the layer below	yer is — than the layer above a	and
	(A) youngeryounger	(B) younger older	
	(C) older younger	(D) older older	
63.	Fossils are most common in which	rock types?	
	(A) sedimentary		
	(B) igneous		
	(C) metamorphic		
	(D) all of these commonly contain	n fossils	

64.	Which of the following describes the build up and release of stress during an earthquake?								
	(A)	The Modified Mercalli Scale							
	(B)	The elastic rebound theory							
	(C)	The principle of superposition							
	(D)	The travel time difference							
65.	The a	amount of ground displacement in a earthquake is called the ————.							
8	(A)	epicenter (B) dip							
	(C)	slip (D) focus							
66.	The	point where movement occurred which triggered the earthquake is the							
	(A)	dip (B) epicenter							
	(C)	focus (D) strike							
67.	Which	ch of the following sequences correctly lists the different arrivals from first to							
	(A)	P waves S waves Surface waves							
	(B)	Surface waves P waves S waves							
	(C)	P waves Surface waves S waves							
	(D)	S waves P waves Surface waves							
68.	How	do rock particles move during the passage of a P wave through the rock?							
	(A)	Back and forth parallel to the direction of wave travel							
	(B)	Back and forth perpendicular to the direction of wave travel							
	(C)	In a rolling circular motion							
	(D)	The particles do not move							
69.	Deta	ailed studies of what earthquake allowed researchers to develop the elastic ory?							
	(A)	The 1906 San Francisco earthquake							
	(B)	The 1964 Anchorage, Alaska earthquake							

(C) The 1755 Lisbon, Portugal earthquake

(D) The 1985 Mexico City earthquake

											12
70.	How	many seismogra	ph st	ations ar	e need		ocate th	ne epicen			uaker
	(A)	1	(B)	2		(C)	3		(D)	4	
	_			,		Caralti					
71.	Earth	hquakes can occ							(D)	-11 -6 41	
	(A)	normal	(B)	reverse		(C)	thrus	t	(D)	all of the	ese
72.	Appr	oximately what	perce	ntage of	earthq	uakes	occur a	at plate b	oundar	ies?	
	(A)	25%	(B)	50%		(C)	75%		(D)	90%	
73.	Mark	ble is a metamor	phic	rock that	forms	from a	a	1	parent.		
	(A)	Granite		Limest			Sand		(D)	Shale	
74.	Mecl	hanical weather	ing pı	oduces –							
	(A)	clay minerals				(B)	quart	Z			
	(C)	smaller particl	es			(D)	calciv	ım carbo	nate		
75.	Whe	en liquid water f	reeze	3;							
	(A)	it does not cha	nge ir	o volume							
	(B)	it expands by	5% in	volume							
	(C)	it expands by	9% in	volume							
	(D)	it decreases in	volui	ne							
							1 . 1	1	bol	an down	at the
76.		at is the term : face?	for th	e genera	l proc	ess by	which	rocks a	re brok	en down	at the
		Deposition	(B	Erosic	n	(C)	Lith	ification	(D)	Weath	ering
	(11)	Deposition	(2)								
77.	Wh	ich of the follow	ing af	fect the r	ate of	weath	ering?				
	(A)	The soil type	and e	ktent							
	(B)	The rock type									
	(C)	The climate									
	(D)	All of these at	ffect v	veatherin	g rate	8					
78	. Wł	nich of the follo	wing ects n	scientist nay NOT	s is r	espons	sible fo ame sp	r the ex ace at th	clusion e same	principle time? Wa	e which as it:
	(A)					(B					
	(C)) Teller				(D)) Pau	ıli			

79.		force acting between	n two point cha	irges (can be computed using	which of the
	(A)	Ohm's Law		(B)	Ampere's Law	
	(C)	Coulomb's Law		(D)	Newton's Second Law	
80.	Indu	ced electric currents	can be explained	d using	g which of the following	aws?
	(A)	Gauss's Law		(B)	Faraday's Law	
	(C)	Ohm's Law		(D)	Ampere's Law	
81.	For a	a negative point char	rge, the electric f	ield ve	ectors:	
	(A)	circle the charge				
	(B)	point radially in to	ward the charge			
	(C)	point radially away	from the charge	9		
	(D)	cross at infinity				
82.	For:	an infinite sheet of p	ositive charge, t	he elec	etric field lines:	
	(A)	run parallel to the	sheet of charge			
	(B)	are perpendicular t	to the sheet of ch	arge a	and point in toward the s	heet
	(C)	are perpendicular	to the sheet of ch	narge a	and point away from the	sheet
	(D)	fall off as one over	r squared			
83.	Five	coulombs of charge come to rest, the ele	are placed on a ectric potential i	thin-w inside	alled conducting shell. (Ince the charge hell is found to
	(A)	zero				
	(B)		e sphere and eq	ual to	the electric potential or	the surface of
	(C)	smaller than the e	electric potential	outsid	e the sphere	
	(D)	varying as one ove	er r squared			
84.	Geo	ocentric Theory was	proposed by			
	(A)	Copernicus		(B) Ptolemy	
	(C)	Tycho Brahe		(D) Newton	

85.		uniform circular motion if the rac	dius i	s doubled the centripetal force now								
	(A) one-quarter as great as before											
	(B) half as great as before											
	(C) twice as great as before											
	(D)	four times as great as before										
86.	The electromagnetic radiations produced by oscillating electromagnetic oscillators of high frequency are											
	(A)	IR radiations	(B)	Micro waves								
	(C)	Radio waves	(D)	Yrays								
87.	When temperature of a semiconductor is raised, its energy gap ————.											
	(A)	increases	(B)	decreases								
	(C)	remains same	(D)	may increase or decrease								
88.	A se	miconductor behaves as an insulator	at:									
	(A)	−273°C (B) 0°C	(C)	273°C (D) 300°C								
89.	The	The number of water molecules in carnallite are ————.										
	(A)	4 (B) 5	(C)	6 (D) 7								
90.	Alkaline earth metals are chemically very reactive due to their ————————————————————————————————————											
	(A)	electropositive	(B)	non responsive								
	(C)	electro negative	(D)	none								
91.	Which alkaline earth metal are more abundant in nature?											
	(A)	Magnesium and Calcium	(B)	Radium and Mercury								
	(C)	Dolomite and Barytes	(D)	Gypsum and Dolomite								
92.	The solvent in Alcohol solution is ————.											
	(A)	Water	(B)	Alcohol								
	(C)	Ammonia	(D)	Hydrochloric acid								

93.	Mathematical operations in a computer are done in											
	(A)	Monitor	(B)	CPU	(C)	Keyboard		(D)	None			
94.	Sequ	ence of instruc	ctions w	ritten in ord	ler to solv	e any probl	em is	a —	<u> </u>			
	(A)	assembler	(B)	hardware	(C)	program		(D)	compilation			
95.	A man walks 4 m towards East and then 3 m towards North and there he fixes a po 12 m high. The distance between the starting point and tip of the pole in space is											
	(A)	7 m	(B)	11 m	(C)	13 m		(D)	19 m			
96.	is di								. When the lens the screen. The			
	(A)	6 cm			(B)	6.25 cm						
	(C)	6.5 cm			(D)	None of th	hese					
97.	In t	he sun, helium	is prod	uced from h	ydrogen b	у						
	(A)	radioactive d	ecay		(B)	disintegra	ation					
	(C)	fission			(D)	fusion						
98.		half-life of an isotope remai				ays. The m	ass of	a 10	gram sample o			
	(A)	0.312 grams			(B)	0.625 gra	ms					
	(C)	1.25 grams			(D)	2.50 gran	ns					
99.	The idea that electrons revolved in orbits around the nucleus of an atom without radiating energy away from the atom was postulated by											
	(A)	Thompson			(B)	Bohr			,			
	(C)	Rutherford			(D)	Einstein						
100	Arriving at a generalization on the basis of a number of similar observation is calle											
	(A)	Deductive P	rocess		(B)	Inductive	e Proce	ess				
	(C)	Scientific Pr	ocess		(D)	Conventi	ion					