ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. Ph.D. (ELECTRONICS AND COMMUNICATION ENGINEERING) COURSE CODE: 138

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 138

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	If $\varepsilon_r = 2$ for a	dielectric m	edium, its el	ectric susc	eptibility is			
	(A) 1	(B)	2	(C)	3	(D)	$2 \varepsilon_0$	
2.	The magnetic	field in an i	deal conducto	or is				
	(A) Zero			(B)	Infinite			
	(C) Finite			(D)	The same a	s its outs	ide field	
3.	The intrinsic i	mpedance o	f the medium	whose σ	$=0, \varepsilon_r=9$ an	$d \mu_r = 1$	is	
	(A) 40 π Ω	(B)	9 Ω	(C)	120 πΩ	(D)	60 $\pi \Omega$	
4.	The wavelengt	th of a wave	with a propa	gation cor	stant 0.1 π	+j 0.2 π	is	
	(A) 10 m	(B)	20 m	(C)	30 m	(D)	25 m	
5.	By far —	—— polari	zation is use	d for high	frequency ap	plication	S	
	(A) Linear	(B)	Circular	(C)	Elliptical	(D)	Horizontal	
6.	A ship sailing would produce			m/s towar	ds an HF ra	dar opera	ating at 3 MH	Z
	(A) 0.1 Hz	(B)	0.2 Hz	(C)	1 Hz	(D)	2 KHz	
7.	A pulse compr of 5μS and 100					ompresse	ed pulse width	ıs
	(A) 15 m	(B)	150 m	(C)	1.5 Km	(D)	75 m	
8.	If the target cr	oss-section	is rapidly cha	anging the	best choice f	or accura	ate tracking is	
	(A) Monopul	se tracking		(B)	Conical scar	trackin	g	
	(C) Lobe swi	tching		(D)	Sequential l	obing		
9.	A radar in whi	ch the rada	beam is ste	ered electi	conically is			
	(A) Tracking	radar		(B)	MTI radar			
	(C) Phase ar	ray radar		(D)	SAR			
10.	A SAR operati		z uses an ant	enna who	se effective a	perture i	s 5m. Its cross	3-
	(A) 2.5 m	(B)	5 m	(C)	10 m	(D)	15 m	

11.	A bas	is vecto	r for a v	ector	space V r	nay be o	define	d as a set o	f vecto	ors in	V which	1 ,
	(A)	are mut	tually or	thogo	nal							
	(B)	are line	arly ind	epend	lent							
	(C)	span th	e space	V .								
	(D) a	are line	arly ind	epend	lent and	span the	e spac	e V				
12.	The v	alue of	$\int_{\pi/4}^{\pi/4} \cos \omega t$	$\delta(t)$ a	lt is ——		when	re δ(t) deno	otes			
	(A)	0		(B)	1		(C)	$\pi/4$		(D)	$\sqrt{2}$	
13.	A sign	nal x(t)	has ene	rgy E	. Then th	e signal	x(at),	, <i>a</i> >0, has a	an am	ount (of energ	y given
	(A) (αE		(B)	E/a		(C)	a^2 E		(D)	E/α^2	
14.	the sa	amples	was, ho	weve		to be 3		uency F _s . 7 10πt). The				
	(A)	175		(B)	350		(C)	130		(D)	65	
15.	If X(z)	$= \frac{1}{z^3 - 1}$	$\frac{z^2}{2z^2+1}$	and 2	x(n) is rig	ht sided	seque	ence then x	x(3) is			
	(A)	0		(B)	2		(C)	4		(D)	1	
16.								te sequenc o a frequen		of le	ngth N	whose
	(A)	$\frac{kF_s}{N}$		(B)	$\frac{kF_s}{2N}$		(C)	$\frac{2kF_s}{N}$		(D)	$\frac{kF_s}{N-1}$	
17.		-		_	_			ency and p			time-del	ay of τ
	(A)	It produ	ices pha	se dis	tortion							
,	(B)	Its phas	se-shift	versu	s frequen	cy relat	ionshi	p is linear				
	(C)	It produ	ices a co	nstar	t phase-s	shift for	all fre	equencies				
	(D)	None of	the abo	ve								
18.		is of fination of			and has l		les, th	en its auto	correla	ation	r _{xx} (k) wi	ll have
	(A) 5	2N		(B)	N^2		(C)	2N-1		(D)	2N+1	

19. The discrete time LTI system described by the difference equation

 $y(n) + a_1y(n-1) + a_2y(n-2) = x(n)$ is stable if

(A) $|a_2| < 1$, $|a_1| < 1 + a_2$

(B) $|a_1| < 1$, $|a_2| < 1$

(C) $|a_1| < 1$, $|a_2| < 1 + a_1$

- (D) none of these
- 20. What should be the cut-off frequency of the lowpass filter shown in the following multirate digital signal processing system?

- 21. The minimum number of multipliers required to realize an FIR filter with system function $H(z) = 1+2 z^{-1} + (3/2) z^{-2} + 5 z^{-3} + (3/2) z^{-4} + 2z^{-5} + z^{-6}$ is
 - (A) 7

(B) 4

- (C) 8
- (D) 3
- - (A) Fourier

(B) Short-time Fourier

(C) Cosine

- (D) Wavelet
- 23. For an 8-bit image x(m,n), the transformation y(m,n)=255-x(m,n) will yield
 - (A) a dark image

(B) a bright image

(C) negative of x(m,n)

- (D) same as x(m,n)
- 24. The wavelet coefficients of an image after second-level decomposition is shown below:

16	7	12	10
-7	8	8	4
4	-3	4	-3
2	-2	-2	0

The initial threshold required for encoding and decoding of an image using EZW algorithm is

(A) 8

- (B) 16
- (C) 32
- (D) 64
- 25. An analog signal bandlimited to 10KHz is sampled at Nyquist rate and quantized to 4 levels of a PCM system with probabilities $\frac{1}{2}$, $\frac{1}{8}$ and $\frac{1}{8}$. The rate of information transmission is
 - (A) 35000 bits/sec

(B) 17500 bits/sec

(C) 52500 bits/sec

(D) 70000 bits/sec

26.	The length and the Impedance of a quasiource with 40 ohms load in a dielectric are		
	(A) 1.25 cm and 40 ohms	(B)	2.5 cm and 40 ohms,
	(C) 1.25 cm and 60 Ohms	(D)	2.5 cm and 60 ohms
27.	TEM wave propagating in y direction has		
	(A) $Ey = Hy = 0$	(B)	Ey=Hy =Non zero
	(C) Ey=Hy=1	(D)	Ey=0, Hy=1
28.	The planar transmission line that support	ts pure	TEM mode is
	(A) Stripline	(B)	Coplanar waveguide
	(C) Slot line	(D)	FIN line
29.	The minimum and maximum values of the	e VSW	R is
	(A) 0 and infinity	(B)	0 and 1
	(C) 1 and infinity	(D)	-infinity and infinity
30.	Microstrip line is said to support Quasi T	EM mo	de because
	(A) Transverse components of EH are Z	ERO	
	(B) Transverse components of EH are N	ON ZE	CRO
	(C) Longitudinal components of EH are	zero	
	(D) None		
31.	Shorted 1/8 wave length transmission line	· (locel	oce) arte ac
01.	(A) INDUCTOR	(B)	CAPACITOR
	(C) RESONATOR	(D)	None
	(C) RESONATOR	(D)	None
32.	S Band of frequency range is		
	(A) 1-2 GHz (B) 2-4 GHz	(C)	4-8 GHz (D) 8-12 GHz
33.	1/8 WAVELENTH transmission line mate	hes	
	(A) (3+j4) ohms source to 5 ohms load	(B)	(3+j4) ohms source to 3 ohms load
	(C) $(3 + j4)$ Ohms source to 4 ohms load	(D)	None
34.	The capacitance with and without a diele line are 8 micro farads and 2 microfa constant is		
	(A) 4 (B) 2	(C)	16 (D) None

35.	Con	formal mapping	techni	ique belongs to					
	(A)	Quasi static Ar	alysis	3	(B)	Full wave anal	ysis		
	(C)	Hybrid analysi	S		(D)	None			
36.	If th	e VSWR is 1 at t	he in	out port of a mici	rowav	e component the	en		
	(A)	S11 = 0			(B)	S11=1			
	(C)	S11 = infinity			(D)	None			
37.	S11	of an ideal trans	forme	r of turns ration	10:1	is			
	(A)	99/101	(B)	101/99	(C)	9/11	(D)	11/9	
38.	'PUS	SHING' is a pher	omen	on in					
	(A)	Magnetron	(B)	TWT	(C)	Klystron	(D)	Gunn diode	
39.	All t	hree ports of an	ideal l	ossless reciproca	ıl wav	eguide compone	nt can	be MATCHED	
	(A)	TRUE			(B)	FALSE			
40.		ansmission line a load impedan							
	(A)	0.2	(B)	0.5	(C)	0.66	(D)	0.3	
41.	Whe	n a collision is d	etecte	d in a network	using	CSMA/CD,			
	(A)	The frame is in	media	ately resent					
	(B)	A jam signal is	sent b	y the station					
	(C)	The backoff val	ue is s	set to zero					
	(D)	The backoff val	ue is o	decremented by 1	L				
12.	On a	a network that u	ises N	Vetwork address	trans	slation, ———]	has translation	
	(A)	Switch			(B)	Router			
	(C)	Server			(D)	None of the ab	ove		
13.	Iden	tify the class of I	P add	ress 191.1.2.3					
	(A)	class A	(B)	class B	(C)	class C	(D)	class D	
14.	The	simple mail tran	sfer p	rotocol utilizes -		—— to send i	ts mo	dule to another	
	(A)		(B)	UDP	(C)	DNS	(D)	ARP	

45.	Spr	ead spectrum LAN makes use of ———		– frequency range
	(A)	5.5 to 5.575 GHz	(B)	18.825 to 19.205 GHZ
	(C)	2.4 to 2.48 GHz	(D)	9.25 to 12.25 GHz
46.	Acce	ess network is running between		
	(A)	end users	(B)	routers
	(C)	routers and gateways	(D)	end users and edge routers
47.	Data	agram mode of transmission ensures		
	(A)	Reliable data transmission	(B)	Sequential order transmission
	(C)	Real time transmission	(D)	All of the above
48.	In tl	he transmission structure of ISDN the	D cha	annel
	(A)	carries channel signaling information	1	
	(B)	carries high speed data signals		
	(C)	supporting both control and data sign	naling	
	(D)	carries only low speed digital signal		
49.	The	basic channel structure of ISDN cons	ists of	
	(A)	Two full duplex 64kbps B channel	(B)	Two full duplex 16kbps D channel
	(C)	One D channel at 64 kbps	(D)	1.55 mbps rate B and D channel
50.	The	Frame relay transmission is supporte	d in	
	(A)	X.25 network	(B)	ATM network
	(C)	Internet	(D)	System network architecture SNA
51.	ATN	A adaptation layer type 2 supports		
	(A)	constant bit rate services		
	(B)	variable bit rate services		
	(C)	both (A) and (B)		
	(D)	reduced transmission overhead servi	ces	
52.	The	SDH level 4 supports — bi	t rate	
	(A)	155.52 Mbps	(B)	34.368 Mbps
	(C)	622.080 Mbps	(D)	1.544 Mbps
53.	The	world wide standard for the digital tra	nsmis	sion network is
	(A)	Plesiochronous digital hierarchy	(B)	Synchronous digital hierarchy
	(C)	Synchronous optical network	(D)	None of the above
54.	The	IGMP protocol is used in		
	(A)	Error reporting	(B)	Multicast routing
	(C)	Address resolution	(D)	Congestion and flow control

55.	An e	example for h	ash funct	ion is					
	(A)	message dig	gest		(B)	checksum			
	(C)	cyclic redur	idancy ch	ecks	(D)	all of the ab	ove		
56.	A br	idge has acce	ess to the		– address o	of a station of	n the san	ne netwo	rk
	(A)	network			(B)	physical			
	(C)	router			(D)	none of the	above		
57.		is t	he collect	ion of protoc	ols that pro	ovide securit	y at the I	P layer l	evel
	(A)	TLS	(B)	SSH	(C)	PGP	(D)	Ipsec	
58.	A m	ethod to prov	ide for th	e secure tra	nsport of e	mail is called	l		
	(A)	TLS	(B)	SA	(C)	PGP	(D)	Ipsec	
59.		is t	he contro	protocol the	at adds fun	ctionalities t	to the stre	eaming p	rocess
	(A)	RTSP	(B)	HTTP	(C)	TCP/IP	(D)	SIP	
60.		NS response	is classif	ïed as ——	if	the information	tion come	es from a	cache
	(A)	authoritativ	ve .		(B)	unauthorita	ative		
	(C)	iterative			(D)	recursive			
61.		antenna of in matching eff			directly co	nnected to a	50 Ω tra	nsmissio	on line.
	(A)	90 %	(B)	100 %	(C)	98.6 %	(D)	92 %	
62.	solie	ower of 100W d angle and pectively					-		
	(A)	25 W, 10 W			(B)	$25/\pi$ W, 25	/100 π W	I	
	(C)	7.96 W, 0.0	8 μW		(D)	0.08 μ W, 7	7.96 W		
63.		antenna is to ing element n		from 60 to	65 Hz. Its	length has	been cut	for 60 H	Iz. The
	(A)	An adjustal	ole capaci	tor	(B)	An adjustal	ole induct	or	
	(C)	A variable i	resistor		(D)	Any of the a	above		
64.	The	input imped	ance of ar	end fed He	rtz antenn	a is			
	(A)	1000 Ω			(B)	73 Ω			
	(C)	Depends on	length		(D)	300 Ω			

65.	Two isotropic antennas are separated by antennas are fed with currents of equal pl the radiation pattern in the horizontal pla	hase ar			
	(A) 2 (B) 4	(C)	6	(D) 8	
66.	A TV transmitting aerial is fixed on top 1200m high. The range of the transmitter			d on a mo	untain of
	(A) 152 (B) 51	(C)	0.152	(D) 0.05	1
67.	An antenna has again of 40 dB at a freq antenna in m ² is	uency	of 300MHz. The	effective a	rea of the
	(A) 796 (B) 10 ⁴	(C)	2500	(D) 3183	3
68.	A low frequency transmitting antenna har resistance of 1 Ω . If the current fed into a	s a rac	liation resistance i is 50A the radia	of 0.2 Ω a ted power	and a loss in W is
	(A) 500 (B) 2500	(C)	3000	(D) 10	
69.	In a step inex fiber, what is the cut-off fre	quency	of the LP ₁₁ mode	?	
	(A) 0.0 (B) 2.405	(C)	3.832	(D) 5.52	0
70.	Two single mode fibers with MFDs of 10 loss in dB?	um an	d 9μm are spliced	l. What is	the splice
	(A) 0.048 (B) 0.24	(C)	1	(D) 3	
71.	With an OTDR, it is possible to know				
	(A) The location dependence of attenuation	(B)	The overall link	length	
	(C) Splice and connector losses	(D)	All of the above		
72.	The material for making an efficient LED	should	l be		
	(A) An indirect BandGap semiconductor			ap semico	nductor
	(C) A metal	(D)	An insulator		
73.	The highest wavelength that silicon can bandgap of Si?	absorb	is 1.12μm. Wha	t is the ap	proximate
	(A) 1.1 eV (B) 1.4 eV	(C)	1.7 eV	(D) 2.3	eV
74.	Which wavelength is most suitable for pu	mping	an EDFA?		
, 2,	(A) 0.85μm (B) 0.98 μm	(C)		(D) 1.55	μm
	(a) sissing	, -/			
75.	Which of the following process is used to in a Soliton?	compe	nsate for the GVI	O-induced	dispersion
	(A) FWM	(B)	SPM		
	(C) CDM	(D)	All of the above		

76.	Silicon diodes are preferred to germanium diodes for high temperature operation
10.	because
	(A) Doping of silicon is a simple process
	(B) Rate of increase of reverse saturation current with temperature is more in the case of silicon
	(C) The reverse saturation current of silicon diodes is smaller than that of germanium
	(D) Silicon diodes can be used to rectify even very small voltages.
77.	The frequency of ripple in the output voltage of a 3Φ half controlled bridge rectifier depends on the
	(A) Firing angle (B) Load inductance
	(C) Load resistance (D) Supply frequency
78.	The switching speed of a P-N junction having a heavily doped P region depends primarily on
	(A) The mobility of minority carriers in the P region
	(B) The lifetime of minority carriers in the P region
	(C) The mobility of majority carriers in the N region
	(D) The lifetime of minority carriers in the N region
79.	Due to illumination by light, the electron and hole concentrations in a heavily doped n type semi-conductor increase by Δn and Δp respectively. If n_i is the intrinsic concentration, then
	(A) $\Delta n < \Delta p$ (B) $\Delta n > \Delta p$
	(C) $\Delta n = \Delta p$ (D) $\Delta n \times \Delta p = ni^2$
80.	When a reverse bias is applied to the Gate of JFET the depletion region width
	(A) Is uniform in the channel
	(B) Is wider near the source and tapers near the drain
	(C) Is wider near the drain and tapers near the source
0.1	(D) Is nil
81.	The temperature of a silicon transistor is increased from -55°C to 175°C. Then
	(A) I _{co} increases, β decreases, V _{BE} decreases
	(B) I _{co} decreases, β decreases, V _{BE} decreases
	(C) I _{co} increases, β increases, V _{BE} increases
	(D) I _{co} increases, β increases, V _{BE} decreases
82.	In a class B push-pull amplifier Vcc=25 volts pek voltage output amplitude Vm= 16 volts; $R_L = 8$ ohms. The dc power Pdc supplied is given by
	(A) 10 watts (B) 16 watts (C) 20 watts (D) 32 watts

83.	A CE amplifier w Rc = 5 K ohms h								load
	(A) 45	(B)	50		(C)		(D)	495	
84.	An amplifier with $\beta = 1/100$. Give		-			_		-	
	becomes							12.0	
	(A) 10 KHz	(B)	12 KH	Z	(C)	300 KHz	(D)	360 KHz	
85.	A miller integra output is 10 vol sweep error is th	ts. The o							
	(A) 1/3	(B)	3/100		(C)	1/300	(D)	3/300	
86.	A certain JK FF constructed from		_				IOD coun	ter that ca	an be
	(A) Any	(B)	8		(C)	256	(D)	10	
87.	With which deco	der is it p	ossible t	to obtain	n many	code convers	ions?		
	(A) 2 line to 4 l	ine			(B)	3 line to 8 li	ne		
	(C) Not possibl	e with an	y decode	er	(D)	4 line to 16	line deco	ler	
88.	How many micro out shift register						into a se	rial-in, par	rallel
	(A) 0.2	(B)	5		(C)	1.6	(D)	3.2	
89.		mbinatior ombinatio nises on t	nal circu nal circ he num	uit, ROM uit, PLA ber of m	is a s	equential circ equential circ ns			
							010 41		
90.	The translator p	rogramme	e that co	onverts :	source	code into ma	chine cod	e line by li	ne is
	(A) Assembler	(B)	Comp	iler	(C)	Loader	(D)	Interpret	ter
91.	A 10 bit resisti resistor is 100μ								
	mA is (A) 0.2	(B)	1		(C)	51.2	(D)	102.4	
	(11) 0.2	(2)			(0)	01.2	(_)		
92.	For a certain 4 output is +8V. If states is								
	(A) 1111	(B)	1010		(C)	0110	(D)	1011	
				11					138

93.		initial state of l k pulses?	MOD-1	16 dow	n conve	erter is	0110.	What st	ate wil	l it be aft	er 37
	(A)		(B)	0110		(C)	0101		(D)	0001	
94.		OMHZ square wa out in MHz is	ave clo	cks a	5 bit ri	pple co	unter.	The free	quency	of the 3rd	FF's
	(A)	2	(B)	1.25		(C)	50		(D)	0.615	
95.	In F	F clocking									
	(A)	Hold time is gre	eater t	han set	up tin	ie					
	(B)	Set up time is g				e					
	(C)	Hold time is bei									
	(D)	Set up time is a	fter ed	tge trig	gering						
96.		ong the logic fan ter than 100MH:						sed at	very hi	gh freque	encies
	(A)	TTLAS	(B)	CMOS		(C)	ECL		(D)	TTLLS	
97.	Amo	ong the following	gates	the one	e to be	onerate	d under	r high no	nise cor	dition is	
		ECL		Zener		(C)	I ² L		(D)	TTL	
98.	In re	egister index add	ressing	g mode	the eff	ective a	ddress	is given	by		
	(A)	The index regis	ter val	ue							
	(B)	The sum of the	index	registe	r value	and th	e operai	nd			
	(C)	The operand									
	(D)	The difference of	of the i	ndex re	egister	value a	nd the	operand			
99.	For	a μP system usi	ng IO	mappe	l IO the	e follow	ing stat	tement i	s not tr	rue	
	(A)	Memory space a	availab	ole is gr	eater						
	(B)	Not all data tra				e avail	able				
	(C)	IO and memory									
	(D)	IO address space									
100.	PCH	IL is useful in im	pleme	nting							
	(A)	If then else cons		9		(B)	While	constru	ct		
	(C)	Case construct				(D)		onstruct			
	101	Comment of the commen									