Examination: Ph.D Electrical and Electronics Engineering	
SECTION 1 - SECTION 1	
Question No.1	
HVDC transmission is preferred to EHVAC because VAr compensation is not required for HVDC systems harmonic problem is avoided system stability can be improved HVDC terminal equipments are expensive	
Question No.2	
Class E-Commutation is also known as Electronic Commutation Elevated Commutation External Pulse Commutation Extra point Commutation	
Question No.3	
The device which exhibits negative resistance characteristics is UJT Thyristor Diode SCR	
Question No.4 The trace and determinant of a 2 x 2 matrix are known to be -2 and -35 respectively. Its eigen val	ues are
Question No.5	
Surge current is A current appears with short interval of transient current during short circuit a current with less amplitude A current appears with long interval of transient current during short circuit a current with high frequency	
Question No.6	
The input of an A.C. circuit having power factor of 0.8 lagging is 40 kVA The power drawn by the 64 kW 22 kW 12 kW 32 kW	circuit is
Question No.7	

Three phase squirrel cage induction motor has a starting current of seven times the full load current and full load slip of 5%. If a star-delta starter is used to start this induction motor, the per unit starting torque will be 0.816 1.616 1.225 0.607
Question No.8
The following is true a bounded signal always possess finite energy a bounded signal is always finite a bounded signal is always zero outside the interval [-t0, t0] for some t0 a finite signal is always bounded
Question No.9
In three phase Inverter the Phase voltages are 180 degree out of phase with each other 120 degree out of phase with each other 140 degree out of phase with each other 160 degree out of phase with each other
Question No.10
A single phase inverter has square wave output voltage. What is the percentage of the fifth harmonic component in relation to the fundamental component 30% 20% 10% 40%
Question No.11
The effect of stray magnetic fields on the actuating torque of a portable instrument is maximum when the operating field of the instrument and the stray fields are output perpendicular output inclined at 60 deg output inclined at 30 deg output parallel
Question No.12
A four and half digit DMM has the error specification as 0.2% of reading +10 counts. If a DC voltage of 100V is read on its 200V full scale, the maximum error that can be expected in the reading is $\pm 0.2\%$ $\pm 0.4\%$ $\pm 0.1\%$ $\pm 0.3\%$

The conduction loss versus device current characteristics of a power MOSFET is best approximated by an exponentially decaying function	
○ a rectangular hyperbola	
○ a straight line	
│ ○ a parabola	
Question No.14	
The concept of electrically short, medium, and long line is primarily based on the	
onormal voltage of the line	
o power transmitted over the line	
wavelength of the line	
physical length of the line	
Question No.15	
In a 400 kV power network, 360 kV is recorded at a 400 kV bus. The reactive power absorbed by a shunt reactor rated for 50 MVAr, 400kV connected at the bus is	
○ 43.5 MVAr	
○ 40.5 MVAr	
○ 42.5 MVAr	
○ 41.5 MVAr	
Question No.16	
An ideal voltage source should have	
○ large value of e.m.f.	
infinite source resistance	
o small value of e.m.f.	
○ zero source resistance	
Question No.17	
A 4-point starter is used to start and control the speed of a	
DC series motor	
DC shunt motor with armature resistance control	
DC shunt motor with field weakening control	
○ DC compound motor	
Question No.18	
At an industrial substation with a 4 MW load, a capacitor of 2MVAr is installed to maintain the load power	
factor at 0.97 lag. If the capacitor bank is out of service, the load power factor will be	
○ 0.9 lag	
○ 0.85 lag	
○ 0.75 lag	
○ 0.8 lag	
Question No.19	
Latching current exist in	
Diac characteristics	
Thyristor characteristics	

 ☐ IGBT characteristics ☐ Triac characteristics
Question No.20
If $A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ then $\rho(A)$ is 2 0 doesn't exist 1
Question No.21
An average reading DMM reads 10V when fed with a triangular wave, symmetric about the time axis. For the same input an rms reading meter will read $\begin{array}{c} 10\\ \hline \sqrt{30}\\ \hline 010\sqrt{30}\\ \hline 20\sqrt{30}\\ \hline \end{array}$
Question No.22
Slip rings are usually made of copper carbon aluminium phospor bronze
Question No.23
The Nyquist plot of a loop transfer function G(s)H(s) of a closed loop control system passes through the point (-1, j0) in the G(s)H(s) plane. The phase margin of the system is 180 deg 0 deg 90 deg 45 deg
Question No.24
A smart Power Device consists of gate drive circuitry and semiconductor switches fabricated on same chip consists of both passive elements and semiconductor switches consists of only diodes consists of power semiconductor switches
Question No.25
If any two phases for an induction motor are interchanged

 the motor will run in reverse direction the motor will not run the motor will run at reduced speed 	
the motor will burn	
Question No.26	
According to Kirchhoff's voltage law, the algebraic sum of all IR drops and e.m.f's. in any closed network is always negative zero positive determined by battery e.m.f's.	loop of a
Question No.27	
Varistors are resistors with zero temperature coefficient non-linear resistors carbon resistors insulators	
Question No.28	
$\int_{0}^{\pi} \sin^{4}x \cos^{5}x dx =$ 0 $3\pi/128$ $3\pi/256$ $5\pi/128$	
Question No.29	
Tesla is a unit of inductance flux flux density field strength	
Question No.30	
The fourier transform of a signal h(t) is H(jω)=(2cosω)(sin2ω)/ω. The value of h(0) is 1/2 1 2 1/4	
Question No.31	
The uniform magnetic field is the field of a single conductor the field of a dual conductor	

the field of a set of parallel conductorsthe field in which all lines of magnetic flux are pa	rallel and equidistant
Question No.32	
A thermistor has	
negative temperature coefficient	
zero temperature coefficient	
variable temperature coefficient	
 positive temperature coefficient 	
Question No.33	
The inductance and capacitance of a line are respective interrupted current is 10A, the voltage across the breake 100kV	
○ 125kV	
75kV	
○ 66kV	
Question No.34	
$G(s)H(s) = \frac{K}{s^2 + 2s + 2}$, the angle of departure of the RLD is	
±135 deg	
→ ±0 deg	
→ ±180 deg	
○ ±90 deg	
Question No.35	
A DC ammeter has a resistance of 0.1Ω and its current r 0-500A, the meter requires the following shunt resistance	
_ 0.025Ω	
○ 1.0Ω	
Ο 0.011Ω	
Ο 0.01Ω	
Question No.36	
A series circuit consists of R=2.4 Ω , L=25 μ H, C and a the circuit, the value of C should be equal to	yristor. For obtaining self commutation in the
○ 50µF	
○ 30µF	
○ 10µF	
○ 20μF 	
Question No.37	
Chopper is a circuit that converts	
Fixed AC to variable DC	
Fixed DC to variable DC	
AC to DC	

○ DC to variable AC	
Question No.38	
A negative sequence relay is commonly used to protect	
○ a bus bar	
○ a transformer	
⊝ an alternator	
○ a transmission line	
Question No.39	
The firing angle in thyristor converter circuit is to	
 vary the frequency 	
○ vary the amplitude	
 vary the output voltage of the converter 	
ovary the input current of the converter	
Question No.40	
$z = \frac{1}{2} z^2 - 3z$	
If $Z\{u_n\} = \frac{2z^2 - 3z}{3z^2 + 4}$ then $u_0 =$	
○ 2/3	
○ 3/2	
○ 0	
Question No.41	
What is the making current if CB is single phase	
_ 100kA	
80kA	
204kA	
○ 160kA	
Question No.42	
A terminal where three or more branches meet is known as	
node	
anode	
combinationterminus	
Question No.43	
A conductor of locate Library consent Languign through it subsections in the contract of the c	netic field. The
A conductor of length L has current I passing through it, when it is placed parallel to a magr force experienced by the conductor will be	
force experienced by the conductor will be BLI2	
force experienced by the conductor will be	
force experienced by the conductor will be BLI2	

Question No.44
A 230V, 1kW electric heater is fed through a triac from 230V, 50Hz source. The load power for a firing
angle of 70 deg is
○ 173.4
○ 137.4
Question No.45
Permissible change in power frequency is
○ ±5 Hz
○ ±1 Hz
○ ±10 Hz
○ ±0.5 Hz
Question No.46
The steady state stability limit of a transmission line is 400MW. If 30% series compensation is added to
the line then the new SSSL of transmission line will be (R and C of line are neglected, voltages at both
ends of line remains unchanged)
○ 400MW
○ 280MW
○ 571.5MW
○ 1333.3MW
Question No.47
In thermal power plants, the pressure in the working fluid cycle is developed by
○ condenser
○ turbine
 super heater
○ feed water
Question No.48
Circuit turn off time is defined as the time
 for which the SCR is reverse biased by the commutation circuit
 for which the SCR is reverse biased to reduce its current below the holding current
taken by the SCR turn off
 required for the SCR current to become zero
Question No.49
If two sinusoids of the same frequency but of different amplitudes and phase angles are subtracted, the resultant is
resultant is
resultant is ○ a sinusoid of double the frequency
resultant is a sinusoid of double the frequency a sinusoid of the same frequency
resultant is a sinusoid of double the frequency a sinusoid of the same frequency not a sinusoid
resultant is a sinusoid of double the frequency a sinusoid of the same frequency

Fleming's left hand rule is used to find
opolarity of a magnetic pole
○ direction of magnetic field due to current carrying conductor
direction of flux in a solenoid
direction of maxima eciclicia
Question No.51
An RLC resonant circuit has a resonance frequency of 1.5 MHz and a bandwidth of 10kHz. If C=150pF,
then the effective resistance of the circuit will be
Ο 4.7Ω
⊝ 29.5Ω
Ο 9.4Ω
⊝ 14.75Ω
Question No.52
A state space representation for the transfer function $\frac{Y(s)}{U(s)} = \frac{s+6}{s^2+5s+6}$ is
$x = Ax + Bu$; $y = Cx$ where $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and the value of C is
○ [6 1]
○ [1 2]
○ [1 6]
○ [2 1]
Question No.53
Question No.53
The gain margin of a unity feedback, control system with the open loop transfer
The gain margin of a unity feedback, control system with the open loop transfer
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 $\sqrt{2}$ Question No.54
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 $\sqrt{2}$
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 $\sqrt{2}$ Question No.54 An analog voltmeter uses external multiplier settings. With a multiplier setting of 20 k Ω , it reads 440V and
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 $\sqrt{2}$ Question No.54 An analog voltmeter uses external multiplier settings. With a multiplier setting of $20 \text{ k}\Omega$, it reads 440V and with a multiplier setting of $80\text{k}\Omega$ it reads 352 V . For a multiplier setting of $40\text{k}\Omega$, the voltmeter reads
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 0 $\sqrt{2}$ Question No.54 An analog voltmeter uses external multiplier settings. With a multiplier setting of 20 k Ω , it reads 440V and with a multiplier setting of 80k Ω it reads 352 V. For a multiplier setting of 40k Ω , the voltmeter reads 394V
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 0 $\sqrt{2}$ Question No.54 An analog voltmeter uses external multiplier settings. With a multiplier setting of $20 \text{ k}\Omega$, it reads 440V and with a multiplier setting of $80\text{k}\Omega$ it reads 352 V . For a multiplier setting of $40\text{k}\Omega$, the voltmeter reads 394V 371V
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 0 $\sqrt{2}$ Question No.54 An analog voltmeter uses external multiplier settings. With a multiplier setting of 20 k Ω , it reads 440V and with a multiplier setting of 80k Ω it reads 352 V. For a multiplier setting of 40k Ω , the voltmeter reads 394V 371V 383V 406V
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 $\sqrt{2}$ Question No.54 An analog voltmeter uses external multiplier settings. With a multiplier setting of $20 \text{ k}\Omega$, it reads 440V and with a multiplier setting of $80\text{k}\Omega$ it reads 352 V . For a multiplier setting of $40\text{k}\Omega$, the voltmeter reads 394V 371V 383V
The gain margin of a unity feedback, control system with the open loop transfer function $G(s) = \frac{s+1}{s^2}$ is infinite $\frac{1}{\sqrt{2}}$ 0 0 $\sqrt{2}$ Question No.54 An analog voltmeter uses external multiplier settings. With a multiplier setting of 20 k Ω , it reads 440V and with a multiplier setting of 80k Ω it reads 352 V. For a multiplier setting of 40k Ω , the voltmeter reads 394V 371V 383V 406V

○ 5○ 8○ 10
Question No.56 For harnessing low variable waterheads, the suitable hydraulic turbine with high percentage of reaction and runner with adjustable vanes is impeller pelton Kaplan francis
Question No.57 Eigen values of a matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ are $\begin{array}{c} -2, -3 \\ -1, -6 \\ 0 & 1, 6 \\ 0 & 2, 3 \end{array}$
Question No.58 The gain of the amplifier without feedback is 1000, with feedback factor 0.009, the gain of the amplifier with negative feedback is 200 100 150 10
An ac induction motor is used for a speed control application. It is driven from an inverter with a constant V/f control. The motor name plate details are as follows: (no.of poles=2, V=415V, ph:3, f=50Hz, N=2850 rpm) The motor is run with the inverter output frequency set at 40Hz, and the with half the rated slip. The running speed of the motor is 2280 rpm 2400 rpm 2790 rpm 2340 rpm
Question No.60 If \overline{E} is the electric field intensity, $\nabla (\nabla \times \overline{E})$ is equal to null vector zero \overline{E}

Question No.61	
Both inverter and converter operation can be obtained by semiconverters	
full wave converter by varying firing angle	
choppersinverters by varying firing angle	
o minorate by tanying ming angle	
Question No.62	
Which of the following circuit element stores energy in the electromagnetic field?	
○ Variable resistor○ Condenser	
Resistance	
○ Inductance	
Question No.63	
Sparking occurs when a load is switched off because the circuit has high	
resistance	
⊝ impedance	
capacitance	
o inductance	
Question No.64	
Similarity break down characteristics can be have with	
O Diac	
│ Triac │ MCT	
○ Thyristor	
Question No.65	
The local equivalent of the HEX number AB.CD is	
526.632	
253.314	
<u>253.632</u>	
Question No.66	
Poly phase motors are	
having low torque	
having high torquehaving high ripples	
having high impedance	
Question No.67	
In a 3-phase full converter, the output voltage during overlap is equal to zero	
 average value of the conducting phase voltages 	

source voltagesource voltage minus the inductance drop	
Question No.68	
A magnetic field exists around	
o copper	
○ aluminium	
o moving charges	
o iron	
Question No.69	
An induction motor with speed of 1000 r.p.m and f=50Hz will have 8 poles	
2 poles	
6 poles	
4 poles	
Question No.70	
A dc series motor driving an electric train faces a constant power load. It is running at rated rated voltage. If the speed has to be brought down to 0.25p.u, the supply voltage has to be approximately brought down to 0.5 p.u 0.75 p.u 0.125 p.u	
○ 0.25 p.u	
Question No.71	
Which of the following can have negative temperature coefficient ?	
Compounds of silver	
○ Metallic alloys	
○ Electrolytes	
○ Liquid metals	
Question No.72	
When a program is being executed in an 8085 microprocessor, its program counter contain	
	3
the memory address of the instruction that is being currently executed	
the number of instructions in the current program that have already been executed	
the memory address of the instruction that is to be executed next	
the memory address of the instruction that is to be excedded floxe	
Question No.73	
Semi converter is constructed with	
○ both diodes and Thyristor	
- IODT	
○ IGBT's	
only Thyristors	

Question No.74	
In a three-phase induction motor, the number of poles in the rotor winding is always	
less than number of poles in stator	
o zero	
 equal to number of poles in stator 	
 more than the number of poles in stator 	
Question No.75	
Most of the reheat units have a generation rate around	
O 10%	
O%	
○ 3%	
Question No.76	
Latching current of a thyristor is associated with	
Forward characteristics	
onot related to thyristor	
Both forward and reverse characteristics	
 Reverse characteristics 	
Question No.77	
The direction of induced a mif. can be found by	
The direction of induced e.m.f. can be found by Fleming's right hand rule	
○ Kirchhoff s voltage law	
Lenz's law	
Caplace's law	
Question No.78	
The magneto-motive force is	
the flow of an electric current	
the sum of all currents embraced by one line of magnetic field	
the voltage across the two ends of exciting coil	
the passage of magnetic field through an exciting coil	
the passage of magnetic field through an exciting con	
Question No.79	
4	
If the CLTF of a unity feedback system is $\frac{4}{s^2 + 7s + 13}$, find the corresponding OLTF is	
\circ 4	
$\bigcirc \frac{4}{s^2 + 7s + 9}$	
$\bigcirc \frac{4}{s^2 + 5s + 13}$	
$\bigcirc \frac{4}{s^2 + 5s + 9}$	
s ² + 2s + 9	

$\frac{4}{s^2+7s+13}$
Question No.80
One telsa is equal to
○ 1 Wb/mm ²
○ 1 Wb/m
○ 1 Wb/m ²
○ 1 mWb/m ²
Question No.81
The transmission line distance protection relay having the property of being inherently directional is
oreactance relay
○ OHM relay
⊝ impedance relay
○ MHO relay
Question No.82
The peak value of a sine wave is 200 V. Its average value is
141.4 V
○ 200V
○ 282.8 V
○ 127.4 V
Question No.83
Thyristor protection can be have with
Snubber circuit
○ Capacitance
○ Inductance
○ Resistance
Question No.84
The 8085 assembly language instruction that stores the content of H and L registers into the memory
locations 2050H and 2051H respectively, is
○ SPHL 2050H
○ SPHL 2051H
○ SHLD 2050H
○ STAX 2050H
Question No.85
Which of the fallowing inductor will have the least eddy current losses ?
Powdered iron core
○ Laminated iron core
○ Iron core
○ Air core

For the function $f(x)=x^2e^{-x}$, the maximum occurs when x is equal to	
O 2	
○ 0	
○ 1	
Question No.87	
The static electric field in a conductor is	
 cannot be determined 	
○ infinite	
○ zero	
unity	
Question No.88	
The Biot-Savart's law is a general modification of	
○ Faraday's laws	
○ Ampere's law	
○ Kirchhoffs law	
○ Lenz's law	
Question No.89	
The concept on which Superposition theorem is based is	
linearity	
onon-linearity	
o duality	
reciprocity	
Question No.90	
The laplace transform of a function $f(t)$ is $F(s) = \frac{5s^2 + 23s + 6}{(3 + 2)(3 + 2)}$. As $t \to \infty$, $f(t)$	
The laplace transform of a function $f(t)$ is $F(s) = \frac{5s^2 + 23s + 6}{s(s^2 + 2s + 2)}$. As $t \to \infty$, $f(t)$	
approaches	
approaches 17/2	
approaches 17/2 3	
approaches 17/2 3 5	
approaches 17/2 3	
approaches 17/2 3 5	
approaches	
approaches	
approaches $\begin{array}{c} 17/2 \\ 3 \\ 5 \\ \infty \end{array}$ Question No.91 $\bar{r}.d\bar{r} \text{ where C is the curve } x^2+y^2=4$	
approaches $\begin{array}{c} 17/2 \\ 3 \\ 5 \\ \infty \end{array}$ Question No.91 $\int_{c}^{\bar{r} \cdot d\bar{r}} \ where \ C \ is \ the \ curve \ x^2+y^2=4$	
approaches $\begin{array}{c} 17/2 \\ 3 \\ 5 \\ \infty \end{array}$ Question No.91 $\int_{c}^{c} \bar{r} \cdot d\bar{r} \text{ where C is the curve } x^2 + y^2 = 4$	

 \prod

Question No.92	
Three phase squirrel cage induction motor has a starting current of seven times the full load current an full load slip of 5%. If a starting torque of 0.5 per unit is required then the per unit starting current shoul be	
○ 3.75	
3.16	
○ 4.65 ○ 2.43	
○ 2.13	
Question No.93	
The complete set of only those logic gates designated as universal gates is	
○ XNOR, NOR and NAND	
NOR and NAND	
○ XOR, NOR and NAND○ NOT, OR and AND	
NOT, OIL and AND	
Question No.94	
Three phase squirrel cage induction motor has a starting current of seven times the full load current an full load slip of 5%. If an auto transformer is used for reduced voltage starting torque, the auto transformer ratio (%) should be 78.25%	
○ 72.56%	
○ 81.33%	
Question No.95	
A 400V, 15kW, 4-pole, 50Hz, Y-connected induction motor has full load slip of 4%. The output torque of the machine at full load is	f
○ 95.50 Nm ○ 624.73 Nm	
99.47 Nm	
○ 1.66 Nm	
Question No.96	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts 20 volts	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts 20 volts 7.07 volts	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts 20 volts 7.07 volts 10 volts	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts 20 volts 7.07 volts 10 volts	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts 20 volts 7.07 volts 10 volts Question No.97 A transformer transforms	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts 20 volts 7.07 volts 10 volts Question No.97 A transformer transforms frequency	
The effective value of sinusoidal voltage is 14.14 volts and so its peak value is 30 volts 20 volts 7.07 volts 10 volts Question No.97 A transformer transforms frequency voltage	

A unity feedback closed loop system has the loop transfer function $G(s) = \frac{Ke^{-2s}}{s}$.	
The system becomes stable for the range	
○ 0 <k<π 4<="" td=""><td></td></k<π>	
_ π/4< K <π/2	
π <k<2π <="" p=""></k<2π>	
_ π/4< K <π	
Question No.99	
A high input impedance and high switching frequency operated semiconductor device is MOSFET	
○ FET	
○ IGBT	
○ Transistor	
Question No.100	
A three phase 11/66 kV, delta star transformer, protected by Merz-price scheme has CT r LT side. Ratio of CT on HT side will be equal to	ratio of 400/5 on
O 23:1	
○ 1:23	
23:3	
○ 3:23	