ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (ECOLOGY & ENVIRONMENTAL SCIENCES)

COURSE CODE: 111

Register Number :	(A) patrix and laber
got was a self-dependent to	
	Signature of the Invigilator
to the second se	(with date)

COURSE CODE: 111

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Ex-s	itu conservation is needed because of						
	(A) various threats operating on species in natural ecosystems							
	(B)	3) various threats operating on species in controlled conditions						
	(C)	globalization						
	(D)	denitrification in ecosystem						
2.	Sources of precipitation include							
	(A)	ponds and lakes	(B)	lakes and reservoirs				
	(C)	throughfall and stem flow	(D)	rainfall, dew, snow, fog				
3.	Woo	dy climbers are characteristic of						
	(A)	taigas	(B)	tundras				
	(C)	temperate forests	(D)	tropical forests				
4.	Tre	e rings are distinct in						
	(A)	tropical species due to indistinct sea	sonali	ty				
	(B) temperate species due to distinct seasonality							
	(C) subtropics due to moisture							
	(D)	subtropics due to high illumination						
5.	Fore	est ground flora are dominated by						
	(A) Acathaceae, Araceae, gingers & ferns							
	(B)	Rubaceae, Meliaciae, ferns & pines						
	(C)	Lauraceae, Tiliaceae, firs & ferns						
	(D)	Moraceae, Bixaceae, ferns & oaks						
6.	Lea	flessness and thorniness increase with	n					
	(A)	Salinity stress	(B)	Soil nutrients				
	(C)	Drought stress	(D)	Plant nutrition				
7.	Veg	etation type with single stratum is						
	(A)	tropical woodlands	(B)	temperate grasslands				
	(C)	temperate taigas	(D)	tropical scrubs				
8.	Sali	nity of sea water in ppt						
	(A)	05	(B)	15				
	(C)	25	(D)	35				
111		2						

9.	Voli	tinism in insects pertains to		
	(A)	spinning	(B)	ecdysis
	(C)	moth emergence	(D)	no. of generations/ yr
10.	Cell	organelle that aids in photorespiration	ı is	
	(A)	peroxysomes	(B)	mitochondria
	(C)	golgi bodies	(D)	none of the above
11.	Maj	or biomes include		
	(A)	arctic-alpine, cold & warm temperate	, trop	pical
	(B)	arctic & Antarctic		
	(C)	deserts & rain forests		
	(D)	grasslands & savannas		
12.	Soil	profile comprises of		
	(A)	organic layer, mineral layer & parent	al ro	ck
	(B)	litter, humus & soil layer		
	(C)	soil, plants & burrowing fauna		
	(D)	litter, soil & plant cover		
13.	Estu	arine fauna include		
	(A)	corals & large fishes	(B)	oysters & crabs
	(C)	corals & mice	(D)	voles & shrews
14.	Ord	erly arrangement of 4 fungal groups		
	(A)	Chlorella, nastoc, Fucus & Polysipho	nia	
	(B)	Riccia, Marchantia, Bryum, Spagnum	n	
	(C)	Albugo, Peziza, Polyporus, Fusarium		
	(D)	Cycus, Pinus, Gnetum, Ephedra		
15.	The	enzyme that breaks DNA into segmen	ts	
	(A)	Ligase	(B)	Amylase
	(C)	Endonuclease	(D)	Polymerase
16.	Pal	ms characteristically possess		
	(A)	thick fibrous roots, caudex & spadix		
	(B)	thin tap roots, caudicle & spikes		
	(C)	drupes, firs & cymes		
	(D)	berries, spruce & thyrses		

17.	Lati	tudinal limit of tropical region is
	(A)	13.5 degree North to 13.5 degree South
	(B)	23.5 degree North to 23.5 degree South
	(C)	33.5 degree North to 33.5 degree South
	(D)	43.5 degree North to 43.5 degree South
18.	Fam	ilies with greatest number of species include
	(A)	Rosaceae, Rutaceae, Myrtaceae, Lamiaceae
	(B)	Asteraceae, Poaceae, Orchidaceae, Fabaceae
	(C)	Violaceae, Sapindaceae, Mimosaceae, Apiaceae
	(D)	Acanthaceae, Capparaceae, Pinaceae, Buxaceae
19.	Fibr	e resources are obtained from
	(A)	Agave, Musa, Corchorus, Hibiscus
	(B)	Zea, Poa, Orchis, Taxus
	(C)	Valonia, Salicornia, Lannea, Swetienia
	(D)	Thuja, Ephedra, Cycas, Prunus
20.	Succ	culents include
	(A)	Melia, Ruta, Annona, Walsura
	(B)	Garcinia, Carallia, Musa, Aster
	(C)	Zinnia, Olea, Cucurbita, Laurus
	(D)	Euphorbia, Agave, Aloe, Cacti
21.	How	w many net molecules of ATP are produced in glycolysis?
	(A)	2 (B) 4
	(C)	34 (D) 36
22.	Biod	diverse island systems include
	(A)	Canada, USA, India, Australia
	(B)	India, UK, USA, Africa
	(C)	Madagascar, SE Asia, Australia , New Zealand
	(D)	Russia, Canada, Africa, UAE
23.		major problems associated with the lake Victoria is
	(A)	introduction of cichlids in to the lake
	(B)	invasive species
	(C)	presence of toxic chemical in the water that killed all of the animal life
	(D)	oil spills

24.	Titr	imetry exemplified by an o	xidizing & a redu	cing agent is
	(A)	Oxalic acid Vs HCl	(B)	Oxalic acid Vs KMnO ₄
	(C)	HCl Vs NaOH	(D)	Nitric acid Vs KOH
25.	Whi	ich provision of ISO empha	sise quality mana	agement standards?
	(A)	ISO 14001	(B)	ISO 14031
	(C)	ISO 9000	(D)	ISO 14040
26.	Wha	at is an organism's realized	d niche?	
	(A)	All the places an organis	m can survive	
	(B)	Lifestyle an organism pu	rsues and the res	ources it actually uses
	(C)	The ecosystem where an	animal lives and	all the foods available to it
	(D)	The location that has the	most resources a	vailable
27.	the			generally found in the cooler parts of e are found in the warmer parts. This
	(A)	Allen's rule	(B)	Gloger's rule
	(C)	Bergmann's rule	(D)	Blackman's rule
28.	In n	nicrobial mining, one of the	e following organia	sm is utilized
	(A)	Thiobacillus	(B)	Clostridium
	(C)	Pseudomonas	(D)	Azotobacteria
29.	Rad	ioactive pollution along Ke	erala coast is due	to
	(A)	thorium	(B)	caesium
	(C)	plutonium	(D)	zinc
30.	The	average air pressure at se	a level is approxi	nately
	(A)	1230 millibars	(B)	1 kg/cm ²
	(C)	13.3 pounds/inch²	(D)	6.2 pounds/inch ²
31.	The	value of ionic product of w	ater is	
	(A)	1 × 10 ⁻²³	(B)	1×10^{-14}
	(C)	1×10^{-22}	(D)	6.023×10^{22}
32.	Hvd	rophytes usually have wel	l developed	
-	(A)	root system	(B)	vascular system
	(C)	ctomete	(D)	agranduma

33.	Biol	uminescence is caused by		
	(A)	luciferin	(B)	enzyme
	(C)	reflection of light	(D)	hormones
34.	Colo	our of distillery industry effluent is du	ie to th	e presence of
	(A)	Caramel	(B)	Iron oxide
	(C)	Dextrose	(D)	Lingo cellulose
35.	In w	which of the national parks Indian lion	ns are i	nurtured in their natural habitat?
	(A)	Corbett	(B)	Gir
	(C)	Bandipur	(D)	Kaziranga
36.	Rh+	blood is due to genes which are		
	(A)	dominant	(B)	recessive
	(C)	codominant	(D)	neutral
37.	The	coefficient of correlation		
	(A)	has no limits	(B)	can be less than one
	(C)	varies between ±1	(D)	can be more than one
38.	The	calculated value of chi-square test is		
	(A)	always positive	(B)	always negative
	(C)	can be either positive or negative	(D)	none of these
39.	Def	iciency of sodium and potassium caus	es	
	(A)	diarrhoea	(B)	headache
	(C)	muscular cramps	(D)	all are correct
40.	The	number of producers and consumers	in an	ecosystem is mutually controlled by
	(A)	feedback mechanism	(B)	food chain mechanism
	(C)	productivity control	(D)	any of these
41.	Cau	ses of coastal pollution include		
	(A)	oil-spills, effluents, solid dumps, etc	c.	
	(B)	oil-extraction, aquaculture, agricult	ture, et	c.
	(C)	over- exploitation of fishery resource	es	
	(D)	under utility of fishery resources		

42.	Ord	erly arrangement of 4 major algal grou	ıp rep	presentatives include			
	(A)	Chara, Cyclotella, Codium, Ulva					
	(B)	Anabaena, Cycas, Pinus, Gnetum					
	(C)	Nostoc, Ulva, Padina, Polysiphonia					
	(D)	Mangifera, Moringa, Ficus & Fucus					
43.	Mor	noculture means					
	(A)	Plantation of single species	(B)	Mixed crop plantation			
	(C)	Plantation of Eucalyptus & Acacias	(D)	Bacterial culture			
44.	The	reason for signing 1987 Montreal Prot	ocol v	was			
	(A)	to stop global trade of products made	from	endangered animals			
	(B)						
	(C)	to prohibit and ban nuclear testing in	n trop	ical deserts and oceans			
	(D)	to start using renewable sources of anthropogenic greenhouse effect	energ	gy instead of fossil fuels to reduce th			
45.	Tree	e trunks of humid tropical forests are c	lothe	d with			
	(A)	saprophytes	(B)	parasites			
	(C)	epiphytes	(D)	hydrophytes			
46.	Larg	gest leaf & flower respectively are known	wn in				
	(A)	Vanda teesselata & Russelia					
	(B)	Vaccinium neigherrense & Rhamnus					
	(C)	Victoria amazonica & Rafflesia					
	(D)	Viscum orientale & Ruscus					
47.	Tran	nsgenics are known to be					
	(A)	disease-prone	(B)	disease-resistant			
	(C)	disease-inducive	(D)	disease-promotive			
48.	The	persistent pollutants in the food-chain	are i	increased through			
	(A)	bioaccumulation	(B)	bioconcentration			
	(C)	bioexcretion	(D)	biomagnification			
49.	The	Bhopal gas tragedy, in 1984, was caus	ed by	the leakage of			
	(A)	CO	(B)	MIC			
	(C)	HNO ₃	(D)	нсно			

50.		ecosystem that is characterized by decr ne undergoing	reasin	g productivity would be best described
	(A)	eutrophication	(B)	flooding
	(C)	desertification	(D)	none of the above
51.		udy of data in 19 th century on availabi there was a cyclic variation with the	-	
	(A)	there was a time gap between reproduction in response	the a	availability of hare meat and lynn
	(B)	each generation of lynx and hare l knowledge on to their succeeding gen		to avoid traps but did not pass this
	(C)	newer trappers replaced old ones an	d they	required time to learn
	(D)	overall variation in sunspot activity		
52.	Wha	at is the Raunkiaer system?		
	(A)	Systems for classifying plants by life	-form	
	(B)	Part of the photosynthetic cycle		
	(C)	Method to measure light intensity in	fores	ets
	(D)	A method to assess plant diversity		
53.	Epi	phytes grow on		
	(A)	soil	(B)	water
	(C)	other plants	(D)	underground
54.		ich of the following non-biodegradable els of toxicity, if not handled properly	e was	te can pollute the earth to dangerou
	(A)	DDT	(B)	CFC
	(C)	Radioactive substances	(D)	PAN
55.	Pric	ons are		
	(A)	micro RNA's	(B)	a type of virus
	(C)	a gene sequence	(D)	proteinaceous infectious agent
56.	Troj	phic pyramid in an ecosystem is constr	ructed	by estimating the
	(A)	food types of animals and plants		
	(B)	length of the food chain		
	(C)	relative abundance of each functions	al feed	ling group
	(D)	the total number of functional group	s	

- 57. Life tables are used for assessing
 - (A) food webs
 - (B) population growth and regulation
 - (C) probability of surviving to a particular age
 - (D) livelihood options of communities
- 58. Population genetics is the study of
 - (A) changes in allele frequency and distribution
 - (B) the quantity of genetic diversity in populations
 - (C) the heterozygosity and fitness of populations
 - (D) the rate of phenotypic changes with evolution
- 59. The second law of thermodynamics deals with
 - (A) creation of matter in the Universe
 - (B) energy cannot be created or destroyed
 - (C) all systems are in thermal equilibrium
 - (D) entropy in a system
- 60. A biogeochemical cycle is the
 - (A) cycling of energy through the biosphere
 - (B) a part of pollution treatment plants
 - (C) global meteorological cycles
 - (D) cycling of elements through the biotic and abiotic sphere
- 61. The Competitive Exclusion Principle was proposed by
 - (A) G. Evelyn Hutchinson
- (B) G.F. Gause

(C) Lotka and Volterra

- (D) Robert MacArthur
- 62. The main greenhouse gases are
 - (A) carbon dioxide, methane, nitrous oxide and sulphur dioxide
 - (B) carbon dioxide, carbon monoxide, nitrous oxide and sulphur dioxide
 - (C) carbon, methane, nitrous oxide, ethylene and fluorocarbons
 - (D) carbon, methane, nitrous oxide and sulphur hexafluoride
- 63. Carbon sequestration is the
 - (A) net removal of CO2 from the atmosphere
 - (B) net release of CO2 from sinks
 - (C) sink-source dynamics
 - (D) trends in carbon emissions

64.	An I	UCN classification of 'endangered'	species is	3
	(A)	species that has ceased to exist		
	(B)	danger of extinction in the foresee	able futu	re
	(C)	very high risk of extinction in the	near futu	ire
	(D)	species that is only found in capti	vity	
65.	Biod	liversity hotspots located in India	are	
	(A)	Western Ghats only		
	(B)	Western Ghats and Eastern Hims	alayan	
	(C)	Western Ghats, Eastern Himalay	as and In	do-Burma
	(D)	Western Ghats, Eastern Himalay	as and St	undarban
66.	The	standard deviation is		
	(A)	a parameter of distribution	(B)	a measure of dispersion
	(C)	a measure of central tendency	(D)	a measure of randomness
67.	In o	linear model such as y=ax+b, the s	lone is	
01.	(A)	"V"	(B)	"x"
	(C)	"a"	(D)	"b"
68.	Whi	ch of the following is found in both	nrokaryo	atic and aukarvotic calls?
00.	(A)	Centriole	(B)	Nucleolus
	(C)	Peroxisome	(D)	Ribosome
	(0)	reroxisome	(D)	Ribosome
69.	The	logistic growth curve indicates		
	(A)	maximal sustainable harvesting		
	(B)	resource availability in the enviro	nment	
	(C)	density independent growth		
	(D)	density dependent growth		
70.	_	anisms reproducing once in life mals as	time are	respectively referred in plants and
	(A)	monocarpic & semelparous	(B)	polycarpic & iteroparous
	(C)	monophyletic & polyphyletic	(D)	viviparous & semelparous
71.	Whi	ich region of the earth supports mo	re popula	tion?
	(A)	0-30° N	(B)	30-60° N
	(C)	60-90° N	(D)	none of the above
111			10	

	(A)	cold deserts, hot deserts, grassl	ands	
	(B)	rainforests, savannas & decidue	ous forests	
	(C)	grasslands, rainforests & deser	ts	
	(D)	deserts, savannas, deciduous &	evergreen	forests
74.	Arth	nopods include four major groups		
	(A)	canids, felids, scuirids & bovids		
	(B)	annelids, centipedes, crabs & pe	olychaetes	
	(C)	millepedes, crabs, lepidopteran	s & arachr	iids
	(D)	nematodes, flatworms, earthwo	rms & cor	als
75.	Wee	ed control is achieved by		
	(A)	cytological, physiological & emb	oryological	means
	(B)	mechanical, chemical & biologic	cal means	
	(C)	pathological, karyologocal & cy	tological m	eans
	(D)	chronological, cytological & ast	rological m	eans
76.	End	ozoochory involves fruit processi	ng by	
	(A)	ingestion, digestion & egestion		
	(B)	injestion, extraction & sedimen	tation	
	(C)	impression, compression & petr	rification	
	(D)	expression, suppression & cons	umption	
77.	The	major pollutants released from t	hermal po	wer plants are
	(A)	CO & CO ₂	(B)	SO ₂ & CO ₂
	(C)	$SO_2 - NO_2$	(D)	Hydrocarbons
78.	In p	ost-fertilization stage ovary, ovu	le & zygote	e respectively develop into
	(A)	seed, embryo & fruit	(B)	seed, endosperm & perisperm
	(C)	fruit, seed & embryo	(D)	embryo, endosperm and fruit
			11	

Conifers include

pines, firs, spruce & yews

teak sal, & terminalias

alders, beeches, ashes & poplars eucalypts, myricas & myristicas

Tick the order indicating increasing rainfall gradient

72.

73.

(B)

(C) (D)

79.	9. Floating & rooted macrophytes of pond ecosystems			ms			
	(A) Utricularia - Oenothera; Wolfia -Eichhornia						
	(B)	Enhalus -Blyxa & Lemna - Hydroch	aris				
	(C)	Halophila - Halodule & Eichhornia-	Pistia				
	(D)	Lemna - Wolfia & Elodia - Vallisne	ria				
80.	Conservation areas are prioritised on						
	(A)	high diversity, endemicity & geogra	phic u	niqueness			
	(B)	low diversity, wide distribution & ge	eologic	al substrate			
	(C)	climate, soil & cultigens					
	(D)	human population, climate & soil					
81.	Sap	rophytic mode is exhibited by					
	(A)	coprophilous fungi	(B)	soil algae			
	(C)	mosses	(D)	ferns			
82.	Tem	aporary hardness of water is due to					
	(A)	carbonate and bicarbonates	(B)	oxides of divalent compounds			
	(C)	TDS	(D)	DOM			
83.	Tick	the set of invasive weeds					
	(A)	pine, fir, linden	(B)	teak, sal, red sanders			
	(C)	lantana, eichhornia, chromolaena	(D)	gnetum, connarus, derris			
84.	Sus	tainable use of resources would refer	to				
	(A)	optimal resource harvest within reg	enerat	ive potential of species			
	(B)	maximal resource harvest in all sea	sons				
	(C)	resource harvest at long time interv	als of	resource harvest at all			
	(D)	no resource harvest at all					
85.	End	emics are					
	(A)	species with wide distribution	(B)	species with restricted distribution			
	(C)	biomes of wide range	(D)	biomes of narrow range			
86.	Defe	orestation reduces ———— and inc	reases				
	(A)	CO ₂ uptake in photosynthesis, & gl	obal w	rarming			
	(B)	O2 uptake in respiration & guttation	n				
	(C)	N uptake & photosynthesis					
	(D)	P uptake & transpiration					
111		12	-				

87.	Met	hods of fossilization include						
	(A)	(A) sublimation, impression, predation & dispersion						
	(B)	sedimentation, impression, compression & petrifaction						
	(C)	nitrification, cryopreservation, compression & pollination						
	(D)	denitrification, crystallization, fossilization & preservation						
88.	Plar	nt & fungal cell wall are respectively made of						
	(A)	chitin & creatinine (B) maltose & lactose						
	(C)	cellulose & chitin (D) glucose & galactose						
89.	Suc	cession initiating from aquatic environment is						
	(A)	Hydrosere (B) Xerosere						
	(C)	Mesosere (D) None of the above						
90.	Exti	inct bird of Mauritius island						
	(A)	sunbird (B) humming bird						
	(C)	dodder (D) dodo						
91.	Mar	rine mammals include						
	(A)	seacucumber, corals & polychetes						
	(B)	mammoths, mouse, deer & marsh crocodile						
	(C)	manatees, dugongs & whales						
	(D)	caulapa, halimeda & codium						
92.	Pop	ulation regulation mechanisms help in						
	-	density reduction & diversity maintenance						
	(B)	density increase & diversity reduction						
	(C)	diversity and density increase equally						
	(D)	diversity and density decrease equally						
93.	Mod	del predictions about global climate change indicates that						
	(A)	there are close agreement on trends and values (for example, predicted carbon dioxide concentrations)						
	(B)	no agreement at all						
	(C)	there are close agreement on trends however; little agreement on values						
	(D)	there is general agreement on trends but little agreement on values						

94.	In which of the following ecosystem an ecological pyramid of energy flow is often as inverted one?					
	(A)	ocean	(B)	tundra		
	(C)	rainforest	(D)	desert		
95.	The characteristics of human placenta is that they are					
	(A) haemoendohelial, monodiscoidal and nondeciduate					
	(B) haemochorial, monodiscoidal and deciduas					
	(C) syndeschomorial, monodiscoidal and deciduate					
	(D)	superficial, discoidal and decidu	ate			
96.	Evolutionary changes in floral morphology influence evolutionary changes is pollinator morphology and vice versa. This type of evolution is known as					
	(A)	Evolutionary ecology	(B)	Ecological evolution		
	(C)	Co-evolution	(D)	Macroevolution		
97.	Major wetlands include					
	(A) Bogs, marshes, mangroves & swamps					
	(B)	(B) Oceans, continental shelf, rivers & streams				
	(C)	C) Lakes, ponds & puddles				
	(D)	(D) Rivers, streams & ponds				
98.	The Water (Prevention and Control of Pollution) Act 1974					
	(A)	(A) Regulates the discharge of hazardous pollutants into the nations surface water				
	(B)	(B) Regulates the emission of hazardous air pollutants				
	(C)	(C) Regulates waste disposal of sea				
	(D) Regulates the transportation of hazardous materials					
99.	The instrument used to measure relative humidity is					
	(A)	Hygrometer	(B)	Hydrometer		
	(C)	Barometer	(D)	Thermometer		
100.	Tick the related mammal group					
	(A)	Manatees , elks & cheetah	(B)	Musk deer, otters & lic	on	
	(C)	Capibara, elands & bats	(D)	Mammoths, elephants	& tapirs	