

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

Ph.D. (ELECTRICAL AND ELECTRONICS ENGINEERING)

COURSE CODE: 141

Register Number :		
		Signature of the Invigilator
		(with date)

COURSE CODE: 141

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

- The intrinsic impedance of a lossy dielectric medium is given by 1.

(C) $\sqrt{\frac{(\sigma + j\omega\varepsilon)}{i\omega}}$

- 2. In a hollow conducting sphere
 - Electric field is zero
 - Electric field is a non-zero constant (B)
 - Electric field changes with magnitude of the charge given to the conductor (C)
 - (D) Electric field changes with distance from the centre of the sphere
- Consider the following statements regarding Maxwell's equations in differential form 3. (symbols have the usual meanings)
 - For free space 1.

$$\nabla \times H = (\sigma + j\omega\varepsilon)E$$

2. For free space

$$\nabla . D = \rho$$

3. For steady state current

$$\nabla \times H = J$$

4. For Static electric field

$$\nabla . D = \rho$$

1 and 2 are correct

2 and 3 are correct

3 and 4 are correct (C)

- (D) 1 and 4 are correct
- 4. In a right-handed cylindrical co-ordinate system, $a_r \times a_{\phi} =$
 - (A) a.
- (B) $-a_z$ (C) a_θ
- (D) −a_θ
- Kirchhoff's current law for direct currents is implicit in the expression
 - (A) $\nabla .\overline{D} = \rho$

(C) $\nabla .\overline{B} = \rho$

(B) $\int J.nds = 0$ (D) $\nabla \times H = J + \frac{\partial \overline{D}}{\partial t}$

- 6. A circular loop has its radius increasing at a rate of 2 m/s. The loop is placed perpendicular to a constant magnetic filed of 0.1 wb/m². When radius of the loop is 2 m, the emf induced in the loop will be
 - (A) $0.8\pi V$
- (B) 0.4π V
- (C) 0.2π V
- (D) zero
- The Fourier series expansion of a periodic function with half-wave symmetry contains only
 - (A) Sine terms

(B) Cosine terms

(C) Odd harmonics

- (D) Even harmonics
- 8. In the delta equivalent of the given star connected circuit, ZQR is equal to

- (A) 40 Ω
- (B) (20+j10) Ω
- (C) (10-j30) Ω
- (D) $(10+j30) \Omega$
- 9. When a unit impulse voltage is applied to an inductor of 1 H, the energy supplied by the source is

- (A) 00
- (B) 1 J
- (C) 0.5 J
- (D) 0
- 10. A water boiler at home is switched on to the a.c. mains supplying power at 230 V/50 Hz. The frequency of instantaneous power by the boiler is
 - (A) 0 Hz
- (B) 50 Hz
- (C) 100 Hz
- (D) 150 Hz

- 11. The reciprocity theorem is applicable to
 - (A) Linear networks only

- (B) Bilateral networks only
- (C) Linear/bilateral networks
- (D) Neither of the two

- A sine wave voltage is applied across a capacitor; when the frequency of the voltage is increased, the current
 - (A) increases

(B) decreases

(C) remains the same

- (D) is zero
- For a two-port bilateral network, the three transmission parameters are given by $A = \frac{6}{5}$; $B = \frac{17}{5}$ and $C = \frac{1}{5}$, what is the value of D?
 - (A) 1

- (B) $\frac{1}{5}$ (C) $\frac{7}{5}$ (D) $\frac{17}{35}$
- For a two-port network to be reciprocal
 - (A) $Z_{11} = Z_{22}$

(B) $y_{21} = y_{22}$

(C) $h_{21} = -h_{12}$

- (D) AD BC = 0
- In the first foster form, the presence of first element capacitor Co indicates
 - (A) pole at ω=0

(B) pole at ω=∞

(C) zero at ω=0

- (D) zero at ω=∞
- The transient current in a loss-free LC circuit when excited from an ac source is an sine wave.
 - (A) undamped

(B) overdamped

(C) under damped

- (D) critically damped
- Transient current in an RLC circuit is oscillatory when
 - (A) $R = 2\sqrt{\frac{L}{C}}$ (B) R = 0 (C) $R > 2\sqrt{\frac{L}{C}}$ (D) $R < 2\sqrt{\frac{L}{C}}$

- Two inductors are connected as shown in figure below. What is the value of the effective inductance of the combination?

- (A) 8 H
- (B) 10 H
- (C) 4 H
- (D) 12 H

The value of the resistance R in the circuit shown in the given figure is varied in such 19. a manner that the power dissipated in the 30hm resistor is maximum. Under this condition, the value of R will be

- (A) 3 ohms
- 9 ohms
- 12 ohms (C)
- (D) 6 ohms
- For the network shown in the figure below, what is the driving point impedance Z(s)? 20.

- (A) $\frac{s^2 + s + 4}{s^2 + 4s}$
- (B) $\frac{2s^2+s+4}{s^2+4s}$ (C) $\frac{2s^2+s+4}{s^2+2s}$
- (D) None of these
- In an unsaturated dc machine armature reaction effect is 21.
 - (A) demagnetizing
 - cross-magnetizing (B)
 - (C) magnetizing
 - (D) kind of effect depends upon whether the machine is motoring or generating
- The advantage of the double squirrel-cage induction motor over single cage rotor is 22. that its
 - (A) efficiency is higher

(B) power factor is higher

slip is larger

- (D) starting current is lower
- A magnetic circuit has a linear B-H curve with $\lambda = 1.5$ WbT at i = 10 A. The energy stored in the field is
 - (A) 15 J
- (B) 0.75 J
- (C) 7.5 J
- (D) 30 J
- If the peak value of phase mmf is Fmax, the peak value of the rotating field caused by 24. three-phase is
 - (A) (1/2) F_{max}
- (B) Fmax
- (C) (3/2) F_{max}
- (D) 3 F_{max}

25.	'Cra	wling' in an indu	ction r	notor is du	e to					
	(A)	Time harmonics	in su	pply						
	(B)	Slip ring rotor								
	(C)	Space harmonic	s prod	luced by wi	ndi	ng curr	ents			
	(D)	Insufficient star	ting t	orque						
26.		ne bode-plot of a cross over freque								of G(jω) at the
	(A)	-125°	(B)	-55°		(C)	55°		(D)	125°
27.	Con	sider a system sh	own i	n the given	figu	ure				
				V(6)-	<u>2</u> 5	<u></u> → c	(3)			
	If th	e system is distu	rbed s	so that c(0)	=1, t	then c(t) for a ur	nit step i	input	will be
	(A)	1+t	(B)	1- t		(C)	1+2t		(D)	1-2t
28.	The	transfer function	ofa	control syst	em	is give	n as $T(s)$	$=\frac{K}{s^2+2}$	$\frac{C}{c+K}$	where K is the
	gair	at the system in should be						3 1 2	3 1 11	
	(A)	1	(B)	2		(C)	3		(D)	4
29.	The	ac motor used in	servo	application	ns is	s a				
	(A)	Single-phase in	ductio	on motor		(B)	Two-pha	ase indu	ction	motor
	(C)	Three phase in	ductio	n motor		(D)	Synchro	nous mo	otor	
30.	Sign	nal flow graph is	used t	o find						
	(A)	Stability of the	syste	m		(B)	Control	lability o	of the	system
	(C)	Transfer functi	on of	the system		(D)	Poles of	the syst	tem	
31.	The	eigen values of r	natrix	given belo	w is	3				
				(0 1		0)				
				0 ()	1				
				(-6 -	11	-6)				
	(A)	-1,-2,-3	(B)	1,2,3		(C)	1,-2,-3		(D)	-1,2,-3

The matrix of any state-space equations for the transfer function C(s)/R(s) of the 32. system shown below in the figure is

- (A) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ (C) $\begin{pmatrix} -1 \end{pmatrix}$

- A linear discrete-time system has the characteristic equation, $z^3 0.81z$. The system
 - (A) is stable
 - (B) is marginally stable
 - is unstable (C)
 - stability cannot be assessed from the given information (D)
- For the transfer function $G(s)H(s) = \frac{1}{s(s+1)(s+0.5)}$. The phase cross-over frequency is
 - (A) 0.5 rad/sec

(B) 0.707 rad/sec

(C) 1.732 rad/sec

- 2 rad/sec (D)
- For a unit step, a system with forward path transfer function $\frac{20}{c^2}$ and the feedback 35. path transfer function H(s) = (s+5), has a steady state output of
 - (A) 0

- (B) 0.5
- (C) 0.2
- (D) zero
- The root locus plot of the system having the loop transfer function 36. $G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+5)}$ has
 - (A) No breakaway point
 - (B) Three real breakaway point
 - (C) Only one breakaway point
 - One real and two complex breakaway point

37.				rpoles is to m n the d.c. macl			— betwee	en the brushes
	(A)	friction	(B)	sparking	(C)	current	(D)	wear and tear
38.	An i	deal d.c. gene	erator is o	ne that has —		voltage	regulation	on.
	(A)	low	(B)	zero	(C)	positive	(D)	negative
39.				elops a torque are current is		N-m at armat	ure of 10	A. The torque
	(A)	54 N-m			(B)	81 N-m		
	(C)	108 N-m			(D)	None of the	above	
40.	Reta	ardation test	on a d.c. s	shunt motor is	used fo	or finding —		— losses.
	(A)	stray	(B)	copper	(C)	friction	(D)	iron
41.	tran		.2 Wb/m ² ,					Iz single-phase and secondary
	(A)	32, 375			(B)	375, 32		
	(C)	250, 3000			(D)	None of the	above	
42.				former in which is 5% for unit			sistance d	lrops is 1% and
	(4)							
	(A)	1%	(B)	5%	(C)	6%	(D)	3.8%
43.	A 3	-phase induc	tion moto		r 4 pole	s and is supp		3.8% 50 Hz system
43.	A 3	-phase induc	tion moto	r is wound fo	r 4 pole	s and is supp		
43.	A 3 the (A)	-phase induc rotor frequer 50 Hz	tion motoricy when (B)	r is wound for rotor runs at 6 30 Hz	r 4 pole 600 rpm (C)	s and is supp is 60 Hz	olied from	50 Hz system
	A 3 the (A)	-phase inductor frequents 50 Hz	tion motor (B)	r is wound for rotor runs at 6 30 Hz	r 4 pole 600 rpm (C)	s and is supp is 60 Hz	olied from	50 Hz system None

45.	Are	pulsion motor is	equip	ped with					
	(A)	a commutator			(B)	slip rings			
	(C)	a repeller			(D)	cogging			
46.		n an alternator, narmonic is	chore	ling angle	for funda	mental flux wa	ve is α	, its value	for
	(A)	5 α	(B)	α/5	(C)	25 α	(D)	α / 25	
47.		register used in be executed is	the co	ntrol unit o	f the CPU	to indicate the	next ins	struction wh	nich
	(A)	accumulator			(B)	index register			
	(C)	instruction			(D)	program count	er		
48.	The	register used as	a wor	king area ii	n CPU is				
	(A)	Program count	er		(B)	Instruction reg	gister		
	(C)	Instruction dec	oder		(D)	Accumulator			
49.	A 32	2-bit microproces	sor ha	s word leng	th equal t	00			
	(A)	2 bytes	(B)	1 byte	(C)	4 bytes 。	(D)	8 bytes	
50.	To r	epresent number	33 in	binary, nu	mber of bi	ts required is			
	(A)	6	(B)	5	(C)	4	(D)	7	
51.	Shor	rt transmission l	ine is	represent b	y the lam	ped parameters			
	(A)	R and L	(B)	R and C	(C)	C and L	(D)	R, L and (3
52.		and R ₂ are the					, then	optimal rati	o of
	(A)	R_2/R_1	(B)	R_1/R_2	(C)	$R_1 * R_2$	(D)	$R_1 = R_2$	
53.	The	dielectric loss in	the in	nsulation of	the cable	occurs due to			
	(A)	Leakage curren	nt		(B)	Leakage volta	ge		
	(C)	Both (A) and (I	3)		(D)	None of the th	ese		

		00						
54.		tor affecting the s	ag ar	e/1s				
	(A)	length of span			(B)		stren	gth
	(C)	temperature			(D)	all the above		
55.	The	relation between	trave	eling voltage				
	(A)	$\frac{e}{i} = \sqrt{LC}$	(B)	$ei = \sqrt{\frac{L}{C}}$	(C)	$\frac{e}{i} = \sqrt{\frac{L}{C}}$	(D)	$ei = \sqrt{LC}$
56.	The	equipment which	n ie ni	rovided with an	horn	ie		
00.	(A)	Air break switc		tovided with air	(B)	Isolator		
	(C)	Oil switch			(D)	None of the abov	70	
	(0)	On switch			(D)	None of the abov	76	
57.	For	a 1 m long condu	ctor,	the value of inte	ernal i	nductance will be		
	(A)	0	(B)	0.05 μΗ	(C)	0.1 μΗ	(D)	0.05 mH
58.	An i	nsulator has 3 u	nits a	nd $K = 1/8$. The	string	g efficiency will be		
	(A)	100/8 %	(B)	100/3 %	(C)	66.7 %	(D)	84.3 %
59.	Whi	ch of the two gen	eraliz	zed constant in	a tran	smission are equa	1?	
	(A)	B and C	(B)	A and D	(C)	A and B	(D)	B and D
60.	The	coefficient of refl	ection	of current for	an one	on ended line is		
00.	(A)	1	(B)	0.5	(C)		(D)	0
	(11)	1	(D)	0.0	(0)	-1	(D)	U
61.	Tota	al induction of ma	agneti	cally non coupl	ed ser	ies inductor is cal	culate	ed the same as
	(A)	Resistances in 1	parall	el-series	(B)	Resistances in p	aralle	el
	(C)	Resistances in	series		(D)	None of the above	ve	
62.	Coe	fficient of couplin	g exp	resses				
	(A)	a relationship t			agneti	zing force		
	(B)					one circuit to anot	her	
	(C)	a percentage			0			
	(D)	none of the abo	ve					
	. ,							

63.	If th	e phase angle of a parallel RL circuit i	s –36	°, the circuit is						
	(A)	more resistive than reactive	(B)	more reactive than resistive						
	(C)	equally resistive and reactive	(D)	none of the above						
64.	In a	series capacitive circuit, the smallest	capac	itance has						
	(A)	the lowest voltage drop								
	(B)	the highest voltage drop								
	(C)	the same voltage drop as all other car	pacito	ors						
	(D)	none of the above								
65.	Seri	es or parallel resonant circuits can be	hagu	to create						
00.	(A)	Low pass filters	(B)	Low pass and high pass filters						
	(C)	Band-pass and band-stop filters	(D)							
66.	In complex number, resistance is a real term, while reactance a/an									
	(A)	j term	(B)	Imaginary term						
	(C)	Value appearing on the vertical axis	(D)	All the above						
67.		en current dramatically increases, the	ie vol	tage point on the diode forward V-I						
	(A)	Breakdown voltage	(B)	Knee voltage						
	(C)	Barrier voltage	(D)	Both (B) and (C) are true						
68.	Whi	ich point on the dc load line result in a	n I _c =	V_{cc}/R_c and $V_{ce} = 0 \text{ V}$?						
	(A)	Saturation point	(B)	Cutoff point						
	(C)	Q point	(D)	None of the above						
-										
69.	00000	y is the D-MOSFET ideal as a preampl								
	(A)	It can be mid-load line when 0 V is a	pplie	d						
	(B)	It has a high input impedance								
	(C)	It has low noise properties								
	(D)	All the above								

- 70. Which of the following circuits is connected in an open-loop mode?
 - (A) Comparator

- (B) Inverting amplifier
- (C) Non-inverting amplifier
- (D) All the above
- 71. What is the lower frequency limit of an op-amp?
 - (A) 20 Hz
- (B) 6 Hz
- (C) DC
- (D) 7.36 Hz
- 72. The feedback loop in a closed-loop op-amp circuit provides
 - (A) Positive feedback

- (B) Negative feedback
- (C) Degenerative feedback
- (D) Both (A) and (B)
- 73. In the below circuit, the required value of R, is,

$$V_{cc}=24V$$
 R_b
 $R_c=4K$
 $R_c=4K$
 $R_c=4K$
 $R_c=30$

- (A) 97 K
- (B) 10 K
- (C) 117 K
- (D) 120 K

- 74. Super-β transistor is a
 - (A) Cascade configuration
- (B) Darlington configuration

(C) Matched-pair

- (D) None of the above
- 75. For an ideal noise free transistor amplifier, the noise factor is
 - (A) zero

- (B) 1 dB
- (C) depends upon circuit parameters
- (D) zero dB
- 76. A NAND circuit with positive logic will operate
 - (A) NOR with negative logic
- (B) AND with negative logic
- (C) OR with negative logic input
- (D) AND with negative logic input

77.	In fu	ıll adder, there	are					
	(A)	Two binary n	umber i	nputs and tw	o output	S		
	(B)	Three binary	digit in	outs and two	binary o	utputs		
	(C)					digit outputs		
	(D)	None of the a	lbove					
78.	How	w many illegiting	nate sta	tes have a sy	nchronou	ıs mod-6 count	er?	
	(A)	3	(B)	2	(C)	1	(D)	0
79.	An A	AND gate is a						
	(A)	Sequential ci	rcuit		(B)	Memory circu	it	
	(C)	Relaxation ci	rcuit		(D)	Combinationa	l circuit	
80.	A de	evice with slow	est swit	ching speed i	is			
	(A)	LCD			(B)	LED		
	(C)	Nixie tubes			(D)	None of the al	bove	
81.	The	instrument w	ith null o	output is				
	(A)	Bourdon gag	е		(B)	Manometer		
	(C)	A platform w	eighing	scale	(D)	Light meter		
82.	A sp	ourious signal	that mod	difies the out	put of the	e instrument is	called	
	(A)	Noise			(B)	Spurious outp	out	
	(C)	Either (A) or	(B)		(D)	Modulating si	ignal	
83.	In s	hunt type ohm	meter tl	ne maximum	deflection	n point is mark	ked	
	(A)	$100~\text{K}\Omega$	(B)	$1~\text{M}\Omega$	(C)	$10~\text{M}\Omega$	(D)	Infinite
84.	Nor	mally absolute	encode	r are used for	r			
	(A)	continuous s	peed		(B)	2π revolutions	S	
	(C)	one revolutio	on		(D)	both (A) and ((B)	
85.	Mul	ltirange amme	ter uses					
	(A)	Universal sh	unt		(B)	Series shunt		
	(C)	Parallel shu	nt		(D)	All of the abo	ve	

86.	An I	LED require a po	wer o	f						
	(A)	20 nW	(B)	$20\;\mu\text{W}$		(C)	20 mW	(D)	20 W	
87.	The	phenomena of cr	oonin	a occurs	in					
01.	(A)	Ammeters	ccpm	goccurs	111	(B)	Voltmeters			
	(C)	Wattmeters				(D)	Watt-hour m	otona		
	(0)	wattmeters				(D)	watt-nour m	leters		
88.	Hali	f effect transduce	r are	used for	meas	suring				
	(A)	Magnetic field				(B)	Current			
	(C)	Electrical field				(D)	Pressure			
89.	Loss	s of charge metho	d ie n	tilized fo	r me	96117074	ent of			
00.	(A)	high L	(B)	high R			low L	(D)	low R	
	(-7		_/			(-)		(-)		
90.	The	range of a d.c. m	illime	eter can b	oe ex	tended b	y utilizing a			
	(A)	Series high resi	stanc	e		(B)	Series low re	esistance	е	
	(C)	Shunt of high r	esista	nce		(D)	Shunt of low	resista	nce	
91.		are v	erv po	opular in	swit	ched mo	ode power sup	olies.		
	(A)	Power MOSFE	- TO TO	•		(B)	BJT			
	(C)	IGBT				(D)	None of the	above		
92.	In I	GBT, the tine b	etwee	n the in	stan	ts of for	ward blocking	g to for	ward on-s	tate is
	(A)	Delay time				(B)	Rise time			
	(C)	Turn-on time				(D)	Turn-off time	е		
93.	For	the operation of	Zener	diode as	a vo	ltage re	gulator			
	(A)	it must be rever	rse bi	ased witl	h a v	oltage gr	reater its brea	kdown		
	(B)	a series resister								
	(C)	necessary to lin	nit th	e reverse	curr	rent				
	(D)	all the above								

94.	The	device having h	igh vol	tage-blocking	capabil	ity		
	(A)	FCT	(B)	RCT	(C)	MCT	(D) ASCR	
95.	In r	esistance firing	circuit	of SCR, α can	be cont	rolled upto		
	(A)	45°	(B)	90°	(C)	135°	(D). 180°	
96.	Mc	Murray inverter	uses					
	(A)	Voltage comm	utation	ing.	(B)	Current comn	nutation	
	(C)	Natural comm	utation	1	(D)	Input commu	tation	
97.		-			_		node, whose ing ms voltage per p	
		load connected t					are vertage per p	indicate in
	(A)	$\sqrt{(2/3)}~V_{_{\rm S}}$	(B)	$\sqrt{2/3}~V_{\rm S}$	(C)	$\sqrt{6}/\piV_{\rm S}$	(D) $\sqrt{2/\pi} V_s$	ţ
98.	Cho	pper control for	DC mo	tor provides v	ariatio	n in		
	(A)	Input voltage			(B)	Frequency		
	(C)	Current			(D)	None of the al	bove	
99.	Ider	ntify the constar	nt flux o	perated varia	ble spe	ed drive		
	(A)	E/f controlled	I.M. dr	ive				
	(B)	Slip power rec	overy o	lrive				
	(C)	(A) and (B)						
	(D)	AC voltage con	ntrolled	I.M. drive				
100.	Dut	y cycle in a chop	per cir	cuit with swit	ching fi	requency 100 H	z and T_{on} time a	s 2 ms
	(A)	0.2			(B)	0.4		
	(C)	0.8			(D)	None of the a	bove	

