

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010. M.Phil. / Ph.D. (ENVIRONMENTAL TECHNOLOGY) COURSE CODE: 248/112

Regi	ster Number :	
		Signature of the Invigilator (with date)
		(with date)

COURSE CODE: 248/112

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The BOD of a water sample is 200 mg l ⁻¹ . Its COD is likely to be										
	(A)	160	(B)	180	(C)	190	(D)	240			
2.	The	most efficient	capture	of air borne pa	articulat	tes occurs in					
	(A)	Ventury scru	ıbber		(B)	Gravitation	al settlin	g chamber			
	(C)	Electrostatic	precipit	ator	(D)	Cyclone					
3.	Bine	ominal nomeno	clature o	of scientific nar	nes was	introduced b	у				
	(A)	Linnaeus	(B)	Cassias	(C)	Claudias	(D)	Darwin			
4.	In w	which reactor th	he conce	ntration of rea	ctants i	s the same at	all point	s in the rea	acto		
	(A)	Fluidized bed	d reactor		(B)	CSTR					
	(C)	Plug-flow rea	actor		(D)	Expanded b	ed reacto	r			
5.	Con	nposting is esse	entially	a							
	(A)	Aerobic proce	ess		(B)	Anaerobic p	rocess				
	(C)	Chemical pro	ocess		(D)	Toxic proces	38				
6.	Deu	terium is an is	sotope of	7							
	(A)	hydrogen	(B)	oxygen	(C)	radium	(D)	carbon			
7.	Dur	ing composting	g nitroge	en-to-carbon ra	itio grad	lually increas	es becaus	se			
	(A)	During composting nitrogen-to-carbon ratio gradually increases because (A) A part of the Carbon is lost as bacterial respiration									
	(B)	Nitrogen is s	ucked ir	form atmospl	here by	the bacteria					
	(C)	There is pho	tosynthe	esis							
	(D)	There is ana	erobic fe	rmentation							
8.	The	probability of	a cricke	t captain winn	ing the	toss is					
	(A)	25%	(B)	50%	(C)	75%	(D)	100%			
9.	Nat	ural gas consis	sts chief	ly of							
	(A)	methane	(B)	arsene	(C)	stilbene	(D)	astetine			
10.	The	differential co	efficient	of the function	f(x) = 1	x^3 is					
	(A)	3x	(B)	$2x^{3}$	(C)	$3x^{2}$	(D)	X4			

11.	Whi	ch of the following val	ues of HRT repre	sents	the fastest re	actor
	(A)	4 hour (B)	3 hour	(C)	2 hour	(D) 1 hour
12.	Loti	c water bodies are thos	se			
	(A)	where water is flowing	ng	(B)	which dry pe	eriodically
	(C)	where water is stagn	ant	(D)	none of the a	bove
13.	Har	dness in water is due t	to			
	(A)	monovalent anions		(B)	monovalent	cations
	(C)	divalent anions		(D)	divalent cati	ons
14.	Whi	ch category of wastewa	ater doesn't requ	ire se	eding during a	a BOD test
	(A)	Distillery spentwash		(B)	Dyeing unit	effluent
	(C)	Domestic sewage		(D)	Pulp and pap	per mill effluent
15.	In t	he atmosphere, ozone i	s found primaril	y in tl	he	
	(A)	Troposphere		(B)	Stratosphere	•
	(C)	Mesosphere		(D)	Thermosphe	re
16.	The	electrical conductivity	of a water samp	le is i	ndicative of its	s
	(A)	suspended solids		(B)	dissolved sol	ids
	(C)	biological solids		(D)	volatile solid	s
17.	Ads	orption is a				
	(A)	Purely surface pheno	omena	(B)	Purely inter	nal phenomena
	(C)	Purely biological phe	nomena	(D)	Purely arbite	erary phenomena
18.	Whe	en the temperature of	a water-body inc	reases	s, the dissolved	d oxygen ———
	(A)	increases		(B)	decreases	
	(C)	remains the same		(D)	none of the a	above
19.	Nita	rification is a process in	n which			
	(A)	Ammonia is converte	ed to Nitrate			
	(B)	Ammonia is converte	ed into nitrogen			
	(C)	Nitrogen is converted	d into Ammonia			
	(D)	Nitrate is converted	into Ammonio			

20.	The ideal reactor to which a trickling filter most closely approximates is:								
	(A)	A batch reactor	(B)	A plug flow reactor					
	(C)	A CSTR	(D)	A fluidized bed reactor					
21.	Whi	ch of these is <u>not</u> a natural pollut	ant in the a	ir?					
	(A)	Sulphur dioxide	(B)	Dioxane					
	(C)	Nitrogen oxide	(D)	Particulate matter					
22.	Whi	ch one is not a coagulant?							
	(A)	FeCl ₃	(B)	$\text{Fe}_2(\text{SO}_4)_3$					
	(C)	Na ₂ SO ₄	(D)	${\rm Al}_2({\rm SO}_4)_{3^-}18{\rm H}_2{\rm O}$					
23.	Whi	ch of the following is not used for	filtering m	unicipal water supplies?					
	(A)	Pressure filters	(B)	Rapid gravity filters					
	(C)	Slow sand filters	(D)	Membrane filters					
24.	The	Settling velocity of a pollutant pa	rticle in a l	iquid medium will depend on					
	(A)	Its chemical composition	(B)	Its density					
	(C)	Its colour	(D)	None of the above					
25.	Among the following devices which one is the most suitable for controlling emission of particulates having diameter less than 1 μ ?								
	(A)	Cyclone	(B)	Venturi Scrubber					
	(C)	Bag filter	(D)	Electrostatic precipitator					
26.	Whi	ich of the following is <u>not</u> a part o	f physical e	nvironment?					
	(A)	Climate	(B)	Energy					
	(C)	Human beings	(D)	Housing					
27.	The	indicator used in the determinat	ion of hardı	ness of a water sample					
	(A)	Phenolphthalein	(B)	Methyl orange					
	(C)	Eriochrome Black T	(D)	Starch					

248/112

28.	Which EIA technique is <u>not</u> dependent on opinion gathering?												
	(A)	Delphi			(B)	Overlay (McF	Harg's)						
	(C)	Matrix			(D)	Interviews							
29.	Den	itrification is a	process	s in which									
	(A)	Nitrite is con	verted i	nto Nitrogen g	as								
	(B)	Nitrate is con	verted	into Ammonia	gas								
	(C)	Nitrate is con	verted	into N ₂ O and N	NO gase	s							
	(D)	Ammonia is c	onverte	ed into N ₂ gas									
30.	The	titrimetric det	ermina	tion of hardnes	s belong	gs to which clas	ss?						
	(A)	Acid-alkali			(B)	Oxidation-red	duction						
	(C)	Complexomet	eric		(D)	None of the a	bove						
31.	For	a city dweller t	city dweller the major source of lead in body is										
	(A)	respiratory ai	ir		(B)	drinking wat	er						
	(C)	absorption by	skin		(D)	food							
32.	In spectrophotomoter the detector is a												
	(A)	Thermoelectr	ic coup	le	(B)	Photocell							
	(C)	Galyanomete	r		(D)	Ammeter							
33.	Which of these is a by-product of anaerobic digestion?												
	(A)	Oxygen	(B)	Hydrogen	(C)	Methane	(D)	Nitrogen					
34.	Blas	st furnaces are	used in	producing whi	ch meta	al from ore?							
	(A)	Aluminum	(B)	Copper	(C)	Iron	(D)	Zinc					
35.	Aero	osols are											
	(A)	Small solid pa	articles	suspended in a	air								
	(B)	Small liquid	particle	s suspended in	air								
	(C)	Smoke partic	les floa	ting in the atm	osphere								
	(D)	Small liquid	or solid	particles that	remain	suspended in t	he air						

36.	The substance responsible for the 'Minamata' disaster was										
	(A)	Copper	(B)	Chromium	(C)	Mercury	(D)	Zinc			
37.	Wha	t is the disad	lvantage :	In using electro	ostatic p	precipitators fo	or air po	llution	control?		
	(A)	small partic	eles can't	be removed	(B)	high pressure drop					
	(C)	problem in	handling	hot gases	(D)	high initial o	eost				
38.	For not	_	O _x emis	sions through	stacks v	which of the f	ollowing	g equip	ments is		
	(A)	Venturi Scr	ubber		(B)	Cyclone Scru	ubber				
	(C)	Electrostati	c Precipi	tator	(D)	Mechanical	Scrubbe	r			
39.	Holl	ow cathode la	amps are	used in	*						
	(A)	UV-visible	speotroph	notometers							
	(B)	NMR spect	rometers								
	(C)	Gas chroma	atograph								
	(D)	Atomic Abs	orption S	pectrophotmet	er						
40.	During settling in a sedimentation tank which factor has a positive effect on it?										
	(A)	deep settlin	ng tank		(B)	flocculation	of partic	eles			
	(C)	decrease in	detention	n period	(D)	high velocity	y f water	in tan	k		
41.	In a	n ideal plug	flow react	tor there should	d be con	nplete mixing	in the				
	(A)	axial direct	ion		(B)	transverse d	lirection				
	(C)	reverse dire	ection		(D)	horizontal d	irection				
42.	Flar	me ionisation	detector	s (FID) are use	d in						
	(A)	Atomic abs	orption s	pectrometers	(B)	NMR spectr	ometers				
	(C)	UV-visible	spectroph	notometers	(D)	Gas liquid c	hromato	graphs			
43.	Cos	t-benefit ana	lysis of a	project evaluat	es the						
	(A)	net profit o	r loss of t	he project	(B)	net costs of	the proj	ect			
	(C)	total benefi	its of the	project	(D)	social cost o	f the pro	ject			

14.	Reus	se is							
	(A)	recycling of res	ources	for gaining er	nergy an	d materials			
	(B)	using a produc	t agair	a & again in it	s origina	l form			
	(C)	extracting reso	urces	from waste for	seconda	ary purposes			
	(D)	converting was	ste mai	terials into rav	w materi	al for manufact	uring		
1 5.	Whi	ch of the follow	ing pa	rameters indi	cates th	e organic pollu	tion of	a waste	wate
	(A)	pH	(B)	Turbidity	(C)	Hardness	(D)	COD	
46.	Whi	ch among the fo	llowing	g is not a susp	ended ce	ell aerobic treat	ment p	rocess?	
	(A)	Activated slud	ge pro	cess	(B)	Oxidation pond			
	(C)	Trickling filter			. (D)	Aerated lagoo	n		
47.	Whi	ch of the followi	ng is a	'toxic" gas?					
	(A)	O_2	(B)	H_2	(C)	N_2	(D)	Cl ₂	
48.	Wha	at is the normali	ty of a	solution conta	aining 8	gm of NaOH in	100 m	1?	
	(A)	1 N	(B)	2 N	(C)	0.1 N	(D)	0.2 N	
49.	Amo	ong the following	g whicl	h is least dama	aging to	environment?			
	(A)	Nuclear power			(B)) Hydroelectricity			
	(C)	Electricity from	n coal		(D)	Hydrogen ene	rgy		
50.	Whi	ch greenhouse g	as is r	eleased by lak	es and v	vater reservoirs	?		
	(A)	CO	(B)	CO_2	(C)	$\mathrm{CH_4}$	(D)	CFC's	
51.	Mar	ngroves are situa	ated in						
	(A)	costal area			(B)	ponds and lak	es		
	(C)	forests in arid	areas		(D)	all of the abov	re		
52.	Acu	te lead poisonin	g is als	so known as					
	(A)	Itai-Itai			(B)	Plumbism			
	(C)	Bysinnosis			(D)	Neuralgia			

53.	The	deadly pollutant dioxan is a							
00.	(A)	Organic compound	(B)	Heavy metal					
	(C)	Virus	(D)	Bacteria					
	(0)	VIIUS	(D)	Dacteria					
54.	At p	resent world's largest source of energ	gy is						
	(A)	coal	(B)	oil					
	(C)	natural gas	(D)	hydropower					
55.	Ato	mic absorption spectroscopy is used to	o analys	se					
	(A)	heavy elements	(B)	dissolved organic compounds					
	(C)	dissolved gases	(D)	particle size					
56.	For	composting the maximum moisture c	ontant	of the mixture should be					
	(A)	40% (B) 65%	(C)	30% (D) 35%					
57.	Two	isotopes of the same element have the	ne same						
	(A)	atomic number	(B)	atomic weight					
	(C)	number of neutrons	(D)	physical properties					
58.	A pı	ure or nearly pure water contains a B	OD of a	approximately					
	(A)	30 mg/L	(B)	20-30 mg/ L					
	(C)	0-3 mg/L	(D)	10-12 mg/L					
59.	The use of living organisms (primarily micro organisms) to degrade environmental pollutants or to prevent pollution through waste treatment is known as								
	(A)	Biotechnology	(B)	Bioremediation					
	(C)	Biodegradation	(D)	All the above					
60.	Wha	at is the pH of 0.1 M HCl solution?							
	(A)	1 (B) 2	(C)	3 (D) 4					
61.	The	absence of which of the following w	rill mak	e life impossible four fish in a water					
	(A)	Hardness	(B)	Acidity					
	(C)	Alkalinity	(D)	Dissolved oxygen					

62.	The r	nost widespread source of air pollution	is	
	(A)	Thermal power plants	(B)	Industries
	(C)	Transportation	(D)	Tourism
63.	How	much of NaOH should be weighed out	in or	der to make a 1 M solution of NaOH
	(A)	40 gm (B) 4 gm	(C)	400 gm (D) 0.4 gm
64.		ng composting maximum degradation ng which stage?	and a	stabilization of organic matter occurs
	(A)	mesophilic	(B)	thermophilic
	(C)	starting	(D)	cooling
65.	In au	atomobile exhaust, lead is emitted mos	tly as	3
	(A)	tetra alkyl lead	(B)	metallic lead
	(C)	lead sulphide	(D)	lead bromochloride
66.	Esti	mation of chloride in water samples by	Moh	r's method is essentially a
	(A)	Compleximetric titration	(B)	Precipitation titration
	(C)	Redox titration	(D)	Acid-base titration
67.	Rota	ating biological contactors are used for		
	(A)	reducing BOD of wastewaters	(B)	biofiltration of wastewaters
	(C)	removing colour of textile effluents	(D)	removing pathogens from sewage
68.	Whi	ch one is not a major source of soil pol	lution	1?
	(A)	Automobile exhaust	(B)	Night soil
	(C)	Phytoremediation	(D)	Oxidation Ponds
69.	The	material used for making cuvettes for	use i	n UV spectroptometers
	(A)	Glass	(B)	Polythene
	(C)	Quartz	(D)	Fibreglass
70.	Eff	luent from modern tanneries contains	which	toxic heavy metal?
	(A)	Ni (B) Zn	(C)	Cr (D) Pb

71.	Ozo	ne hole is caus	ed by					
	(A)	DDT	(B)	PET	(C)	CDC	(D)	CFC
72.	The	distribution of	f animal	life in biosphere	e is ca	lled as		
	(A)	Biogeography	у		(B)	Zoogeography		
	(C)	Zoology			(D)	Biography		
73.	Whi	ch of the follow	ving is a	n inert gas?				
	(A)	H_2	(B)	O_2	(C)	Cl_2	(D)	He
74.	Amo	ong the following	ng clean	est fuel is				
	(A)	Coke			(B)	Gasoline/Petro	ol	
	(C)	Natural Gas			(D)	Diesel		
75.	Met	hanogenic bact	teria are	,				
	(A)	Facultative a	erobes		(B)	Strict anaerob	es	
	(C)	Strict aerobe	S		(D)	Facultative an	aerobe	es
76.	Dur	ing summers t	he colde	st zone of a lake	is			
	(A)	thermooline			(B)	epilimnon		
	(C)	hypolimnon			(D)	mesolimnon		
77.	An e		omic nu	mber 6 & atomic	weig	ht 14. The numb	oer of	protons presen
	(A)	6	(B)	12	(C)	14	(D)	8
78.	Min	eral water bott	les are	made up of whic	h com	pound		
	(A)	Poly vinyl ch			(B)	Polyethylene to	erapht	thalate
	(C)	Polyethylene	triphth	alate	(D)	Polyethytene		
79.	Whi	ch among the f	following	g is most expecte	ed in 'a	acid rain'?		
	(A)	H_2SO_4	(B)	HF	(C)	Acetic acid	(D)	Benzoic acid
80.	Amo	ong the following	ng which	one is the best	metho	od for treating se	ewage	sludge?
	(A)	Land disposa			(B)	Anaerobic dige	100	
	(C)	Incineration			(D)	Pisciculture		

81.	Bho	pal gas tragedy	was ca	used by								
	(A)	CFC	(B)	MIC	(C)	LIC	(D)	PVC				
82.		traffic junction	n whic	h of the following	ng pol	lutants is likel	y to be	at the highes				
	(A)	NO_x	(B)	SO_x	(C)	CO	(D)	Cl_2				
83.	Bio-	gas consists of	main									
	(A)	$\mathrm{O_2} \& \mathrm{N_2}$	(B)	$\mathrm{H_2} \& \mathrm{O_2}$	(C)	$\operatorname{Cl}_2 \& \operatorname{H}_2$	(D)	$\mathrm{CH_4} \& \mathrm{CO_2}$				
84.	'Decibel' is the unit of measurement of											
	(A)	Pressure	(B)	Density	(C)	Sound	(D)	Current				
85.	Fern	ric salts impart		colour to	water							
	(A)	green	(B)	blue	(C)	yellow	(D)	reddish				
86.		is use	d to pr	event knocking i	n inte	rnal combustio	n engin	es				
	(A)	lead oxide			(B)	particulate le	ad					
	(C)	tetra ethyl lea	ıd		(D)	lead monoxid	е					
87.	UASB is based on											
	(A)	aerobic treatn	nent of	waste water	(B)	air pollution monitoring method						
	(C)	anaerobic trea	atment	of waste water	(D)	noise pollutio	n contr	olling device				
88.	Anaerobic processes of wastewater treatment are most suitable for											
	(A)	low BOD was	tewate	rs	(B)	high BOD wa	stewate	ers				
	(C)	toxic waste w	aters		(D)	electroplating	g effluer	nts				
89.	Aer	obic bacteria ca	n survi	ve only								
	(A)	in the present	ce of O	2	(B)	in the presen	ce of N	2				
	(C)	in the present	ce of C	O_2	(D)	none of the al	bove					
90.	The	water which is	held b	y the surface for	ces of	the soil particle	es is ter	med as				
	(A)	Combined wa	ter		(B)	Hygroscope w	vater					
	(C)	Capillary wat	er		(D)	All the above						

91. The presence of pesticides in drinking water and colas was brought to pub							oublic attention				
	(A)	Sunita Naraya	n		(B)	Amartya Sen					
	(C)	Sir Vidyadhar	Naipa	ul	(D)	Vandana Shiv	a				
92.	Whi	ch one among th	e follo	owing is not a me	ethod o	of air pollution o	ontrol	at source?			
	(A)	raw materials	chang	es	(B)	scrubbing of fl	ue gas	es			
	(C)	change in proce	ess		(D)	modification in	n equip	ments			
93.	Pen	icillin was discov	ered	by							
	(A)	Pasteur			(B)	Edward Jenne	r				
	(C)	Fleming			(D)	Ehrlich					
94.	Whi	ch of these meta	ls con	tribute to toxicit	y in th	ne aquatic enviro	onmen	t?			
	(A)	Na	(B)	Ca	(C)	Hg	(D)	K			
95.	Nan	ne the metal does	s not	which exhibit ra	dioacti	ivity					
	(A)	Rubedium			(B)	Rhodium					
	(C)	Tantalum			(D)	None of the ab	ove				
96.	Which of the following 'pollutant' can cause eutrophication in a water body?										
	(A)	Mercury			(B)	Copper					
	(C)	Iron			(D)	Phosphorous					
97.	Whi	ch of the followin	ng is <u>r</u>	ot a greenhouse	gas?						
	(A)	Carbon dioxide			(B)	Water vapor					
	(C)	Methane			(D)	Hydrogen					
98.	Nan	ne the gas preser	nt in a	erated drinks lil	ke sod	a water					
	(A)	O_2	(B)	H_2	(C)	CO_2	(D)	N_2			
99.	Whi	ch one of the foll	owing	gases in implica	ated w	rith greenhouse	effect?				
	(A)	Chlorine	(B)	Fluorine	(C)	Özone	(D)	Methane			
100.	Nan	ne a simple meth	od for	removing temp	orary	hardness of a wa	ater sa	mple			
	(A)	Cooling	(B)	Bailing	(C)	Filtration	(D)	Evaporation			