ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

Ph.D. (FOOD SCIENCE AND TECHNOLOGY)

COURSE CODE: 158

Register	r Number :		
			Signature of the Invigilator (with date)

COURSE CODE: 158

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The	causative agents of bronchiolitis and	pneun	nonia in infants are					
	(A)	Parainfluenza viruses	(B)	Respiratory syncytial viruses					
	(C)	Caronaviruses	(D)	Human rhinoviruses					
2.	Infe	ections of the skin and nails on fingers	and to	pes are caused by					
	(A) Epidermophytonfloccosum		(B)	Microsporum audocinii					
	(C)	Trichophylon rubrum	(D)	Microsproum gygpseum					
3.	Mot	tile sporangiospores are							
	(A)	Aplanospores	(B)	Conidospores					
	(C)	Zoospores	(D)	Arthospores					
4.		all aquatic form making up a large er are known as	part o	f the free-floating microscopic life in					
	(A)	Plankton	(B)	Phytoplankton					
	(C)	Zooplankton	(D)	All of these					
5.	A type of kerato conjunctivitis that often results in blindness is								
	(A)	Chalmydia trachomatis	(B)	Bacillus diptheriai					
	(C)	Coxicilla burnetic	(D)	Xeropsylla chropis					
6.	The	causative agent of primary urethritis	sis in h	uman					
	(A)	Mycoplasma	(B)	Ureaplasma					
	(C)	Acholeplasma	(D)	Spiroplasma					
7.	Whi	ich one causes sore throat, scarlet fev	er, and	other human infections?					
	(A)	Streptococcus pyogenes	(B)	$Streptococcus\ mutans$					
	(C)	$Streptococcus\ faecalis$	(D)	$Streptococcus\ pneumonia$					
8.	Non	contagious tuberculosis - like infection	ons are	caused by					
	(A)	Mycobacterium tuberculosis	(B)	$My cobacterium\ intracelluar is$					
	(C)	Mycobacterium kansasi	(D)	Mycobacterium leprae					
9.	All	the organized chemical activities perf	ormed	by					
	(A)	Catabolism (B) Anabolism	(C)	Metabolism (D) Germination					

10.	A fr	equent cause of gastro enteritis in ch	ildren	
	(A)	Proteus mirabilis	(B)	Yerisinia pestis
	(C)	Yerisinia enterocolitica	(D)	Escherichia coil
11.	Urin	nary tract infections in human may b	e cause	ed by
	(A)	Yerisinia enterocolitica	(B)	Proteus mirebilis
J	(C)	Escherichia coil	(D)	Enterobacteriaceas
12.	Whi	ch is a pathogen of marine fish and e	els?	
	(A)	Vibro fisheri	(B)	Vibro cholerae
	(C)	Vibro parahaemolyticus	(D)	Vibrio anguillarum
13.	A le	ading cause of meningitis in children	is	
	(A)	Pasteurella multocida	(B)	Haemophilus influenzae
	(C)	Actinobacillus ligineresii	(D)	Actinobacillus suis
14.	A co	ndiment made form sugary material	s by an	alcoholic fermentation is
	(A)	Vinegar	(B)	Yeast
	(C)	Sugar crystals	(D)	All the above
15.	Food	d-borne illness caused by the presenc	e of a b	pacterial toxin formed in the food
	(A)	Bacterial food intoxication	(B)	Bacterial food infection
	(C)	Microbial food toxication	(D)	Microbial food poisoning
16.	Afla	toxin is produced by		
	(A)	Aspergillus flavus	(B)	Asperigullus parasticus
	(C)	Both (A) and (B)	(D)	Chylamidomonas
17.	Very	y small noncellular parasites are	120	
	(A)	Algae (B) Bacteria	(C)	Viruses (D) Fungi
18.		mal cold storage done immediately af wn as	fter har	rvesting by use of a cold water spray is
	(A)	Chilling	(B)	Freezing
	(C)	Hydro cooling	(D)	Ultra freezing

19.	Mar	ny vegetables can be dried by a pro	cess know	n as
	(A)	Intensive puffing	(B)	Explosive puffing
	(C)	Hydropuffing	(D)	Puffing
20.	Bro	wn rot is caused by		
	(A)	Trichoderma	(B)	Tricho thecium
	(C)	Sclecrotinia	(D)	Asperigillus niger
21.	Blac	ck spot in meat is caused by		
	(A)	Cladosporium herabarum	(B)	Mucor mucedo
	(C)	Muccor racemosus	(D)	Thiamnidusm chactocladiodies
22.	Gre	en patches are caused in meat by		
	(A)	Thamnidum	(B)	Penicullum
	(C)	Mucor	(D)	Mold
23.	Fish	that seem to decompose faster that	an norma	l fish is known as
	(A)	Canned fish	(B)	Feedy fish
	(C)	Dried fish	(D)	Shell fish
24.	Pick	ting of fish is done by means of		
	(A)	Salt with vinegar		
	(B)	Salt with spices		
	(C)	Spiced with vinegar		
	(D)	Salt, vinegar, spices and acidifica	tion	
25.	Spoi	ilage of fish is caused by		
	(A)	Pseudomonas flourescens	(B)	Acetino bacter
	(C)	Moraxilla	(D)	All of these
26.	The	term "Enzyme" was coined by		
	(A)	James Sumner	(B)	William Kunhe
	(C)	Arther Harden	(D)	John Northop
27.	Acti	vation energy for hydrolysis of suc	rose by H	+ ion is
	(A)	260 cal/mol	(B)	2600 cal/mol
	(C)	26,000 cal/mol	(D)	2300 cal/mol

28.	Which metallo enzyme containing calci	um	
	(A) Tyrosinase (B) Lecithinase	e (C) Hexokinase (D) Catalase	
29.	Which theory states that the structure substrate?	e of active site of enzyme is complimentary to	0
	(A) Koshlands Induced fit theory	(B) Fischer template theory	
	(C) Michaelis-Menten theory	(D) None of the above	
30.	Which of the following statement is not	t true about coenzymes	
	(A) They are heat labile		
	(B) They are heat stable		
	(C) They are low molecular weight su	bstances	
	(D) Both (B) and (C)		
31.	The stationary phase in paper chromat	ography is	
	(A) Paper	(B) Water adsorbed by the paper	
	(C) Solvent adsorbed by the paper	(D) None of the above	
32.	The time in minutes required to reduce log cycles is called	e the spore concentration by specific number o	f
	(A) D-value (B) Z-value	(C) F-value (D) S-value	
33.	Golden revolution is related to		
	(A) Prawn production	(B) Oil seed production	
	(C) Egg production	(D) Fruit production	
34.	Which of the following analytical no compounds?	nethods can be used to distinguish flavour	r
	(A) Hydrometry	(B) Near Infrared Spectroscopy	
	(C) Polarimetry	(D) Gas Chromatography	
35.	The first Krishi Vigyan Kendra (KVK)	was established at	
	(A) Bangalore (B) Pondicherr	y (C) Hyderabad (D) Mysore	
36.	World's first high yielding variety of Ba	asmati rice variety is	
,	(A) KRH-1	(B) JKH-7	
	(C) PUSA Basmathi	(D) Basmathi-370	

38. H	(A) (C)	Hinton's theory Spencers theory				k and hold the so			
38. H		Spencers theory			(B)	Olsen's theory			
(,	Edib		7		(D)	Fibrill theory			
		le part of mango	is						
(A)	Endosperm			(B)	Meso carp			
	C)	Thalamus			(D)	None of the abo	ve		
39. E	Boili	ng point of milk							
		100.17°C	(B)	101.17°C	(C)	99.17°C	(D)	98.17°C	
40. V	Whic	ch among the foll	owin	g is India's firs	t indig	enously developed	l miss	sile?	
		Pritvi		Akash		Agni	(D)		
	Norn ateg		the o	only agricultur	al scier	ntist who got Nob	el pri	ze under which	1
(4	A)	Peace	(B)	Physics	(C)	Chemistry	(D)	Economics	
42. C	low's	s milk appears ye	ellow	because it con	tains				
(A	A)	Fat	(B)	Lipase	(C)	Protein	(D)	Riboflavin	
43. 'K	Karr	al Bunt is associ	ated	with					
(A	A)	Wheat	(B)	Maize	(C)	Rice	(D)	Sugar cane	
44. W	Vhic	h enzyme is used	in da	airy application	n?				
(A	(A)	Acid proteinase			(B)	Lipase			
(C	C)	Lysozyme			(D)	All of the above			
45. Tl	he e	nzyme used for t	ende	rization of mea	ıt.is				
(A	(<i>I</i>	Protease		1 100	(B)	Ficin			
(C	2)	Bromeline			(D)	All of the above			
46. W	hicl	n one is used as f	lavou	r enhancer?					
(A	(I)	Chloropropanol			(B)	Dichloropropanol			
+ (C	2)	Monosodium glut	tama	te	(D)	All of the above			

47.	As p	per FPO order, the Jam should contain	ı		
	(A)	Fruit pulp-40% Brix 68°	(B)	Fruit pulp-35% Brix 68°	
	(C)	Fruit pulp-45% Brix 68°	(D)	Fruit pulp-55% Brix 68°	
48.	The	Khariff season is			
	(A)	March to May	(B)	November to February	
	(C)	June to October	(D)	February to June	
49.	The	detergent used in cell disruption is			
	(A)	SDS	(B)	Triton X-100	
	(C)	Both (A) and (B)	(D)	None of the above	
50.	Sul	phur resistant cans are coated with			
	(A)	C-enamel	(B)	R-enamel	
	(C)	S-enamel	(D)	All of the above	
51.	The	volatile component in clove is			
	(A)	Carvacrol (B) Eugenol	(C)	Cineole (D) Linalool	
52.	The	stimulating effect in coco is brought b	у		
	(A)	Pentosans	(B)	Theobromine	
	(C)	Catechins	(D)	Epigallocatechin	
53.	The	prominent enzyme in honey is			
	(A)	α glucosidase	(B)	β glucosidase	
	(C)	galactase	(D)	glucose reductase	
54.	The	hemiactal form of sugar reacts with a	n alco	hol to form	
	(A)	Acetal	(B)	Hemiacetal	
	(C)	Glycosides	(D)	Carrageenans	
55.	The	primary ester bonds of triacyglycerol	is hyd	rolyzed by	
	(A)	Pancreatic lipase	(B)	Pancreatic hydrolase	
	(C)	Pancreatic oxidase	(D)	Pancreatic triacylase	
56.	The	foaming property of egg protein sis du	ie to		
	(A)	Hydrophobic bonding	(B)	Film formation	
	(C)	Adsorption	(D)	Hydrogen bonding	

57.	Emu	ulsions stability i	s expi	essed as					
	(A)	(Volume of crea	m lev	el/total volun	ne of emu	ılsion) × 100			
	(B)	(Volume of emu	lsion/	volume of cre	am level) × 100			
	(C)	(100 × volume o	f crea	m level)/volu	me of en	nulsion			
	(D)	$(100 \times volume o$	f emu	ulsion)/volum	e of crea	m level			
58.	The	enzymes glycosio	dases	and polypher	nol oxida	ses are know	n as		
	(A)	Anthoxanthina	ses		(B)	Anthocyana	ases		
	(C)	Glucophenolase	s		(D)	Glucooxida	ses		
59.	The	volatile compour	nd res	ponsible for f	lavor in o	orange is			
	(A)	Ethanal	(B)	Neral	(C)	Geranial		(D)	Neryl acetate
60.	The	volatile compone	nt in	coriander is					
	(A)	Linalool	(B)	Cineole	(C)	Eugenol	-	(D)	Carvacrol
61.	Aroi	ma of the tomato	s due	to					
	(A)	(Z)-3-hexenal			(B)	(E)-2- none	nal		
	(C)	Linolenic acid			(D)	3,6, nonadi	enal		
62.		smallest spatial	l unit	of repetition	n alon tl	ne chain ax	is wi	thin t	he unit cell is
	(A)	Subcell			(B)	Transtition	poin	t	
	(C)	Short spacing			(D)	Long spaci	ng		
63.	Form	nation of oxymyo	globii	n, when mole	cular oxy	gen binds to	myo	gllobi	n is termed as
	(A)	Oxidation			(B)	Oxygenatio	n		
	(C)	Dehydration			(D)	Dehydroge	natio	n .	
64.	The	viscosity propert	y of w	hen protein	is due to				
	(A)	Hydrophobic bo	nding	5	·(B).	Water bind	ing		
	(C)	Adsorption			(D)	Film forma	tion		
65.	Whe	en chocolate are s	tored	at 75-80% hi	umidity -		– is s	een	
	(A)	Fat bloom			(B)	Sugar bloom	m		
	(C)	Dew stage			(D)	Yellow sur	face		

66.		bonyl groups o ydroxyl group	_	de which und	dergo nu	cleophilic attach	ment l	by oxygen atom
	(A)	Acetal			(B)	Hemiacetal		
	(C)	Glycosides			(D)	Carrageenans		
67.	Car	otenoid is a						
	(A)	Simple lipid			(B)	Compound lipid	1	
	(C)	Derived lipid			(D)	None of the abo	ve	
68.	The	structural gro	up of car	rotenoids is				
	(A)	Oxygenated :	kanthop	hylls	(B)	Xanthophylls		
	(C)	α xanthophy	rlls		(D)	β xanthophylls	3	
69.	The	volatile compo	und res	ponsible for f	lavor in l	lemon is		
	(A)	Ethanol	(B)	Octanal	(C)	Neral	(D)	Citral
70.		volume of oil ers is known as		n be emulsifie	ed per gr	ram of protein b	efore p	ohase inversion
	(A)	Emulsion sta	bility		(B)	Emulsion capac	city	
	(C)	Emulsion act	ivity inc	lex	(D)	Emulsion load		
71.	The	water soluble,	non sta	rch food poly	sacchari	de derived from o	ellulo	se is
	(A)	Carboxymeth	ıyl cellul	ose	(B)	Gar gum		
	(C)	Locust gum			(D)	Xanthum gum		
72.	-	alcoholic beve wn as	rage ma	ade from alco	ohol and	grain distillate	by sp	ecial process is
	(A)	Absinthe	(B)	Bitters	(C)	Aquavit	(D)	Vodka
73.	The	volatile compo	nent in	cardamom is				
	(A)	Cineole	(B)	Camphor	(C)	Carvacrol	(D)	Camphene
74.	Nan	ne the enzyme	which b	rings about tl	he ferme	ntation of tea lea	ives in	tea processing
	(A)	Proteinase			(B)	Phenylalanine	ammo	nia-lysae
	(C)	Dehydroshilk	imate r	eductase	(D)	Polyphenol oxid	lase	

75.	The	water soluble, non starch food polysac	chario	de derived from red algae is
	(A)	Acetal	(B)	Hemiacetal
	(C)	Glycosides	(D)	Carrageenans
76.		process of transfer of an amino group nown as	from	an amino acid to an original keto acid
	(A)	Transamidation	(B)	Transamidination
	(C)	Transamination	(D)	Transdeamination
77.	Glut	camic acid being a constituent of folic a	icid is	termed as
	(A)	Pteroyl glutamate	(B)	Guanidoacetate
	(C)	Glutathione	(D)	Glutaniyl folate
78.	Prot	ein metabolism is influenced by		
	(A)	Androgens	(B)	Epinephrine
	(C)	Thyroxine	(D)	Insulin
79.	Adr	enal insufficiency causes		
	(A)	Hypokalemia	(B)	Hyponatremia
	(C)	Hyperkalemia	(D)	Hypernatremia
80.	The	hormone which is a single polypeptide	chai	n composed of 190 amino acids is
	(A)	Thyroid stimulating hormone	(B)	Follice stimulating hormone
	(C)	Growth hormone	(D)	Lactogenic hormone
81.	The	hormone that accelerated the cataboli	sm of	protein is
	(A)	Growth hormone	(B)	Insulin
	(C)	Adrenocorticotropic	(D)	Testosterone
82.	Lipo	ositol is derived from		
	(A)	Lecithin	(B)	Cephalin
	(C)	Diglyceride	(D)	Phosphatidic acid
83.		ch hormone increased the blood gluc olysis?	ose le	vels by increasing glycogenolysis and
	(A)	Epinephrine	(B)	Adrenocorticotrophic
	(C)	Thyroid stimulating hormone	(D)	Glucagon

84.	Com	pletion oxidation of one molecule of gl	ucose	yields
	(A)	57000 calories of energy	(B)	600,000 calories of energy
	(C)	625,000 calories of energy	(D)	686,000 calories of energy
85.	In	the conversion of glucose-1-phosp	phate	to uridine diphsophate glucose
	(A)	Pyrophosphate	(B)	Inorganic phosphorus
	(C)	Organic phosphorus	(D)	None of the above
86.		the Embden Meyerhof pathway, ospholycerate is catalyzed by the enzy		version of 3-phosphoglycerate to
	(A)	Phosphofructokinase	(B)	Phosphoglyceromutase
	(C)	Phosphoglyceratekinase	(D)	Enolase
87.		the Embden Meyerhof pathway, tose-6-phosphate is catalysed be the en		version of glucose-6-phosphate to
	(A)	Phosphofructokinase	(B)	Phosphoglyceromutase
	(C)	Phosphoglyceratekinase	(D)	Enolase
88.	Pari	tal hydrolysis of collagen by steam giv	es	
	(A)	Gelatin	(B)	Protamines
	(C)	Phosphoprotein	(D)	Casein
89.	The	test that is used to detect oxidative ra	ncidi	ty is
	(A)	Frieds test	(B)	Kries test
	(C)	Methyls test	(D)	Gallic acid test
90.	Exa	mple of phospholipid is		
	(A)	Choline	(B)	Sphingomylein
	(C)	Ethanolamine	(D)	Glycerides
91.	Exa	mple of a polysaccharide is		
	(A)	Verbascose	(B)	Glucoheptose
	(C)	Dihydroxyacetone	(D)	Inulin

92.		mechanism by which one or more produced he substrate are added are known as	ducts	are released from the enzymes before
	(A)	Sequential reaction	(B)	Ping pong reaction
	(C)	Random order reaction	(D)	Compulsory order reaction
93.	Exa	mple of a sulfur containing amino acid	is	
	(A)	Cysteine (B) Glutamine	(C)	Arginine (D) Histidine
94.	Tran	nsfer of amide group as a source of ami	no gr	oup or amino acid is known as
	(A)	Transamidation	(B)	Transamidination
	(C)	Transamination	(D)	Transdeamination
95.	The	metabolism of sodium is influenced by		
	(A)	Adrenocortical hormone	(B)	Growth hormone
	(C)	Thyroid hormone	(D)	Follicle stimulating hormone
96.	The	hormone which is a glycoprotein and h	as hi	gh cystine content is
	(A)	Thyroid stimulating hormone	(B)	Follice stimulating hormone
	(C)	Growth hormone	(D)	Lactogenic hormone
97.		ne activation of fatty acid with ATP an ation of fatty acid ————————————————————————————————————		
	(A)	Acetyl coA	(B)	Adenylic acid
	(C)	Enol-CoA	(D)	Hydroxyl CoA
98.	The	formation of glucose from non- carbohy	ydrat	e source is known as
	(A)	Glycogenesis	(B)	Gluconeogenesis
	(C)	Glycgenolysis	(D)	Glycolysis
99.	The	protein that contain prophyrin as the	prostl	hetic group is termed as
	(A)	Mettaloprotein (B) Lipoprotein	(C)	Chromoprotein (D) Mucoprotein
100.	The	test in which sugar solution is boiled v	vith c	opper acetate and acetic acid is
	(A)	Nylanders test	(B)	Osazone formation
	(C)	Barfoeds test	(D)	Glucazone formation