ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. Ph.D. (GREEN ENERGY TECHNOLOGY)

COURSE CODE: 159

Register Number :		
		Signature of the Invigilator (with date)

COURSE CODE: 159

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

IMPORTANT:

Candidates please note:

There are 3 units in the question paper.

Mathematics (Unit I) Q. 1-50

Physics & Chemistry (Unit II) Q. 51-100

Chemistry & Biology (Unit III) Q. 101 - 150

All Candidates must answer Unit I.

Candidates should select Unit II or Unit III (not both) depending on their specialization at post-graduate level.

UNIT I - GENERAL

(Compulsory)

1.	Ene	ergy of a Photon	is					
	(A)	hc/λ	(B)	hω/λ		(C)	h/λ	(D) E/λ
2.	An	electrical transfo	rmer w	orks und	er the	princi	iple of	
	(A)	mutual induct	ion			(B)	self induction	
	(C)	biased induction	on			(D)	coil induction	
3.	Piez	zoelectric effect i	s the pr	oduction	of elec	tricity	y by	
	(A)	chemical effect	t			(B)	varying field	
	(C)	temperature				(D)	pressure	
4.	Visi	ble light's wavel	ength r	ange				
	(A)	0.39 - 0.77 mm	n			(B)	$0.39 - 0.77~\mu\mathrm{m}$	
	(C)	0.39 - 0.77 nm				(D)	0.39 - 0.77 cm	
5.	Α×	(B+C) is						
	(A)	$(C + A) \times B$				(B)	$(B \times A) + C$	
	(C)	$(A+B)\times C$				(D)	$(A \times B) + (A \times C)$	
6.	log1	04 + 2log102 is e	qual to					
	(A)	4log102				(B)	$2\log_{10}4 + \log_{10}2$	
	(C)	4 log ₁₀ 4				(D)	log ₁₀ 6	
7.	If a	= eb then which	of the fo	ollowing i	is true'	?		
	(A)	a = 1 for $b = -$	00			(B)	$a = 0$ for $b = -\infty$	
	(C)	logeb = a				(D)	$a = 1$ for $b = \infty$	

8.	If x	> 1 and $\frac{\sqrt{x}}{x^3} =$	x ^m wha	at is the value	of m?			
	(A)	$-\frac{3}{2}$	(B)	$-\frac{5}{2}$	(C)	2	(D)	-2
9.	Fine	d two numbers	whose	sum is 26 and	whose pr	roduct is 165		
	(A)	9 and 17	(B)	10 and 16	(C)	12 and 14	(D)	11 and 15
10.	The	mean of first t	en even	positive inte	gers is			
	(A)	5	(B)	10	(C)	11	(D)	55
11.	The	solution to the	equati	on ln (x) + ln	(2) = 3 is			
		e ³ / ln (2)		e ³ / 2	(C)		(D)	3 / ln (2)
12.	The		straight	line that pass	ses throug	gh point A(1,	-1) and ha	as a slope equal
	(A)	y = -x	(B)	y = 1- x	(C)	y = 1/x	(D)	y = x+1
13.	Ran	k of the matrix	$ \begin{pmatrix} i & 0 \\ 0 & i \\ 0 & 0 \end{pmatrix} $	$\binom{0}{0}_{i}$ where i is	an imagii	nary number		
	(A)	1	(B)	2	(C)	3	(D)	i
14.	In th	he gate given b	elow wl	nat is the out	out C whe	en the input	A = 0,	
				A B)—c	;		
	(A)	always 1			(B)	always 0		
	(C)	either 0 or 1			(D)	cannot be p	redicted	
15.	Wha	at decimal num	ber equ	ivalent of the	binary n	umber (1011)2	
	(A)	2022	(B)	10	(C)	0	(D)	11
16.	Wha	at is the probab	oility of	getting 1 or 3	when rol	ling a dice		
	(A)	1/6	(B)	2/6	(C)	3/6	(D)	1
17.		erial of gold paicles. Number						diameter size
	(A)	10	(B)	10 ⁶ (C)	1010		(D)	1012

18.	The half life of tritium is 12.5 yrs. I there will be	If we start o	ut with 1 g of t	tritium, after 25 years						
	(A) no tritium left	(B)	¼ g of tritiun	n left						
	(C) ½ g tritium left	(D)	a total of 2 g o	of tritium left						
19.	What is the missing number in the s	series: 1, 1, 2	2, 6, 24, 120, ?,	5040						
	(A) 360 (B) 720	(C)	1080	(D) 1440						
20.	A set of elements is said to be Group	if it has								
	(A) Closure property	(B)	Associative							
	(C) Identity and inverse	(D)	All of the above	ve						
21.	The force exerted on harmoning spri its equilibrium position. Spring cons									
	(A) 0.1 piconewton	(B)	1 piconewton							
	(C) 10 piconewton	(D)	100 piconewto	on						
22.	The root of the equation $2x^2 + 3x - 14$	1 is								
	(A) 0 (B) 2	(C)	-2	(D) 1						
23.	Equation of a circle passing through origin, having a radius of 4 units is									
	(A) $4x^2 + 4y^2 - 16 = 0$	(B)	$x^2 + y^2 - 16 =$	0						
	(C) $x^2 + y^2 + 4xy + 16 = 0$	(D)	$x^2 + y^2 - 16xy$	= 0						
24.	If $x + e^x = t$ then dx/dt is									
	(A) e^{x} (B) $1 + e^{x}$	(C)	$1/(1 + e^x)$	(D) x.e ^x						
25.	The coefficient matrix of the linear e	equation 5x-	2y+c=0 is							
	(A) [5-2] (B) [5-20]	(C)	[5 -2 1]	(D) [5 2 1]						
26.	The inner product of two orthogonal	vectors A &	Bis							
	(A) 1 (B) 0	(C)	A . B	(D) (A . B)/2						
27.	The value of $e^{(i\pi/2)}$ is									
	(A) 1 (B) -1	(C)	i	(D) $-\sqrt{3}/2$						
28.	When A is a matrix and if $A = A^{T}$ the	en A is								
	(A) Real (B) Unitary	(C)	Symmetric	(D) Orthogonal						

29.	The function $f(x)=x^2-x$, at $x=0.5$ has			
	(A) maxima (B) minima	(C)	saddle point	(D) salient point
30.	Complex conjugate of i / (1 - i) is			
	(A) ½ (1+i) (B) ½ (1-i)	(C)	-½ (1+i)	(D) -½ (1-i)
31.	The force exerted on harmoning spring th	nat mak	ces a linear exte	ension of 0.1 μ m from
	its equilibrium position. Spring constant	is 0.1 p	iconewton/nano	meter
	(A) 0.1 piconewton	(B)	1 piconewton	
	(C) 10 piconewton	(D)	100 piconewto	n
32.	The root of the equation $2x^2 + 3x - 14$ is			
	(A) 0 (B) 2	(C)	-2	(D) 1
33.	Equation of a circle passing through origi	n, havi	ng a radius of 4	units is
	(A) $4x^2 + 4y^2 - 16 = 0$	(B)	$x^2 + y^2 - 16 = 0$	0
	(C) $x^2 + y^2 + 4xy + 16 = 0$	(D)	$x^2 + y^2 - 16xy =$	= 0
34.	If $x + e^x = t$ then dx/dt is			
	(A) e^{x} (B) $1 + e^{x}$	(C)	$1/(1 + e^x)$	(D) x.e ^x
35.	When two vectors A(i) and B(j) are orthor	normal	then	
	(A) A(i).B(j)=0	(B)	A(i).B(j)=1	
	(C) $A(i).B(j) = \delta_{ij}$	(D)	None of the al	oove
36.	Circumference of an ellipse is given by			
	(A) πa^2 (B) πab^2	(C)	πab	(D) ab ²
37.	f(x) = U/V, where U and V are independe	nt vari	ables. Then $f'(\mathbf{x})$) is
	(A) U'/V'	(B)	(U'V + V'U)/U	
	(C) (U'V+ V'U)/U ²	(D)	$(U'V+V'U)/V^2$	
38.	∫∫ C.xdx where C is a constant, is equal to	0		
	(A) Cx^2 (B) $Cx^2/2 + C_2$		$Cx^2/2 + C_2x$	(D) $Cx^3/6 + C_2x$
39.	Det.(A.B.CN) is given by			
	(A) Det. A. Det. Det. CDet. N	(B)	Det.A + Det.B	3 + Det.C +Det.N
	(C) (Det.A.Det.B.DetDet.N)/N	(D)	(Det.A + Det.1	B + et.C +Det.N)

40.		ance covered by an acceleration			nds, l	aunched at an ir	nitial speed of 30m/s
	(A)	9000 m	(B)	5400 m	(C)	300 m	(D) 4500 m
41.	Solu	tion to the expre	ssion	$y = (2+\sqrt{(2+\sqrt{(2+\sqrt{(2+\sqrt{(2+\sqrt{(2+\sqrt{(2+\sqrt{(2+$	١)) is	
	(A)	2	(B)	2+ √2	(C)	$2 + (\sqrt{2})/2$	(D) 2√2
42.		ous drag force o		일본 등 집에 발생하는 것이 나라 하는 것이 되었다.	r, mo	ving at a veloci	ty of v m/s due to a
	(A)	6πητν	(B)	$\eta^2 \nu \pi r$	(C)	6πητ	(D) rv
43.	∫x ⁻¹ 0	lx is,					
	(A)	x-2/2	(B)	$-x^{-2}/2$	(C)	log x	(D) log (1/x)
44.		= f(x), and if log	(y) vs	$\log(f(x))$ represe	nt a st	raight line, then	the slope of the line
	(A)	Power law expo	nent		$^{\circ}(B)$	dy/dx	
	(C)	Constant term	in y=	f(x)	(D)	Singularity	
45.	If su	ım to n term of a	n arit	hmetic series is	210, tł	nen sum to (n-10)) term is
	(A)	105	(B)	55	(C)	does not exist	(D) -210
46.		volume of $\hat{i} - 3\hat{j} + 4\hat{k}$ $\vec{b} = \hat{i} + 2\hat{j}$			who	ose edges are	e represented by
5	(A)	6	(B)	15	(C)	28	(D) 7
47.	A fi	eld F is irrotation	nal if				
	(A)	grad F=0	(B)	div F=0	(C)	curl F=0	(D) grad F>0
48.	Sis	a surface of cons	tant	value for the fun	ction f	(x,y,z) then the g	radient of f is
	(A)	normal to the l			(B)	tangential to le	
	(C)	arbitrary			(D)	curvilinear to t	he level surface
49.	The	angle between t	he ve	ctors $\vec{a} = 3\hat{i} + 6\hat{j} + 6\hat{j}$	⊦9k̂ aı	$\vec{b} = -2\hat{i} + 3\hat{j} +$	\hat{k} is
	(A)	30°	(B)	450	(C)		(D) 90°
50.	For	the function y =	A sin	(ωt) , the amplit	ude ar	nd period, respec	tively are
	(A)	ωt and A	(B)	A and ωt	(C)		(D) A and 2π ω

ANSWER ANY ONE OF THE UNIT II OR III UNIT II — (PHYSICAL & CHEMICAL SCIENCES)

51.	Wha	nat is exothermic process?							
	(A)	A process that absorbs energy as heat							
	(B)	(B) A process that both absorbs and releases as heat							
	(C) A process that releases energy as heat								
	(D)	A process that exchanges mass							
52.	radi	planet in a distant solar system is 10 tim dius is 10 times smaller. Given that th kms-1, the escape velocity from the surfac	e	escape velocity from the earth is					
	(A)	1.1 kms ⁻¹ (B) 11 kms ⁻¹ (C)	110 kms ⁻¹ (D) 0.11 kms ⁻¹					
53.	Refi	fractive index of materials is approximatel	уес	qual to square root of					
	(A)	electrical permittivity							
	(B)	magnetic permeability							
	(C)	(C) electrical permittivity x magnetic permeability							
	(D)	susceptibility							
54.	The	e kinetic energy of molecules of liquid at ro m	oom	temperature and pressure is derived					
	(A)	Latent heat of liquid (B)	Specific heat of liquid					
	(C)	Thermal energy fluctuations (D)	Phase transition					
55.	In a thermodynamic system, a closed system represents								
	(A)	(A) System where there is no exchange of heat							
	(B)	System where there is no exchange of m	ıass						
	(C)	System where there is no change in volu	ıme						
	(D) System where the pressure remains constant								
56.	Whi	nich of the following is a solid-state laser?							
	(A)	He-Ne laser (B)	Nd:YAG laser					
	(C)	CO ₂ laser (D)	Free electron laser					
57.	A qu	quantum number is not associates with an	ato	mic electron's					
	(A)	mass (B)	energy					
	(C)	snin (D)	orbital angular momentum					

58.	Evanescent field created under total internal reflection mode, has a characteristic penetration depth of the order of										
	(A)	200 nm (B) 200 μm	(C)	200 mm (D) 200 m							
59.	Pau	li's exclusion principle states that quan	tum r	nechanically							
	(A)	Identical charges stay together									
	(B)	Identical charges cannot stay togethe	r								
	(C)	Identical charges recombine									
	(D)	Identical charges generate photons									
60.	The	following is the example of optical wav	eguid	e							
	(A)	Optical fiber (B) Glass	(C)	Quartz (D) Silicon							
61.	Elec	tric motor works under the									
	(A)	Faraday's rule	(B)	Einstein's rule							
	(C)	Fleming's left hand rule	(D)	Richard Feynman's rule							
62.	Inve	erter is a device that converts									
	(A)	DC power to DC power	(B)	AC power to DC power							
	(C)	DC power to AC power	(D)	Optical to electrical power							
63.	Con	ductivity of metal arises due to the pre-	sence	of							
	(A)	Free atoms	(B)	Free electrons							
	(C)	Free holes	(D)	Impurities							
64.	The	cyclotron frequency (ω_{c}) of an electron	rotati	ng under Lorenz force is equal to							
	(A)	B/m (B) ω/m	(C)	eB/m (D) e/m							
65.	Fern	rite rods are used to sense the									
	(A)	Optical signal	(B)	Microwave signal							
	(C)	Electrical signal	(D)	Electromagnetic signal							
66.	The	electron "gas" in a metal is not directly	resp	onsible for its							
12	(A)	electrical conductivity	(B)	thermal conductivity							
	(0)	surface luster	(D)	strength							

67.	A superconducting material when placed in a magnetic field will								
	(A) attract the magnetic field toward its centre								
	(B) repel all the magnetic lines of forces passing through it								
	(C)	attract the magnetic field but transfe	er it in	to a concentrated zone					
	(D)	not influence the magnetic field							
68.	In a	ferromagnetic material, susceptibility	is						
	(A)	very small and positive	(B)	very small and negative					
	(C)	very large and positive	(D)	very large and negative					
69.	The	The depletion region in an open circuited p - n junction contains							
	(A)	electrons	(B)	holes					
	(C)	uncovered immobile impurity ions	(D)	neutralized impurity atoms					
70.	Light Emitting Diode (LED) is a semiconductor device in which the p-n junction is								
	(A)	reverse biased	(B)	forward biased					
	(C)	unbiased	(D)	none of these					
71.	The factor responsible for spontaneous polarization is								
	(A)	free electrons	(B)	atoms					
	(C)	permanent dipoles	(D)	none of these					
72.	A laser beam of wavelength 740 nm has coherence time $4\times10^{-5}s$. What is its coherence length?								
	(A)	12 km (B) 2 km	(C)	12 m (D) 2 m					
73.		nermocouple is made from two metals t hot and other junction is kept cold th							
	(A)	flow from Antimony to Bismuth at th	ne cold	junction					
	(B)	flow from Antimony to Bismuth at th	ne hot	junction					
	(C)	flow from Bismuth to Antimony at th	ne cold	junction					
	(D)	flow from Bismuth to Antimony at th	ne hot	junction					
74.	stril	ock of mass 0.50 kg is moving with a kes another mass of 1.00 kg and ther gy loss during the collision is							
	(A)	0.16 J (B) 1.00 J	(C)	0.67 J (D) 0.34 J					

75.	Fluc	prescence occurs within		
	(A)	10^{-5} s. (B) 10^{-5} ms.	(C)	10-5 μ s. (D) 10-5 ns
76.	Sky	looks blue because the sun light is sub	jected	
	(A)	Rayleigh scattering	(B)	Compton scattering
	(C)	Diffraction of light	(D)	Absorption of light
77.	Opti	ical fiber operates on the principle of		
	(A)	Total internal reflectance	(B)	Tyndall effect
	(C)	Photo-electric effect	(D)	Laser technology
78.	Ligh	nt is produced in electric discharge lam	ps by	
	(A)	heating effect of current	(B)	magnetic effect of current
	(C)	ionization in a gas or vapor	(D)	carbon electrodes
79.	Lum	nen/watt is the unit of		
	(A)	Light flux	(B)	Luminous intensity
	(C)	Brightness	(D)	Luminous efficiency
80.	The	ability of a microscope to reveal closely	adja	cent points as separate & distinct
	(A)	Magnification	(B)	Resolution
	(C)	Power	(D)	f-number
81.	Whi	ch of the following arrangements will p	roduo	e H2 at cathode during electrolysis?
	(A)	aqueous solution of NaCl using Pt ele	ctrode	es
	(B)	dil H ₂ SO ₄ with copper electrodes		
	(C)	aqueous AgNO3 with Ag electrodes		
	(D)	dil H ₂ SO ₄ with Pt electrodes		
32.		ioactive isotopes that have an excess th one of the following?	ive ne	eutron-proton ratio generally exhibit
	(A)	Alpha emission	(B)	Beta emission
	(C)	Positive capture	(D)	K-capture
33.	Wate	er gas is an equimolar mixture of		
	(A)	CO and N ₂	(B)	CO and H ₂ O
	(C)	CO_2 and N_2	(D)	CO and H ₂

84.	Which of the following is destroying the ozone layer present in stratosphere?										
	(A)	Oxides of nitro	gen		(B)	$\mathrm{CH_4}$					
	(C)	CFC			(D)	All of the abov	/e				
85.	IUP	AC name of K ₃	Al(C ₂ O	4)3 is							
	(A)	Potassium alu	miniuı	m trioxalate							
	(B)	Potassium alu	miniuı	m (III) trioxalate	е						
	(C)	Potassium alu	miniuı	m trioxalate alu	minate	e (III)					
	(D)	Potassium alu	Potassium aluminium tris(oxalate)aluminate (III)								
86.	Whi	ch one of the fol	lowing	bonds has the l	higher	average bond e	nergy ((kcal/mole)?			
	(A)	S = O	(B)	C = C	(C)	$C \equiv N$	(D)	N = N			
87.	The	reaction of eryt	hro 1-	bromo 1,2-diph	enyl p	ropane with alc	oholic l	KOH gives			
	(A)	(Z) -1,2 - diph	enyl -	-1 - propene							
	(B)	(E) -1,2 - diph	enyl –	1 – propene							
	(C)	(C) Both (Z) and (E) -1.2 - diphenyl -1 - propene									
	(Ď)	1,2 – diphenyl	- 1 - I	propanol							
88.	Whi	ch of the followi	ng doe	s not have sp² h	ybridi	sed carbon?					
	(A)	Acetone	(B)	Acetic acid	(C)	Acetonitrile	(D)	Acetamide			
89.	The	unit of second o	rder re	eaction rate con	stant i	S					
	(A)	lit-1 mol sec-1	(B)	$\mathrm{lit^2\ mol^2\ sec^{-1}}$	(C)	lit mol ⁻¹ sec ⁻¹	(D)	mol sec-1			
90.	The	units of rate an	id rate	constant for a	certair	reaction are t	he san	ne. The order	c of		
	reac	etion is									
	(A)	first	(B)	zero	(C)	second	(D)	third			
91.	Whe	en sucrose is oxi	dized v	with con. nitric a	acid, it	gives					
	(A)	Tartaric acid	(B)	Succinic acid	(C)	Oxalic acid	(D)	Laerulic ac	id		

92.	For	which one of the following processes is Inter System Crossing (ISC) essential?										
	(A)	Fluorescence			(B)	Phosphorescer	nce					
	(C)	Chemilumineso	cence		(D)	Radioactive de	ecay					
93.	For	an ideal gas PV′	= Cor	nstant is								
	(A)	Adiabatic proce	ess		(B)	Polytrophic process						
	(C)	Constant tempe	eratu	re process	(D)	Isentrophic pr	ocess					
94.	The	correct configura	rrect configuration of 29Cu is									
	(A)	[Ar] 4s1	(B)	$[Ar] 4s^2$	(C)	[Ar] $3d^{10} 4s^1$	(D) [Ar] 3d ⁹ 4s ²					
95	Whi	ch molecule has	the la	rgest dipole mo	ment?							
	(A)	HCl	(B)	HI	(C)	HBr	(D) HF					
96.	In a	n octahedral stru	ıcture	, the pair of d-or	rbitals	involved in d ² sp	³ hybridization is?					
	(A)	$d_x{}^2\cdot _y{}^2,\; d_z{}^2$	(B)	$d_x{}^2\text{-}_y{}^2\text{, }d_x{}^2$	(C)	d_{z^2} , d_{zx}	(D) d _{xy} , d _y ²					
97.	Whi	ch of the followin	ıg spe	cies is the stron	gest B	ronsted –Lowry	base in water?					
	(A)	NH_3	(B)	$\mathrm{NH_2}^-$	(C)	F-	(D) CO ₃ 2 ⁻					
98.	Cam	phor is often use	ed in r	nolecular weigh	t dete	rmination becau	se					
	(A)	It is high cryoso	copic o	constant								
	(B)	It is readily ava	ilable									
	(C)	It is volatile										
	(D)	It is a solvent fo	or ma	ny organic subs	tances							
99.	Pure	silicon doped wi	ith ph	osphorus atom	is an							
	(A)	metallic conduc	tor		(B)	n-type semi co	nductor					
	(C)	p-type semi con	ducto	r	(D)	insulator						
.00.	The	relation between	the s	olubility of a ga	s and i	ts pressure is ki	nown as					
	(A)	Ostwald's law			(B)	Raoult's law						
	(C)	Henry's law			(D)	Distribution la	w					

${\tt UNIT\,III-(BIOLOGICAL\ \&\ CHEMICAL\ SCIENCES)}$

101. End-to-end length of a bacteriophage DNA having 48kbp is			ng 48kbp is	
	(A)	15.4µm	(B)	1.54µm
	(C)	1.50µm	(D)	150µm
102.	Whi	ch of the following can be classified a	s secon	d messenger molecule
	(A)	G protein	(B)	cyclic adenosine monophophate
	(C)	adenylecyclase	(D)	phospholipase
103.	Whi	ch of the following is not an Antigen	Present	ing Cell?
	(A)	Monocytes	(B)	T cell
	(C)	Macrophage	(D)	Thymus epithelial cells
104.	Seco	ondary structure of a single strand Di	NA is	
	(A)	Bubbles and knots	(B)	Hairpin & loops
	(C)	α helix & β sheets	(D)	Minor grooves and double helix
105.	Whi	ch one of the following is a neurotran	smitter	
	(A)	IP3	(B)	Acetyle choline
	(C)	Adenosine triphosphate	(D)	F-Actin
106.		nber of solute molecules in one microximately	crolitre	of one femtomolar solution will be
	(A)	10^{21} (B) 10^9	(C)	6×10^8 (D) 600
107.	Dist	al DNA sequences that help in the ex	pressio	n of a gene is referred as
	(A)	expresser	(B)	initiator
	(C)	attenuator	(D)	enhancer
108.	Тур	ical duration for cell division of a labo	ratory	E. Coli strain is
	(A)	2 hours	(B)	200 minutes
	(C)	20 minutes	(D)	2 minutes
109.	The	macromolecules that require a templ	ate for	synthesis are
	(A)	nucleic acids and carbohydrates	(B)	proteins and carbohydrates
	(C)	lipids and carbohydrates	(D)	proteins and nucleic acids

110.	The	polarity of the DNA chain is represent	ed by	
	(A)	1'-3'	(B)	3'-5'
	(C)	1'-5'	(D)	3'-1'
111.		uence on a DNA molecules that are s ction are known as	same	on both strands when read in same
	(A)	sticky sites	(B)	recognition sites
	(C)	consensus sequence	(D)	palindromes
112.	Тсе	lls mature in the		
	(A)	Thyroid gland	(B)	Bone marrow
	(C)	Thymus gland	(D)	Limph nodes
113.	DNA	A sequences needed for division of euka	ryotic	chromatids during mitosis is
	(A)	telomere	(B)	centromere
	(C)	centrosome	(D)	kinetochore
114.	The	antibiotic chloramphenicol blocks the		
	(A)	cell wall formation	(B)	transcription
	(C)	translation termination	(D)	polypeptide chain elongation
115.	The	class of green algae is classified as		
	(A)	Phaeophyceae	(B)	Chlorophyceae
	(C)	Rhodophyseae	(D)	Solanaceae
116.	Upp	er chambers of mammalian heart is cal	lled	
	(A)	Ventricles	(B)	Atria
	(C)	Pericardium	(D)	Myocardium
117.	In th	ne blood pressure measurement, 120/80	repr	esents
	(A)	systolic pressure/ diastolic pressure	(B)	diastolic/systolic pressure
	(C)	perstaltic/normal pressure	(D)	normal/peristaltic pressure
118.	The l	harmone responsible for increase in alter	tness	, pupilary dialation, and sweating is
	(A)	melatonin	(B)	thyroxine
	(C)	thymosin	(D)	adrenaline

119.	Lact	ose upon digestion with lactase gives					
	(A)	Glucose + Sucrose	(B)	Galactose + Fructose			
*	(C)	Glucose + Galactose	(D)	Glucose + Fructose			
120.	Doul	ole stranded DNA has absorption peak	at				
	(A)	220 nm	(B)	260 nm			
	(C)	488 nm	(D)	620 nm			
121.	Time	Time of flight mass spectrometer works on the principle of measurement of					
	(A)	(A) Time of arrival of the molecule at the detector					
	(B)	Time of arrival of the electron at the c	letect	or			
	(C)	(C) Time of arrival of ion at the detector					
	(D)	Time of arrival of proton at the detect	or				
122.	Psyc	hrophiles are bacteria that grow in the	temp	erature range of			
	(A)	−10° C to 20° C	(B)	15° C to 45° C			
	(C)	30° C to 75° C	(D)	Above 100° C			
123.	dilu	monolayer assay, there are 100 plaquents sample of 0.1ml at 106 dilution. ple is	ies wo	ere counted on an average for aviral plaque forming units (pfus) of the			
	(A)	109 pfus	(B)	10 ⁷ pfus			
	(C)	10 ⁵ pfus	(D)	10³ pfus			
124.	RNA	A Polymerase is an enzyme that					
	(A)	Translate RNA	(B)	Replicate DNA			
	(C)	Transcribe DNA	(D)	Replicate RNA			
125.	 The residue which has least conformational hindrance and thus can covers most the area of Ramachandran plot is 						
	(A)	Gly	(B)	Lys			
	(C)	Ala	(D)	Pro			
126.	Aut	otrophic microbes					
	(A)	Releases CO ₂	(B)	Fixes CO ₂			
	(C)	Releases O ₂	(D)	Fixes O ₂			

127.	Max	kimum number of electrons theoretical	lly pos	sible for a seventh principle shell is	
	(A)	7	(B)	49	
	(C)	80	(D)	98	
128.	Mas	ll be			
	(A)	0.28 g	(B)	0.14 g	
	(C)	0.5 g	(D)	2.24 g	
129.	The	unit of second order reaction rate con-	stant i	s	
	(A)	lit-1 mol sec-1	(B)	lit² mol² sec-1	
	(C)	lit mol ⁻¹ sec ⁻¹	(D)	mol sec ⁻¹	
130.	Whi	ch of the following has zero dipole mor	ment?		
	(A)	ClF	(B)	PCl ₃	
	(C)	CFCl ₃	(D)	SiF ₄	
131.	Wha	at is the state of hybridization of carbo	n in ca	arbanion?	
	(A)	sp	(B)	sp^3	
	(C)	sp^2	(D)	$\mathrm{sp}^2\mathrm{d}$	
132.	Which one of the following combination is best suitable to form semi-conductor?				
	(A)	Cu + As	(B)	Zn + Ge	
	(C)	Ge + As	(D)	Sb + As	
133.	Free	on is			
	(A)	CF ₄	(B)	CCl₃H	
	(C)	CCl_2F_2	(D)	CF₃H	
134.		number of alpha and beta particles ope 82 206Pb respectively be	emitte	ed when 84 218 Ra decays to a stable	
	(A)	2 and 4	(B)	3 and 3	
	(C)	4 and 2	(D)	3 and 4	
135.	ESR	spectroscopic studies involve the use	of		
	(A)	infrared radiations	(B)	visible radiations	
	(C)	ultraviolet radiations	(D)	microwave radiations	

136.	The temperature at which a compound melts into a liquid of the same composition as the solid is called the						
	(A)	Congruent melting point	(B)	In congruent melting point			
	(C)	Peristaltic point	(D)	Eutectic point			
137.	Besi	ides CO2, other green house gas is					
	(A)	N_2	(B)	CH ₄			
	(C)	Ar	(D)	Не			
138.	Whi	ch pair of compound gives Tollen's test	?				
	(A)	Glucose and Fructose	(B)	Sucrose and Glucose			
	(C)	Hexanal and Acetophenone	(D)	Fructose and sucrose			
139.	Whe	en sucrose is oxidized with con. nitric a	cid, it	gives			
	(A)	Tartaric acid	(B)	Succinic acid			
	(C)	Oxalic acid	(D)	Laerulic acid			
140.	Whi	ch of the following electron transition i	s forb	idden?			
	(A)	$n \to \pi^*$	(B)	$\pi - \pi^*$			
	(C)	$n \rightarrow \sigma^*$	(D)	none of the above			
141.	For	which one of the following processes is	inter	system crossing (ISC) essential?			
	(A)	Fluorescence	(B)	Phosphorescence			
	(C)	Chemiluminescence	(D)	Radioactive decay			
142.	The hydrated sodium sulphate is an example of						
	(A)	one compound system	(B)	two compound system			
	(C)	three compound system	(D)	four compound system			
143.	Hyperglycemia refers to						
	(A)	Increased RBC count	(B)	Increased cholesterol level			
	(C)	Increased blood sugar level	(D)	Increased urea level in blood			
144.	Oka	Okazaki fragment relates to					
	(A) DNA Primers for leading strand synthesis						
	(B)	(B) DNA fragment that help synthesis of lagging strand					
	(C) SiRNA fragments						
	(D)	(D) Partially synthesized mRNA					

145.	Epig	genetic relates to			
	(A)	Base pair mismatch due to mutation			
	(B)	Cytosine deletion causing genetic dis-	ease		
	(C)	Transformation of cytosine to Uracil			
	(D)	Methylation of cytosine regulating ge	ne exp	pression	
146.	Туре	e of function protein porin perform is			
	(A)	Gene activations	(B)	Specific binding	
	(C)	Transport	(D)	Degradation of proteins	
147.	Whi	ch of the following is the perfect ligand	for a	vidin?	
	(A)	Streptavidin	(B)	Biotin	
	(C)	Nicotine	(D)	IP3	
148.	8. Gluconeogenesis is				
	(A)	synthesis of glucose from non-carbohy	ydrad	e precursors;	
	(B)	synthesis of glucose from carbohydra	de pre	cursors;	
	(C)	decomposition of glucose for energy;			
	(D)	polymerization of glucose to form α –	amyl	ose	
149.	High	n resolution structure of a protein can	be det	ermined using	
	(A)	High resolution phase contrast micro	scope		
	(B)	UV-Visible spectrometer			
	(C)	X-ray diffractometer			
	(D)	Atomic Force Microscope			
150.		etic engineering process where a sect ge chromosome and then allowed to rep ed			
	(A)	Expression	(B)	Translation	
	(C)	Replication	(D)	Cloning	