RANGAPILLAI L. ENTRANCE E

PONDICHERRY

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Phil./Ph.D. (MATHEMATICS)

COURSE CODE: 252/118

Register Nu	ımber :		A 40 1		
			_	Signature of the	Invigilator

(with date)

COURSE CODE: 252/118

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

Notation: \mathbb{R} - Real line, \mathbb{Q} - Set of rationals, \overline{A} - closure of A, A^c - complement of A, sp(A) - span of A

IMPORTANT: Mark the correct statement, unless otherwise specified

1.	Let T_1 and T_2 be two topologies on a non-empty set X . Which one of the following is a topology on X ?							
	(A)	$T_1 \cup T_2$	(B)	$T_1\cap T_2$	(C)	$(T_1 \setminus T_2)$	(D)	(T_2 / T_1)
2.	Eve	ry compact	pace is					
	(A)	discrete			(B)	connected		
	(C)	normal			(D)	locally compa	act	
3.	An o	operator T	on a Hilbert	space is self-a	adjoint	if and only if fo	or all x, <	< Tx, x > is
		$\ x\ ^2$				real		
	(C)	purely im	aginary		(D)	none of these		
4.	An analytic function $f = u + iv$ with constant modulus is							
	(A)	u+v	(B)	$\sqrt{u^2+v^2}$	(C)	constant	(D)	none of these
5.	An i	deal A of a	commutativ	e ring R with	unity i	s maximal if a	nd only i	f R/A is a
	(A)	ring	(B)	group	(C)	field	(D)	none of these
6.	The	residue of	$\frac{ze^z}{(z-a)^3} \text{ at }$	z = a is				
	(A)	e^a	(B)	$\frac{1}{2}e^a(a+z)$	(C)	a	(D)	a+z

The value of the integral $\int_{c} \cos z \, dz$, where c is $\left|z + \frac{1}{2}\right| = \frac{1}{3}$ is

- (A) 2 πi
- (B) $-2\pi i$ (C)

(D) 0

- 8. If $\int \frac{dz}{z(z+2)} = 0$ then c can be
 - (A) |z| = 1
- (B) |z+2|=1
- (C) |z-1|=2
- (D) |z-2|=1
- The general solution of $x^4 y''' + 2x^3 y'' x^2 y' + x y = 1$ is
 - (A) $(c_1 + c_2 \log x) x + \frac{c_3}{x} + \frac{1}{4x} \log x$ (B) $(c_1 + c_2 \log x) x + 2 \log x + 4$
 - (C) $(\frac{c_1}{x} + c_2 \log x) x + c_3 x^2 + \log x$ (D) $(c_1 + c_2 x^2 \log x) x + c_3 x + \log x$
- 10. If J_n is a Bessel's function then $(xJ_n\ J_{n+1})$ is equal to
 - (A) xJ_n^2
- (B) xJ_{n+1}^2 (C) $x(J_n^2 + J_{n+1}^2)$ (D) $x(J_n^2 J_{n+1}^2)$
- Which one of the following ideals of the ring Z[i] of Gaussian integers is NOT maximal?
 - (A) ⟨1+i⟩
- (B) $\langle 1-i \rangle$ (C) $\langle 2+i \rangle$
- (D) ⟨3+i⟩
- Z(G) denotes the center of a group G, then the order of the quotient group G/Z(G)cannot be
 - (A) 4

- (B) 6
- (C) 15
- (D) 25
- Let Aut(G) denote the group of automorphisms of a group G. Which one of the following is NOT a cyclic group?
 - (A) Aut (Z₄)
- (B) Aut (Z₆)
- (C) Aut (Z₈)
- (D) Aut (Z10)
- 14. If $A = \begin{bmatrix} 1 & 0 & 0 \\ i & \frac{-1+i\sqrt{3}}{2} & 0 \\ 0 & 1+2i & \frac{-1-i\sqrt{3}}{2} \end{bmatrix}$, then the trace of A^{102} is
 - (A) 0

- (B) 1 (C) 2

(D) 3

- Which of the following matrices is NOT diagonalizable?
- (A) $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ (C) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
- 16. The subspace $\mathbb{Q}X[0,1]$ of \mathbb{R}^2 (with the usual topology) is
 - (A) dense in R² (B) connected (C) separable
- (D) compact

- 17. $\mathbb{Z}_2[x]/\langle x^3 + x^2 + 1 \rangle$ is
 - (A) a field having 8 elements
- a field having 9 elements

(C) an infinite field

- not a field (D)
- The number of elements of a principal ideal domain can be
 - (A) 15
- (B) 25
- (C) 35
- (D) 36
- 19. The dimension of the vector space $V = \{A = (a_{ij})_{n \times n} : (a_{ij} = -a_{ij})\}$ over the field \mathbb{R} is
 - (A) n2
- (B) $n^2 1$ (C) $n^2 n$ (D) $\frac{n^2}{2}$
- The minimal polynomial associated with the matrix $\begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ is
 - (A) $x^3 x^2 2x 3$

(B) $x^3 - x^2 + 2x - 3$

(C) $x^3 - x^2 - 3x - 3$

- (D) $x^3 x^2 + 3x 3$
- 21. If $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ the sum and product of the eigen values of A are
 - (A) 12, 32
- (B) -12, 32 (C) -12, -32
- (D) None of these

- 22. If $A = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{pmatrix}$ the eigen values of 5A and A^5 are respectively
 - (A) 15,20,5; 15,20,5

(B) 3,4,1; 3,4,1

(C) 15, 20, 5; 3⁵, 4⁵, 1⁵

- (D) 3,5,3; 3⁵,5⁵,3⁵
- The quadratic form of the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is
 - (A) $x^2 + y^2$
- (B) 2 xy (C) $x^2 + 2xy$
- If A and B are subsets of a metric space then the correct statement is
 - $Int (A \cup B) \subseteq Int (A) \cup Int (B)$
 - (B) Int $(A \cup B) = Int \ A \cup Int \ B$
 - (C) $\overline{A} \cup \overline{B} \subset \overline{A \cap B}$
 - (D) $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$
- In R with discrete metric, the largest bounded set is 25.
 - (A) Q

- (B) (0, ∞)
 - (C) R

- (D) None of these
- In R with usual metric an example of a compact set is
 - (A) Q

(B) ℝ - Q

(C) $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$

- (D) [0, 1]
- A complete metric space which is not compact is
 - (A) (0, 1)
- (B) [0, 1]
- (C) R

(D) Q

- If $f: \mathbb{R} \to \mathbb{R}$ is continuous then 28.
 - (A) f is 1-1

(B) f is onto

(C) f is uniformly

(D) none of these

29.	Let $f:\mathbb{R}\to\mathbb{R}$ and $g:\mathbb{R}\to\mathbb{R}$ be uniformly continuous functions. Then							
	(A) $f+g$ is uniformly continuous	(B)	f-g is uniformly continuous					
	(C) fg is uniformly continuous	(D)	2f + 3g is uniformly continuous					
30.	Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function	and let	$A = \{x \in \mathbb{R} : f(x) = 0\}. \text{ Then }$					
	(A) A is closed	(B)	A is open					
	(C) A is bounded	(D)	A is compact					
31.	Let $f(z) = \cos z = u + iv$, where u and v	are the r	real and imaginary parts of $f(z)$. The	en				
	(A) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ (B) $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$	(C)	$\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y} $ (D) none of thes	е				
32.	If $f_i: \mathbb{R} \to \mathbb{R}$ are two maps whose La			ne				
	Laplace transforms of $G(x) = \int_{0}^{x} f_1(t) f_2(x)$	-t) dt , z	$x \in \mathbb{R}$ is					
	(A) $F_1F_2^2$ (B) $F_1 - F_2$	(C)	F_1F_2 (D) $F_1^2F_2$					
33.	Let $f(z) = \omega$, $z \in D$, be a 1-1 map from the ω -plane. Then the inverse of the map			of				
	(A) if f is analytic on D							
	(B) if f is analytic on D $f'(z) \neq 0$, $\forall z \in$	$\equiv D$						
	(C) if f is analytic on D $f'(z)$ is real, $\forall z \in D$							
	(D) only if f is analytic on D with $ f'(z) $) =1, ∀	$z \in D$					
34.	The Taylor series of $f(z) = \frac{1}{(z-2)(z-3)}$	in powe	ers of $(z-i)$ has radius of convergence	e				
	(A) $\sqrt{5}$ (B) $\sqrt{10}$	(C)	$\sqrt{2}$ (D) $\sqrt{3}$					
35.	Let G be a group whose order is p^2 wh	ono (n) :-	a a nvima					
00.								
	(A) then the center of G has order 1	(B)						
	(C) G must be cyclic	(D)	none of these					

252/118

Let X be a topological space and A be a non-empty subset of X. If $x \in X \setminus A$ is a limit point of A then

- 36. (A) there is a sequence in A that converges to X
 - (B) (A) is true only if X is a metric space
 - (C) (A) is true if X is a first countable space
 - (D) (A) is true only if X is a second countable space
- 37. (A) Continuous image of a separable space is separable
 - (B) A subspace of a separable space is separable
 - (C) Every metric space is separable
 - (D) None of these
- 38. (A) The set of all irrationals is not separable
 - (B) An uncountable discrete space is not separable
 - (C) \mathbb{R}^{100} is not separable
 - (D) The space c[0,1] of all continuous real valued function on [0, 1] with sup norm, is not separable
- 39. (A) Every continuous function from (0, 1) into \mathbb{R} has a continuous extension to [0, 1]
 - (B) If A and B are closed subsets of a metric space X then there is continuous function $f: X \to [0, 1]$ such that $f \equiv 0$ on A and $f \equiv 1$ on B
 - (C) If $f:\{0,1\} \rightarrow \{0,1\}$ is the identity map then f can be extended to a continuous map from [0,1] onto $\{0,1\}$
 - (D) None of these
- 40. (A) [0, 1] and (0, 1) are homomorphic
 - (B) [0,1] and [0, 1) are homomorphic
 - (C) [0, 1] and R are homomorphic
 - (D) (0,1) and R are homomorphic

41. Mark the wrong statement

- (A) $f(x) = \frac{x}{1+|x|}$, $x \in \mathbb{R}$ is a homomorphism of \mathbb{R} onto (-1, 1)
- (B) If $S^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ and p = (0, 0, 1) then $S^2 \setminus \{p\}$ is homomorphic to R2
- (C) $f(x) = \frac{1}{1-x}$, $x \in (0,1)$ is a homomorphism of (0,1) onto $(1,\infty)$
- (D) The map $f(x) = e^{ix}$, $x \in [0, 2\pi)$ is a homomorphism of $[0, 2\pi)$ onto $\{z \in \mathbb{C} : x \in \mathbb{$ |z| = 1

Mark the wrong statement 42.

- R is locally compact and locally connected (A)
- R is locally compact but not locally connected (B)
- (C) R is not locally compact but is locally connected
- R is neither locally compact nor locally connected (D)

43. If
$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 $A^+ = \{x \in [0, 1] : f(x) = 1\}$ and $A^- = \{x \in [0, 1] : f(x) = -1\}$ then,

- (A) A^+ and A^- are both empty sets (B) A^+ and A^- are finite sets

(C) $A^+ \cup A^- = [0, 1]$

(D) A+ and A- are infinite sets

44. Mark the wrong statement

- Every countable compact, Hausdoff space is metrizable
- (\mathbb{R}, τ) is metrizable where z is the topology consisting of the empty set and complements of finite sets
- A separable topological space is metrizable
- Let I = [0, 1]. Then the product space I^{I} , with product topology is metrizable

45.	Let.	X and Y be normed	l linear spaces	and $T:X$	$\rightarrow Y$ is linear. T	Then			
	(A)	T is open if T is c	ontinuous						
	(B)	T is onto if T is o	pen						
	(C)	T is 1-1 if T is ope	en and continu	ous					
	(D)	None of these							
46.		If P is the class of all polynomials and f is a real valued continuous map on $[0, 1]$. Let							
	α=	$\inf_{p \in P} \sup_{t \in [0, 1]} f(t) - p(t) $	l. Then,						
	(A)	$\alpha \ge \sup_{t \in [0,1]} f(t) $		(B)	$0 < \alpha < \sup_{t \in [0, 1]} f$	f(t)			
	(C)	$\alpha = 0$		(D)	$\alpha \ge 1$				
47.	If w	$(z) = z^2$ is the comp	plex potential	in the first	quadrant then	the stre	amlines are		
	(A)	hyperbolas	(B) ellipses	(C)	parabolas	(D)	straight lines	3	
48.	If th	e Helmholtz-Hodg	e decompositio	on is $\vec{w} = \vec{u} + \vec{u}$	$-\nabla p$ then				
	(A)	\vec{u} is irrotational							
	(B)	\vec{u} is divergence f	ree and paralle	el to the bo	undary				
	(C)	(C) \vec{u} is divergence free and normal to the boundary							
	(D)	∇p is parallel to	the boundary						
49.	In p	lane poiseuille flov	v the velocity p	orofile is a					
	(A)	hyperbola	(B) ellipse	(C)	parabola	(D)	straight line		
50.	If p	is the pressure, ρ	is the density	and \vec{u} is t	he velocity of f	luid flov	ws and \hat{n} is th	e	
	unit	normal to the bou	ndary then the	e momentu	m flux per unit	area is			
	(A)	$\rho \bar{u}$		(B)	pî				
	(C)	$\rho\vec{u}\left(\vec{u}.\hat{n}\right)$		(D)	$p\hat{n} + \rho \vec{u} (\vec{u}.\hat{n})$)			

51.	If \vec{u}	is the velocity of	fluid	flow and J is the	he Jac	obian of the fluid	flow m	ap then $\frac{\partial J}{\partial t}$ is
		al to						00
	(A)	$J(\nabla.\vec{u})$	(B)	J	(C)	$(\nabla.\vec{u})$	(D)	$J+(\nabla.\vec{u})$
52.	Eve	ry nontrivial, loop	oless	connected grap	h, has	at least two vertice	ces wh	ich are
	(A)	end-vertices	(B)	cut-vertices	(C)	non-cutvertices	(D)	none of these
53.	Let	G be a simple gra	ıph of	order $p \ge 3$ an	$\delta(G)$	$G(x) \ge p/2$. Then G is	3	
	(A)	Bipartite	(B)	Eulerian	(C)	Hamiltonian	(D)	None of these
54.	The	edge-chromatic r	umb	er of Petersen g	raph i	s		
	(A)	1	(B)	2	(C)	3	(D) .	4
55.	Let	G be a connected	(p, q)	y) – plane grapl	h havi	ng f faces. Then ((p-q+	f) equal to
	(A)	1	(B)	2	(C)	3	(D)	4
56.	Let	f be a flow in a ne	twor	k N. Then f is a	maxi	mum flow if and o	nly if I	V contains no
	(A)	f-saturated path	ı		(B)	f-unsaturated pa	ath	
	(C) f-incrementing path			(D)	none of these			
57.		(L, \leq) be a lattice ectively. For any				note the operation	ns of n	neet and join,
	(A)	a*b=b			(B)	a*b=a		
	(C)	$a \oplus b = a * b$			(D)	$a \oplus b = a$		
58.		Boolean algebra		morphic to one	of the	following		
	(A)	switching algebra	ra		(B)	bounded, comple	mente	d lattice
	(C)	complete, compl	emen	ted lattice	(D)	powers et Boolea	ın alge	bra

- If the Lagrangian is given by $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{m\mu}{r}$ then the Routhian function is given by
 - (A) $\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)$

(B) $\frac{1}{2}m(\dot{r}^2 + \dot{\theta}^2)$

(C) $\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-c\dot{\theta}$

- (D) $\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)+\frac{m\mu}{r}-c\dot{\theta}$
- The flow associated with the vector field $X(x_1, x_2) = (x_1, x_2 x_2, x_1)$ is
 - (A) rotation
- (B) translation
- (C) scaling
- For the cylinder $x_1^2 + x_2^2 = r^2$, r > 0 in \mathbb{R}^3 , α is a geodesic if and only $\alpha(t)$ is the form
 - (A) $(r\cos(at+b), r\sin(at+b), ct+d)$ (B) $(r\cos(at+b), r\sin(at+b), dt^2)$

- (C) $(r \cos at, r \sin at, e^t)$
- (D) $(r\cos at, r\sin at, ct^3)$
- The curvature of a circle of radius r is
 - (A) $\frac{1}{r^2}$
- (B) $\frac{-1}{r^2}$
- (C) r2
- (D) $\frac{1}{n}$

- 63. $f(z) = \frac{z+1}{z \sin z}$ has
 - a pole of order 1 at z = 0
- a pole of order 2 at z = 0
- (C) a pole of order 3 at z = 0
- (D) none of these
- 64. The function $f(z) = \begin{cases} \frac{(\overline{z})^2}{z^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$
 - is not continuous, at 0

is analytic at z = 0

 $\lim_{z\to 0} f(z) = 1$ (C)

none of these

- 65. If $(x, y) = \begin{cases} 0 & \text{if } y \le 0 \text{ or } y \ge x^2 \\ 1 & \text{if } 0 < y < x^2 \end{cases}$ $\alpha = \lim_{(x,y) \to (0,0)} f(x, y) \text{ along } y = mx, 0 < m \le 1 \text{ and}$ $\beta = \lim_{(x,y)\to(0,0)} f(x,y)$ along y=0 then

- (A) $\alpha = \beta = 1$ (B) $\alpha = 1$ $\beta = 0$ (C) $\alpha = \beta = 0$ (D) $\alpha = 0$ $\beta = 1$
- Let (X, d) be a metric space. Consider $X \times X$ with product topology. Then the 66. distance map $d = X \times X \rightarrow [0, \infty)$
 - (A) is continuous only in the first variable
 - (B) is continuous in both the variable
 - (C) is continuous only in the second variable
 - (D) is not continuous
- 67. The series $\sum_{n=1}^{\infty} e^{-nz}$ converges in the region
 - (A) $R < |\text{Re } z| \le 1, R > 0$
- (B) $R < |\text{Im } z| \le 1, R > 0$
- (C) $-1 \le \text{Re } z < R, R < 0$

- (D) $-1 \le \text{Im } z < R, R < 0$
- If J is the class of all singleton subsets of \mathbb{R} then the smallest ring (of sets) containing J is
 - (A) $J \cup \{\phi\}$
 - class of all subsets of R including empty set
 - class of all finite subsets of R including empty set
 - none of these (D)
- If \bar{u} is the velocity of fluid flow and J is the Jacobian of the fluid flow map then the 69. one item which is not equivalent to the others is
 - $\nabla \cdot \vec{u} \equiv 0$ (A)

(B) $J \equiv 1$

(C) $J \equiv 0$ (D) flow is incompressible

- If W is the specific enthalpy, p is the pressure and ρ is the density of a fluid flow then
 - (A) $dw = \frac{dp}{\rho}$ (B) dw = dp (C) $dw = d\rho$ (D) $dw = d(p\rho)$

- If D is the deformation tensor of an incompressible fluid flow then the trace of D is equal to
 - (A) zero sometimes

(B) one always

zero always

- (D) one some times
- In Couette flow with velocity $(0, \frac{A}{r} + Br)$ the vorticity is given by
 - (A) (0, 0, 2B)
- (B) (0, 0, 2A)
- (C) (0, 2A, 2B)
- (D) (0, 0, 2)
- The complex potential for a potent vortex at origin with circulation Γ is equal to

 - (A) $\Gamma 2\pi i e^z$ (B) $\Gamma 2\pi i \log^z$ (C) $\frac{\Gamma e^z}{2\pi i}$
- (D) $\frac{\Gamma \log^z}{2\pi i}$

- The order of the θ -method for ODE is p=2 for
 - (A) $\theta = \frac{1}{2}$ (B) $\theta = 0$ (C) $\theta = 1$
- (D) $\theta = \frac{2}{3}$
- The optimal order of a quadrature formula with γ nodes is
 - (A) $p = 3\gamma$ (B) $p = 2\gamma$ (C) $p = \gamma$

- (D) $p = 4\gamma$
- An s-step Adams-Bashforth method is an explicit method for
 - (A) for s=1 and only

(B) only for $1 \le s \le 6$

(C) any $s \ge 1$

- (D) for no values of $s \ge 1$
- The Chebyshev polynomials are orthogonal polynomials with weight function
 - (A) $w(t) = \frac{1}{\sqrt{1 t^2}}$ in (-1, 1)
- (B) w(t) = 1 in (-1, 1)
- (C) $w(t) = \sqrt{1-t^2}$ in (-1, 1)
- (D) w(t) = t in (-1, 1)

- 78. If $E \subseteq \mathbb{R}$ is a Lebesgue measurable set, $w \in \mathbb{R}$ and m is the Lebesgue measure on \mathbb{R} then
 - E+x is a Lebesgue Measurable set and m(E+x)=m(E)(A)
 - E+x is a Lebesgue Measurable set and m(E+x)=m(E)+x(B)
 - E+x need not be a measurable set
 - None of these (D)

Mark wrong statement 79.

- (A) If $f:[a,b] \to \mathbb{R}$ is differentiable and f' is bounded on [a,b] then there exists k > 0 such that $|f(x) - f(y)| \le k |x - y| \forall x, y \in [a, b]$
- (B) If $f: \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable map then $f^{-1}(B)$ is a Lebesgue measurable set for each Borel subset B of R
- (C) If $f:[a,b] \to \mathbb{R}$ is a monotone increasing function then $\{x \in [a,b] = f'(x) \text{ exists}\}\$ is a non empty set
- (D) If $f: \mathbb{R} \to \mathbb{R}$ is a map then |f| is Lebesgue measurable implies f is Lebesgue measurable
- Mark wrong statement. 80.

If $(I_{\alpha})_{\alpha \in \Lambda}$ is a collection of pairwise disjoint intervals of positive length in \mathbb{R} , then

- (A) $I_{\alpha} \cap Q$ is nonempty for each α (B) $I_{\alpha} \cap (\mathbb{R} \setminus Q)$ is nonempty for each α
- (C) ∧ is almost a countable set
- (D) ∧ is an uncountable set

81. Mark wrong statement

The map $P: \mathbb{R}^2 \to \mathbb{R}$ given by $p(x, y) = x, \forall (x, y) \in \mathbb{R}^2$

- (A) is linear but not continuous
- is a linear, continuous and open map
- is a linear continuous map but is not an open map
- (D) is a linear, continuous map that is not a closed map

82. Mark wrong statement

- (A) Product of connected topological spaces is connected
- (B) Product of compact topological spaces is compact
- (C) Product of regular topological spaces is regular
- (D) Product of normal topological spaces is normal

83. Mark the wrong statement

- (A) Any polynomial $p: \mathbb{R} \to \mathbb{R}$ has closed graph
- (B) The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ has closed graph
- (C) Let X = C'[0,1] and Y = C[0,1] both with sup norm, where C'[0,1] is the space of all continuously differentiable functions If $T = X \to Y$ is given by T(f) = f', $f \in X$ then T has closed graph
- (D) If X and Y are normed linear spaces and $T: X \to Y$ is a bijective, bounded linear operator then $T^{-1}: Y \to X$ has closed graph

84. Mark the wrong statement

If for any positive integer $n,\ e_n=(0,\,0,\,...,\,0,\,1,\,0,\,0,\,...)$, where 1 is at the nth place

(A)
$$l_{\infty} = \overline{sp} \{e_n : n \ge 1\}$$

(B)
$$c_0 = \overline{sp} \{e_n : n \ge 1\}$$

(C)
$$l_1 = \overline{sp} \{e_n : n \ge 1\}$$

(D)
$$l_2 = \overline{sp} \{e_n : n \ge 1\}$$

85. Let
$$f:[0,1] \to \mathbb{R}$$
 be a continuous map and $F(x) = \int_0^x f(t) dt$, $x \in [0,1]$. Then

- (A) F is continuous but not differentiable on (0, 1)
- (B) F is differentiable on (0, 1)
- (C) F is discontinuous at all points of [0, 1]
- (D) F is continuous on [0, 1] except at x = 0 and x = 1

- If X is a normed linear space and $T: X \to X$ is a linear map such that $\sup \left\{ \left\| Tx \right\| : \left\| x - x_0 \right\| < 1 \right\} < \infty \text{ for some } x_0 \in X. \text{ Then }$
 - T is continuous but not uniformly continuous on X
 - T is continuous at all x, except $x = x_0$
 - $\sup \{ ||Tx|| : ||x|| < 1 \} = \infty$ (C)
 - T is uniformly continuous on X
- Let X be a normed linear space, f be a continuous linear functional on X and x_0 be a fixed element of X. If $T: X \to X$ is defined as $T(x) = f(x)x_0$ then
 - T is linear and continuous
- T is linear but not continuous (B)
- (C) T is not linear but continuous
- (D) T is neither linear nor continuous
- If H is a Hilbert space, Y is a closed subspace of H with an orthonormal basis $\{u_{\alpha}: \alpha \in \Lambda\}$ and $x \in H$. Then
 - (A) $x \sum_{\alpha \in \Lambda} \langle x, u_{\alpha} \rangle u_{\alpha}$ is orthogonal to Y (B) x is orthogonal to $\sum_{\alpha \in \Lambda} \langle x, u_{\alpha} \rangle u_{\alpha}$
 - (C) $\sum \langle x, u_{\alpha} \rangle u_{\alpha}$ is orthogonal to Y (D) None of these
- If H is a Hilbert space, Y is a closed subspace of H and $x \in H$ is orthogonal to Y then
 - (A) ||x|| > ||x-y|| for each $y \in H \setminus \{0\}$
 - (B) there exists $y \in Y \setminus \{0\}$ such that $||x y_0|| = ||x||$
 - (C) $\sum_{\alpha \in \Lambda} \langle x, u_{\alpha} \rangle u_{\alpha} \neq 0$ where $(u_{\alpha})_{\alpha \in \Lambda}$ is an orthonormal basis of Y
 - (D) ||x|| < ||x y|| for each $y \in H \setminus \{0\}$
- If $A = \{x \in Q : \sqrt{2} < x < \sqrt{3}\}$ then
 - (A) A is not a closed subset of Q
- (B) A is a compact subset of Q
- (C) A is not a compact subset of Q
- (D) A is not a bounded subset of Q

- 91. Mark the wrong statement
 - (A) All separable Hilberts spaces are isometrically isomorphic to each other
 - (B) A separable Hilbert space is finite dimensional
 - (C) The sequence space l_2 is not separable
 - (D) $L_2[-\pi, \pi]$ is not separable
- 92. Let $f_n(x) = \begin{cases} 1 & \text{if } x \ge n \\ 0 & \text{if } x < n \end{cases}$, for any positive integer n, then the sequence f(n)
 - (A) converges uniformly to 0 on R
 - (B) converges pointwise but not uniformly to 0 on R
 - (C) converges pointwise but not uniformly to 1 on R
 - (D) converges uniformly to 1 on R
- 93. If Y is a closed subspace of a Hilbert space H $x \in H$ and $A = \{y \in Y : x y \text{ is orthogonal to } Y\}$ then
 - (A) A can be empty
 - (B) A must be a singleton set
 - (C) A is neither empty nor a singleton set
 - (D) A is an infinite set
- 94. Let X and Y be normed linear spaces with X finite dimensional. If $T: X \to Y$ is linear and $B_X = \{x \in X : ||x|| \le 1\}$ then
 - (A) B_X is not compact and T is not continuous on X
 - (B) B_X is compact but T is not continuous on X
 - (C) B_X is not compact but T is continuous on X
 - (D) B_X is compact and T is continuous on X
- 95. If f is Lebesgue integrable on [0, 1] then,
 - (A) f is continuous on [0, 1]
- (B) f is bounded on [0, 1]
- (C) $m\{x \in [0, 1] \mid f(x) \models \infty\} = 0$
- (D) $m\{x \in [0, 1] = |f(x)| \ge 1\} \le 1$

- 96. $\lim_{n\to\infty}\frac{n^3}{3^n}$ is
 - (A) ∞
- (B) 0
- (C) 1

- (D) 3
- 97. If f(x) = |2x-3| and g(x) = 2(x-1) for $x \in \mathbb{R}$ then the graph of f and g intersect
 - (A) no where

(B) exactly at one point

(C) exactly at two points

- (D) at infinite set of points
- 98. If $f:[a,b]\to\mathbb{R}$ is a bounded map then f is Riemann integrable on [a,b] if and only if
 - (A) f is continuous on [a, b]
 - (B) f is continuous almost everywhere on [a, b]
 - (C) f is monotone on [a, b]
 - (D) f is bounded variation over [a, b]
- 99. If f and g are continuous maps from \mathbb{R} into \mathbb{R} and D is a non empty subset of \mathbb{R} , the map $h: \mathbb{R} \to \mathbb{R}$ given by $h(x) = \begin{cases} f(x) & \text{if } x \in D \\ g(x) & \text{if } x \in D^c \end{cases}$
 - (A) is continuous on R
 - (B) is continuous on \mathbb{R} if D is an open set
 - (C) is continuous on R if D is a closed set
 - (D) none of these
- 100. If H is a Hilbert space with a countable orthonormal basis (u_n) and (α_n) is a sequence of scalars then the series $\sum_{n=1}^{\infty} \alpha_n u_n$ converges in H if
 - (A) $(\alpha_n)_{n=1}^{\infty}$ is bounded

(B) $(\alpha_n)_{n=1}^{\infty}$ is convergent

(C) $\alpha_n = +\frac{1}{\sqrt{n}} \forall n \ge 1$

(D) $\alpha_n = \frac{1}{n} \quad \forall \quad n \ge 1$