ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011.

M.Phil,/Ph.D. (MATHEMATICS)

COURSE CODE: 252/118

Regis	ster Number :	
		Signature of the Invigilator (with date)

COURSE CODE: 252/118

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

NOTATION:

R - Real line, Q- rationals, N- Natural Numbers, C- Complex Plane, sp(A)-span A, dim A - dimension of A, Ac- complement of A, CK(Q)- space of K- valued continuous functions on Q.

- Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f(0) = 1. If the 1. derivative of f is < 0 for every x in \mathbb{R} then f is
 - (A) bounded below on R

- (B) bounded above on $[0, \infty)$
- (C) bounded above on $(-\infty, 0]$
- (D) bounded on R
- Let f be a continuous function on \mathbb{R} . Define $G(x) = \int_0^{\sin x} f(t) dt$. Then 2.
 - (A) G is continuous but not differentiable (B) G does not exist
 - (C) G is differentiable

- (D) G exists but is not continuous
- 3. The stream function ψ is defined for a flow which is
 - (A) incompressible and two-dimensional (B) compressible and two-dimensional
- - (C) incompressible and three-dimensional (D) compressible and three-dimensional
- Let p be a polynomial of degree 37 with real coefficients. Then 4.
 - (A) it has at least one real root
- (B) it has 37 real roots
- (C) it need not have real roots
- (D) it has no root

- If a < 0, then $\lim x^a \log x$ is
 - (A) e
- (B) 0
- (C) 1
- (D) ∞
- The stream function $\psi(x, y)$ for the plane couette flow is given by 6.
 - (A) $\frac{y^2}{2}$
- (B) $\frac{y}{2}$
- (C) tanh y
- (D) $\sec h^2 y$

- 7. If $f: \mathbb{R} \to \mathbb{R}$ is a continuous map, and $f(Q) \subseteq \mathbb{N}$ then
 - (A) $f(\mathbb{R}) = \mathbb{N}$
 - $f(\mathbb{R})$ is a finite set but not necessarily a constant
 - (C) f is unbounded
 - (D) f is a constant
- Let X be the Banach space of all complex $n \times n$ matrices equipped with the norm 8.

$$||A|| = \max_{1 \le i \le n} |a_{ij}|$$
. If $f: X \to \mathbb{C}$ is defined by $f(A) = Trace\ A$ then

- (A) f is not linear
- (B) f is linear but not continuous
- (C) f is a bounded linear functional with || f ||= 1
- (D) f is a bounded linear functional with ||f|| = n
- Suppose p > 1. If f belongs to L^{p} ([0, 1]), then 9.
 - (A) f is continuous
 - (B) f belongs to $L^q([0, 1])$ for $1 \le q \le p$
 - (C) f belongs to $L^{q}([0,1])$ for $q \ge p$
 - (D) $f \in L^{\infty}([0,1])$
- The residue of $f(z) = \frac{\sin z}{z^8} at \ z = 0$

 - (A) $\frac{1}{8!}$ (B) $-\frac{1}{8!}$ (C) $-\frac{1}{9!}$ (D) $\frac{1}{9!}$
- denote the boundary of the square whose sides 11. $x = \pm 1$ and $y = \pm 1$ where Γ

is described in the positive sense. Then the value of $\int_{0}^{z^{2}} \frac{z^{2}}{2z+3} dz$ is

- (A) $\frac{\pi i}{4}$
- (B) $2\pi i$
- (C) 0
- (D) $-2\pi i$

- If X is the class of all polynomials on [0,1] then 12.
 - (A) X is complete when given the sup norm
 - (B) X is complete when given the L_1 -norm
 - (C) X can not be normed so on to make it complete
 - (D) X is complete if given L_2 norm
- The velocity field (u(x, y), 0) in the plane poiscuive flow is given by 13.

- (A) $u = 1 v^2$ (B) u = v (C) $u = \sin v$ (D) $u = \tanh v$
- 14. The polynomial $x^n a$ over Z is irreducible if
 - (A) n is a prime number

- (B) a is a prime number
- (C) both n and a are prime numbers
- (D) a = 1
- 15. All the eigenvalues of the matrix $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ lie in the disc

- $(A) \quad |\lambda+1| \leq 1 \qquad \qquad (B) \quad |\lambda-1| \leq 1 \qquad \qquad (C) \quad |\lambda+1| \leq 0 \qquad \qquad (D) \quad |\lambda-1| \leq 2$
- 16. Mark the wrong statement

The Cantor set C is

- (A) is uncountable and compact
- (B) contains a nontrivial line segment
- (C) is uncountable and has Lebesgue measure 0
- (D) contains all its limit points
- (A) Every regular T₁-space with countable base is metrizable 17.
 - \mathbb{R} with the topology generated by the half open intervals of the form [a, b] is (B) metrizable
 - R with co finite topology (open sets are compliments of finite sets and empty set) is metrizable
 - (D) Every separable topological space with a countable neighbourhood base at each point is metrizable.

18. Mark the wrong statement

- (A) Continuous image of connected space is connected
- (B) Continuous image of a locally connected space is locally connected
- (C) Continuous image of a path connected space is path connected.
- (D) If $f:[0,1] \to Q$ is continuous, then the image of f is a singleton set. (Q has the usual subspace topology)
- 19. (A) ℝ \{0} is connected
 - (B) $\mathbb{R}^2 \setminus \{(0,0)\}$ is disconnected
 - (C) $\mathbb{R}^3 \setminus \{(x,0,0) : x \in \mathbb{R}\}$ is connected
 - (D) $l_2 \setminus B$ is disconnected where B is the closed unit ball of the sequence space l_2

20. Mark the wrong Statement

Let K and F be fields and let K be an extension of F. Let a be in K with $\alpha \neq 0$. If α is algebraic over F, then

- (A) a + b is algebraic over F for every b in K (B) na is algebraic over F for every integer n
- (C) a^n is algebraic over F for every integer n (D) 1/a is algebraic over F
- 21. Let G be a group of order n. If $n \le 4$, then
 - (A) G is non-abelian

- (B) G may be abelian or non-abelian
- (C) G is abelian but not necessarily cyclic
- (D) G is cyclic
- 22. (A) \mathbb{R} is homeomorphic to $S' = \{(x, y) : |x|^2 + |y|^2 = 1\}$
 - (B) \mathbb{R} is homeomorphic to (0,1)
 - (C) \mathbb{R} is homeomorphic to \mathbb{R}^2
 - (D) \mathbb{R} is homeomorphic to [0,1)
- 23. Let X and Y be normed linear spaces and $T: X \to Y$ be a linear map. Then
 - (A) T is continuous on X if and only if T(B) is a bounded subset of Y for some ball B of positive radius in X
 - (B) If $S: Y \to X$ is linear and TS is the identity operator on Y then ST is the identity operator on X
 - (C) T is continuous on X if kernel of T is closed in X
 - (D) T open does not imply T is onto

24.		ch is the smallest number that can erent ways?	be ex	pressed as su	m of two cube	s in two			
	(A)	343 (B) 927	(C)	1729	(D) 2322	2			
25.	A su	bgroup H of a group G is a normal sub	group	if and only if					
	(A)	Gh = hG for every h in H	(B)	gH = Hg for	every g in G				
	(C)	gh = hg for every h in H and g in G	(D)	GH = HG					
26.		Define a relation \sim in a group G as follows : $a \sim b$ if there exists an element c in G such that $ca = bc$. Then the relation is							
	(A)	reflexive but not transitive	(B)	symmetric b	out not transiti	ve			
	(C)	transitive but not symmetric	(D)	an equivaler	nce relation				
27.		$G(G) = p^2$ where p is a prime number the							
	(A)	G is cyclic	(B)	G is abelian					
	(C)	G has no proper nontrivial subgroup	(D)	none of thes	е				
28.	(A)	$sp\{x \in X : x < 1\} \neq sp\{x \in X : x < \epsilon\},$	for a	ny ∈≠1					
20.	(B)	1.1							
	(C)	$sp\{x \in X : x < 1\} = sp\{x \in X : x < \epsilon\},$							
			,oniy i	/ CE1					
	(D)	$sp\{x \in X : x < 1\} \neq sp\{x \in X : x = 1\}$							
29.		Let X be a normed linear space							
	(A)								
	(B)	If Y is a subspace of X then $ x+$ quotient space X/Y	· Y = 1	$\inf\{ x-y : y \in$	Y} is a norn	on the			
(C) If Y is a subspace of X with nonempty interior then $Y = X$									
	(D)	The closure of a subspace of X need n	ot be	a subspace					
30.		Let G be a group of order n p^k and $\gcd\ (n,p)=1$. Then the number of $p ext{-Sylow}$ subgroups of G is a							
	(A)	divisor of p	(B)	number rela	tively prime to	n			
	(C)	power of p	(D)	divisor of n					

31. Mark the wrong Statement

Let G be a group of order 28. Then

- (A) There exists only one subgroup of order 7
- (B) Any subgroup of order 7 is a normal subgroup
- (C) G is not simple
- (D) G has no subgroup of order 4
- 32. \mathbb{Z}_6 is a direct product of the groups
 - (A) \mathbb{Z}_2 and \mathbb{Z}_3

(B) \mathbb{Z}_4 and \mathbb{Z}_2

(C) \mathbb{Z}_2 , \mathbb{Z}_2 and \mathbb{Z}_2

- (D) \mathbb{Z}_3 and \mathbb{Z}_3
- 33. The number of elements in a minimum generator set of $Q[\sqrt[3]{2}]$ over the field Q is
 - (A) 1
- (B) 2
- (C) 3
- (D) 6

- 34. Let K be an extension of F. Then
 - (A) Every element of K is algebraic over F
 - (B) For any element a in K every element of F(a) is algebraic over F
 - (C) If an element a in K satisfies a polynomial over F then every element of F (a) is algebraic over F
 - (D) Only the elements of F are algebraic over F
- 35. Mark the wrong statement
 - (A) sin z is an unbounded function on C
 - (B) $\{z \in \mathbb{C} : \sin z = 0\} = \{(n\pi, 0) : n = 0, \pm 1, \pm 2 --\}$
 - (C) $f(z) = \begin{cases} \frac{\sin z}{z \pi} + 1 & z \neq \pi \\ 0 & z = \pi \end{cases}$ has a pole at $z = \pi$
 - (D) sin z is periodic
- 36. If f is analytic on the open unit disc $D = \{z : |z| < 1\}$ and $f(\frac{1}{n}) = 0$ for n = 2, 3... then
 - (A) f is a non-zero constant on D
- (B) $f \equiv 0 \text{ on } D$
- (C) f vanishes only on the real axis
- (D) f is unbounded on D

37.	Let K be an extension of a field F and a in K						
	(A) If a is algebraic over F then a is algebraic over K						
	B) If a is algebraic over K then a is algebraic over F						
	(C) If a is algebraic over some extension of K then a is algebraic over F						
	(D) If a is algebraic over K then a is algebraic over any extension of F						
38.	Let K be the splitting field of a polynomial of degree n over a field F . Then the degree $[K:F]$ is						
	(A) At least n (B) At least n ! (C) exactly n ! (D) At most n !						
39.	Mark the wrong statement						
	(A) There exists a field having 5 elements						
	(B) There exists a field having 16 elements						
	(C) There exists a field having 36 elements						
	(D) There exists a field having 125 elements						
40.	The dimension of the vector space V of all skew symmetric $n \times n$ matrices with complex entries over the field R is						
	(A) n^2 (B) $n^2 - 1$ (C) $n^2 - n$ (D) $\frac{n^2}{2}$						
41.	41. In the plane Poiseulle flow inside a pipe of radius 'a' the mass flow is proportional to						
	(A) a^4 (B) a^3 (C) a^2 (D) a						
42.	Mark the wrong statement						
	Let $F: D \to \mathbb{C}$ be a map where $D = \{z \in \mathbb{C} : z < 1\}$. Then						
	(A) If f is a continuous on D and analytic on						
	$D \setminus \{z \in \mathbb{C} : \operatorname{Im} z = 0 \}$, then f is analytic on D						
	(B) If f is analytic on D and						
	$f'(z) \neq 0$ for all $z \in D$ then f is a conformal mapping on D						
	(C) If f is analytic on D and f has no zeros in D and $ f $ attains its minimum						
	on D then f is the identify map						
	(D) If f is analytic on D then $ f $ does not attain its supremum on D .						
	(D) II is analytic on D then J does not attain its supremum on D.						

8

252/118

- 43. Let $f_n:[0,1] \to \mathbb{R}$ be a Lebesgue measurable map for each n in N and assume (f_n) converges point wise to a map f on [0,1]. Let $E_n = \bigcup_{k \ge n} \{x \in [0,1]: \left|f_k(x) f(x)\right| > 1\}$, for n in N. Then
 - (A) E_n is not a Lebesgue measurable set for every n
 - (B) $(E_n)_{n=1}^{\infty}$ is a decreasing sequence of measurable sets and $\lim_{n\to\infty} m(E_n) = 0$
 - (C) $(E_n)_{n=1}^{\infty}$ is a decreasing sequence of measurable sets and $\lim_{n \to \infty} m(E_n) = 1$
 - (D) E_n is a measurable set for each n and $\lim_{n\to\infty} m(E_n) = \infty$
- 44. Let C'[0,1] denote the space of all real valued, continuously differentiable functions on [0,1] with sup norm and C[0,1], the space of all continuous, real valued functions on [0,1] with sup norm. Suppose $Tf(x) = f'(x) + \int_0^x f(t) \, dt$, for $x \in [0,1]$. Then
 - (A) T is linear but does not have a closed graph
 - (B) T is linear, has a closed graph but not continuous
 - (C) T is linear and continuous
 - (D) T is not linear
- 45. Fermat's little theorem states, if p is prime $a \equiv 1 \pmod{p}$ then
 - (A) $a^{p-1} \equiv 1 \pmod{p}$

(B) $a^{p+1} \equiv 1 \pmod{p}$

(C) $a^{1-p} \equiv 1 \pmod{p}$

(D) $a^p \equiv 1 \pmod{p}$

46. Mark the wrong statement

Let $f: \mathbb{C} \to \mathbb{C}$ be a map

- (A) If f is an entire function and doubly periodic then, f is a constant
- (B) If f is an entire function and f has infinite number of zeroes in the unit disc then f is a constant
- (C) If f is an entire function and $\frac{f(z)}{z^3}$ is bounded in the region $|z| \ge 1$ then f is a constant
- (D) If f is an entire bounded function then f is a constant

			4						
47.	In Z ₁₂ ,	, the set of zero	divisors	is exactly eq	ual to				
	(A)					{5,7,11}			
	(C)	{5,7}			(D)	{2,3,4,6,8,	10}		
									G
48.	Suppo	se N is a nor	mal subg	group of a g	group (G such that	the facto	r group	$\frac{O}{N}$ is
		n. If G ' denotes							
	(A) 1	V is a subgroup	of G'		(B)	G is a subg	roup of N		
	(C) 1	V = G'			(D)	N = G			
49.	(A)	$\frac{\sin z}{z}$ has an iso	lated ren	novable sing	ularity	at $z = 0$			
	(B) $z = 0$ is an isolated but not removable singularity of $\frac{\sin z}{z}$								
	(C)	z = 0 is a remove	vable but	not an isola	ted sin	gularity of S	in z z		
	(D) I	For every open	set U con	taining 0, s	$up\{ \frac{\sin z}{z}$	$\frac{ z }{ z } : z \in U \setminus \{0\}$	}-}=∞		
50.	If $f(z)$	$z) = \frac{1}{(z-1)(z-2)}$	then th	e Laurent s	eries o	of f centered a	at $z = 1$ co	nverges i	in the
	region	1							
	(A)	$0 < z-1 < \frac{5}{2}$	(B) 0	< z -1 < 1	(C)	0 < z-1 < 2	(D)	0 < z-1	$1 < \frac{3}{2}$
51.	Let G	be a group of o	rder 14. '	Then the nu	mber o	f elements in	G of orde	r 7 is	
	(A) 1	1	(B) 6		(C)	7	(D)	13	
52.		e ring of integration $I+J$ and $I\cap I$) are two pr	rincipal ic	leals, the	n the
	(A) ((84), (3)	(B) (3), (252)	(C)	(3), (84)	(D)	None of	these
53.	Mark	wrong statem	ent						
	(A) $\frac{1}{\sin z}$ is a meromorphic function on the complex plane								
	(B)	$e^{\frac{1}{z}}$ is a meromo	rphic fur	action on the	compl	ex plane			
		Any rational fu					ane		

252/118

(D) Product of two meromorphic functions is again meromorphic.

54.	The residue of	$f(z) = \frac{1}{(z^2+1)^2} at \ z = i \ i$	5

- (A) i
- (B) $\frac{1}{2i}$
- (D) $\frac{i}{4}$

If u(x, y) = xy is a harmonic function, a harmonic conjugate of u is

- (A) $\frac{x^2}{2}$
- (B) $x^2 + y^2$ (C) $\frac{y^2}{2} + \frac{x^2}{2}$ (D) $\frac{y^2}{2} \frac{x^2}{2}$

Let F be a field. When will a polynomial of degree 2 or 3 over F be reducible over F?

(A) always

- (B) if and only if it has no root in F
- (C) if and only if it has a root in F
- (D) if and only if it is monic

The number of elements of a principal ideal domain can be

- (A) 15
- (B) 25.
- (C) 35
- (D) 36

The number of non-isomorphic simple graphs on 4 vertices is

- (A) 8
- (B) 10
- (C) 11
- (D) 1

If m and n are sum of two squares, so is

- (A) m + n
- (B) m-n
- (C) n − m
- (D) mn

In Couette flow with velocity $(0, \frac{A}{r} + Br, 0)$ the vorticity is given by

- (a) (0, 0, 0)
- (B) (0, 0, 2A)
- (C) (0, 0, 2B)
- (D) (2A, 2B, 0)

If $w(z) = z^2 = (x + iy)^2$ is the complex potential then the streamlines in the first quadrant are given by

(A) xy = constant

(B) $x^2 - y^2 = constant$

(C) $x^2 + y^2 = constant$

(D) x - y = constant

The Legendre polynomials are orthogonal polynomials with weight function w(t)62. equal to

- (A) 1
- (B) $\sqrt{1-t^2}$
- (C) $\frac{1}{\sqrt{1-t^2}}$
- (D) $(1-t^2)$

- 63. The residue at 2 of the function $\frac{z+1}{z^2-2z}$ is
 - (A) $-\frac{1}{2}$
- (B) 0

(C) 1

(D) $\frac{3}{2}$

- 64. Mark the Wrong statement
 - (A) A tree has a cycle
 - (B) A tree is connected
 - (C) A tree is acyclic and connected
 - (D) If a tree has n vertices, then it has n-1 edges
- 65. The general solution of $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$ is
 - (A) $\varphi(x+y+z, x^2-y^2)$

(B) $\varphi\left(\frac{y-x}{z-x}, (y-x)(x+y+z)^{\frac{1}{2}}\right)$

(C) $\varphi\left(\frac{x-y}{y-z}, \frac{y-z}{z-x}\right)$

(D) $\varphi\left(\frac{x+y}{z}, z-x-y\right)$

66. Mark the wrong statement

Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be uniformly continuous functions.

- (A) f + g is uniformly continuous
- (B) f g is uniformly continuous
- (C) fg is uniformly continuous
- (D) 2f + 3g is uniformly continuous
- 67. If $T: \mathbb{R}^7 \to \mathbb{R}^7$ is linear and $T^2 = 0$ then the rank of T is
 - (A) ≤3
- (B) > 3
- (C) 5
- (D) 6
- 68. Let V be the vector space of 3×3 real matrices $A = (a_{ij})$ s.t $a_{11} + a_{22} + a_{33} = 0$. Then dim V is
 - (A) 3
- (B) 7

- (C) 8
- (D) 9
- 69. A nontrivial solution of the equation u'' + q(x)u = 0 with q(x) < 0 in $-\infty < x < \infty$ has
 - (A) at most one zero

(B) at least one zero

(C) no zeros

(D) infinitely many zeros

- 70. Let X have the topology in which the closed sets are the finite sets and the empty set. If (x_n) is a sequence in X such that $x_n \neq x_m$ if $n \neq m$ then,
 - (A) (x_n) is not convergent in X
 - (B) (x_n) convergens to a unique element in X
 - (C) The set $\{x \in X : x = \lim_{n \to \infty} x_n\}$ is a nonempty finite set but is not a singleton set
 - (D) The set $\{x \in X : x = \lim_{n \to \infty} x_n\}$ is an infinite set
- 71. If \vec{U} is the velocity at infinity and Γ is the circulation around the boundary of an olytacle then kutta-joukro ski theorem gives a non zero lift force when
 - (A) $\vec{U} \neq 0$ and $\Gamma \neq 0$

(B) $\vec{U} = 0$ and $\Gamma \neq 0$

(C) $\vec{U} \neq 0$ and $\Gamma = 0$

- (D) $\vec{U} = 0$ and $\Gamma = 0$
- 72. The bd $A = \overline{A} \cap \overline{A^c}$. Then bd $A = \phi$ if and only if
 - (A) A is compact

(B) A is finite

(C) A is open and closed

- (D) interior of A' is empty
- 73. If τ_1 and τ_2 are two topologies on X and $\tau_1 \le \tau_2$ then
 - (A) τ_2 closure of a set is contained in its τ_1 closure
 - (B) A sequence that is τ_1 convergent to $x_0 \in X$ is τ_2 -convergent to x_0
 - (C) The identify map $(X, \tau_1) \rightarrow (X, \tau_2)$ is continuous
 - (D) If (X, τ_2) is regular so is (X, τ_1)
- 74. Let (S,d) be a metric space and B(S) be the space of all real valued bounded functions defined on S with supnorm. For each

 $s \in S$ define $f_s(t) = d(s,t)$ for all $t \in S$. Then the map $s \to f_s$ from S into B(S) is

- (A) 1-1 but not an isometry
- (B) 1-1 but not continuous

(C) an isometry

- (D) continuous but not 1 1
- 75. If A is a subset of the real sequence space l_1 given by $A = \{(x_n)_{n=1}^{\infty} \in l_1 : \sum_{n=1}^{\infty} n x_n = 0\}$ then
 - (A) The sequence (0,0,1,0,0, ...) is not in the closure of A
 - (B) The sequence (0,1,0,0,...) is not in the closure of A.
 - (C) The sequence (1,0,0...) is in the closure of A
 - (D) A is closed

- 76. Let X be a normed linear space X and A be a proper dense subset of the unit sphere $\{x \in X : ||x|| = 1\}$ of X. If diameter of A is $\sup \{||x - y|| : x \text{ and } y \text{ are in } A\}$, then
 - (A) diameter of A is 2

(B) diameter of A < 2

(C) diameter of A is < 1</p>

- (D) diameter of A is 1
- 77. Let (X,d) be a metric space. Then the map $d: X \times X \to X$ given by $(x, y) \rightarrow d(x, y), x, y \text{ in } X \text{ is}$
 - (A) continuous in both the variables
 - (B) continuous in the first variable but not in the second variable
 - (C) continuous in the second variable but not in the first variable
 - (D) not continuous in both the variables
- If $A \subseteq X$ where X is a metric space and $x \in X$ then
 - (A) $d(x, \overline{A}) < d(x, A)$ and diameter of $\overline{A} <$ diameter of A
 - (B) $d(x, \overline{A}) > d(x, A)$ and diameter of $\overline{A} >$ diameter of A
 - (C) $d(x, \overline{A}) = d(x, A)$ and diameter of $\overline{A} =$ diameter of A
 - (D) $d(x, \overline{A}) < d(x, A)$ and diameter of $\overline{A} >$ diameter of A
- Let X be a finite set that is not a singleton set. Then the number of Hausdorff 79. topologies that can be defined on X
 - (A) is finite and more than one
 - (B) is one
 - (C) is greater than 1 but less than the candinality of the set X
 - (D) is the candinality of the power set of X
- 80. The normal form of the Bessel's equation is u'' + u = 0 when
 - (A) $p = \frac{1}{2}$ (B) p = 0 (C) p = 1
- (D) p = 4
- 81. Let f be an entire function satisfying $|f(z)| \le k |z|^2$ for some constant k and for all $z \in \mathbb{C}$. Then there is a constant a such that
 - (A) $f = a \text{ on } \mathbb{C}$

- (B) f(z) = az for all $z \in \mathbb{C}$
- (C) $f(z) = az^2$ for all $z \in \mathbb{C}$
- (D) $f(z) = e^{az}$ for all $z \in \mathbb{C}$

- 82. If $d(x, y) = |x_1 y_1| + |x_2 y_2|$ is a metric on \mathbb{R}^2 where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ then the set $S = \{x = (x_1, x_2) : d(x, 0) = 1\}$ is (A) a circle (B) an ellipse (C) a rhombus which is not a rectangle (D) a rectangle
- 83. $P(A/B) + P(A/B^c)$ is (A) P(A) (B) 1 (C) Greater than P(A) (D) Less than P(A)
- If X is a finite dimensional normed linear space then 84. (A) X is homeomorphic to its closed unit ball but not to its open unit ball X is homeomorphic to its open unit ball and to its closed unit ball (B)
 - X is homeomorphic to its open unit ball but not to its closed unit ball (D) X is not homeomorphic to its open unit ball and to its closed unit ball
- 85. A G_{δ} set is countable intersection of open sets and F_{δ} set is countable union of closed sets. Let X be a topological space and $f: X \to \mathbb{R}$ is a continuous map. Then the set $f^{-1}(\{0\})$
 - (A) is a closed, G_s set (B) is closed but not a G_{δ} - set
 - (C) is a compact, F_{σ} set (D) is compact but not F_{σ} – set
- A solution to the one-dimensional wave equation $\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$ is (B) $\sin(x+\pi t)$ (C) $\sin(x-\pi t)$ (D) $\sin(\pi x+t)$ (A) $\sin(x+t)$
- Mark the wrong statement Let X be a metric space. Then

(C)

- (A) Any countable subset is a G_{δ} set
- (B) Every closed set is a G_δ set (C) Every open set is a F_σ – set
- (D) Countable intersection of G_δ set is a G_δ set

- 88. Let X be a topological space and A and B be open dense subsets of X. Then $A \cap B$
 - (A) can be empty
 - (B) is nonempty open but not necessarily dense in X
 - (C) is open and dense in X
 - (D) is dense in $A \cup B$ but not in X
- 89. If $(f_n)_{n=1}$ is a uniformly bounded sequence of real valued continuous functions on [a,b] and $f = \sup_{1 \le n < \infty} f_n$ then
 - (A) f is uniformly continuous on [a, b]
 - (B) $\{x \in [a,b]: f(x) < \alpha\}$ is open for each $\alpha \in \mathbb{R}$
 - (C) $\{x \in [a,b]: f(x) > \alpha\}$ is open for each $\alpha \in \mathbb{R}$
 - (D) f is continuous but need not be uniformly continuous on [a, b]
- 90. If $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on a vector space X then the identify map $i:(X,\|\cdot\|_1) \to (X,\|\cdot\|_2)$ is continuous if and only if
 - (A) 0 is an interior point in the $\|.\|_2$ topology, of the open unit ball of $(X,\|.\|_1)$
 - (B) 0 is an interior point in the $\|.\|$ topology, of the open unit ball of $(X,\|.\|_2)$
 - (C) The $\|.\|$ topology is weaker than the $\|.\|$ topology
 - (D) the identity map $i^{-1}:(X,||.||_2) \to (X,||.||_1)$ is continuous
- 91. If $\{x_n: 1 \le n < \infty\}$ is an orthogonal subset of a Hilbert space and

$$||x_n|| = +\frac{1}{\sqrt{2^n}}$$
 for $1 \le n < \infty$ then the series $\sum_{n=1}^{\infty} x_n$

- (A) does not converge in H
- (B) converges in H to an element of norm 1
- (C) converges in H to an element of norm 1/2
- (D) converges in H to an element of norm $\frac{1}{\sqrt{2}}$

- 92. Define $f_n:[-1,1] \to \mathbb{R}$ by $f_n(t) = \begin{cases} 0 & \text{if } -1 \le t < 0 \\ nt & \text{if } 0 \le t < \frac{1}{n}. \end{cases}$ Then the sequence (f_n) of functions $1 & \text{if } \frac{1}{n} \le t \le 1$
 - (A) is not bounded
 - (B) converges point wise to a continuous function on [-1,1]
 - (C) is Cauchy in the space C ([-1,1]) with sup norm
 - (D) is Cauchy in C([-1,1]) with the L₂-norm

93. Mark the wrong statement

- (A) A Hilbert space with an uncountable orthonormal set is not separable
- (B) Every orthonormal set in a separable Hilbert space is at most countable
- (C) A Hilbert space with a countable orthonormal subset is separable
- (D) If H_1 and H_2 are two separable Hilbert spaces then H_1 and H_2 are isometrically isomorphic

94. Mark the wrong statement

Let X be a normal Hausdorff topological space. Then

- (A) Every subset of X with subspace topology is normal
- (B) Every element of X has a closed neighbourhood base
- (C) If $(A_i)_{i=1}^n$ is a finite collection of pair wise disjoint closed subsets of X they can be separated by pair wise disjoint open subsets of X
- (D) X is completely regular

95. Mark the wrong statement

Let X be a topological space, A, a closed subset of X and $U \supseteq A$ be an open subset of X. Then there is a continuous map $f: X \to [0,1]$ such that $f \equiv 0$ on A and $f \equiv 1$ on U^c if

(A) X is Hausdorff

(B) X is discrete

(C) X is T_1 and normal

(D) X is metrizable

- 96. Mark the wrong statement
 - (A) A compact, locally connected space has only finite number of components
 - (B) Q with usual subspace topology has only finite number of components
 - (C) The components of a locally connected space are both open and closed
 - (D) R is locally connected
- 97. Let P_n denote the class of all polynomials of degree $\leq n$ (with real coefficients) and let $T = \{t_1..t_m\}$ be a set of m distinct reals. For P and q in P_n set $< p, q >= \sum_{n \in T} p(t)q(t)$.

Then

- (A) <...> is an inner product on T for any $m \in \mathbb{N}$
- (B) < ... > is an inner product if <math>m < n
- (C) < ... > is an inner product if m = n
- (D) <...> is an inner product if $m \ge n+1$
- 98. Let H be a Hilbert space and $C \subseteq H$ be a closed convex set. If $x \in H$ the set x + C
 - (A) has a unique element of smallest norm
 - (B) has a unique element of smallest norm only if x = 0
 - (C) has an element of smallest norm but that need not be unique
 - (D) has no element of smallest norm
- 99. Let H be an Hilbert space, Y be a closed subspace of H and

$$x \in H$$
. Then $y_0 \in Y$ satisfies $||x - y_0|| = \inf_{y \in Y} ||x - y||$

if and only if

(A)
$$\langle x-y_0, y \rangle = 0 \quad \forall y \in Y$$

(B)
$$\langle x - y_0, y \rangle \ge 0 \quad \forall y \in Y$$

(C)
$$\langle x - y_0, y \rangle \leq 0 \quad \forall y \in Y$$

(D)
$$\langle x, y_0 - y \rangle = 0 \ \forall y \in Y$$

- 100. The value of p(4) where p is the number of possible partitions of 4 is
 - (A) 4
- (B) 1
- (C) 5
- (D) 10