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NOTATION :
R - Real line, @- rationals, [ - Natural Numbers, C- Complex Plang, sp(A)-span A,

dim A — dimension of A, A°- complement of A, Cx(Q)- space of K- valued continuous
functions on Q.

Suppose that f/: R — R is a differentiable function such that f (0) = 1. If the
derivative of [ is <0 for everyxin R then f is

(A) bounded below on R (B} bounded above on [0, =)
(C) bounded above on (- =, 0] (D) bounded on K

Let f be a continuous function on R . Define G (x) = ‘Ir:-'“ " f(t)dt.Then

(A) (3 is continuous but not differentiable (B) G does not exist

{(C) (@ is differentiable ' (D) G exists but is not continuous

The stream function i is defined for a flow which is

{A) incompressible and two-dimensional (B) compressible and two-dimensional

(C) incompressible and three-dimensional (D) compressible and three-dimensional

Let p be a polynomial of degree 37 with real coefficients. Then
(A) 1t has at least one real root (B) it has 37 real roots

{C) it need not have real roots (D) it has no root

If a<0, then lim x° log x is

e ]

(A) e (B) 0 (C) 1 (D) w

The stream function wix, v) for the plane couette flow is given by

a) B =

5 (C) tanhy (D) sech®y
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10.

11.

If f:B— R isacontinnous map, and f(Q)C M then
(A) f(R)=HN

(B) f(R) is a finite set but not necessarily a constant
(C) f is unbounded

(D) f is a constant

Let X be the Banach space of all complex n x n matrices equipped with the norm

Il All= max |a,|. If f:X — Cis defined by f(A)=Trace A then

1% i

(A) f1is not linear
(B) fis linear but not continuous

(C) f is a bounded linear functional with || f |=1
(D) f is a bounded linear functional with || flEn

Suppose p > 1. If f belongs to L7 ([0, 1]), then

(A) fis continuous
(B) f belongsto L ([0, 1])for | <q <p

(C) f belongsto L%([0,1])for g=p
(D) fe L°([0,1])

The residue of f(z)= Sl#m z=0
z
A}~ ® -L © -+ D 4
8! B! a1 g1

Let I' denote the boundary of the square whose sides lie
x=%land y==%1 where T’

is described in the positive sense. Then the value of Iﬁd” is
27+
[l i

(A) — (B) 2mi (C) 0 (D) 2mi

along
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12,

13.

14.

16.

17.

If X is the class of all polynomials on [0,1] then
(A) Xis complete when given the sup norm

(B) X is complete when given the [, —norm

(C) X can not be normed so on to make it complete

(D) X is complete if given L2 norm

The velocity field (u(x, y),0) in the plane poiscuive flow is given by
(A) u=1-y* (B) u=y (C) u=siny (D)

The polynomial x" —a over Z is irreducible if

(A) nisa prime number (B} aisa prime number
(C) both n and a are prime numbers (D) a =1
L2 0
All the eigenvalues of the matrix |2 1 0 |lie in the disc
0 0 -1
(A) |A+1]=1 (B) |A-1]=1 (C) |A+1j=0 (D)

Mark the wrong statement

The Cantor set C is

{A) is uncountable and compact

(B) contains a nontrivial line segment

{C) is uncountable and has Lebesgue measure 0

(D) contains all its limit points

(A) Every regular T, -space with countable base is metrizable

u =tanh y

|A-1[22

(B) R with the topology generated by the half open intervals of the form |a, b] is

metrizeble

(C) R with co finite topology (open sets are compliments of finite sets and empty

set) 1s metrizable

(D) Every separable topological space with a countable neighbourhood base at each

point is metrizable.
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18.

19.

20.

21.

22,

23.

Mark the wrong statement

(A) Continuous image of connected space is connected

(B) Continuous image of a locally connected space is locally connected
(C) Continuous image of a path connected space is path connected.

(D) If f:[0,]]— Q is continuous, then the image of fis a singleton set. (Qhas the
usual subspace topology)

(A)  R\{0} is connected

(B) R*\{(0,0)} is disconnected

(C) R\ [(x,0,0): xe R} is connected

(D) I,\B 1is disconnected where B is the closed unit ball of the sequence space [,

Mark the wrong Statement

Let K and F be fields and let K be an extension of F. let abein Kwitha =0 . Ifa is
algebraic over F, then

(A) a+bisalgebraic over Fforeverybin K (B) nais algebraic over F for every integer n

(C) a"is algebraic over F for every integern (D)  l/ais algebraic over F

Let & be a group of order n. If n = 4, then
(A) G is non-abelian (B) G may be abelian or non-abelian
(C) G is abelian but not necessarily cyclic (D) Giscyclic

(A) R is homeomorphicto §'={(x,y):|x[' +|y[=1}
(B) R is homeomorphic to (0,1)

(C) R is homeomorphic to R*
(D) R is homeomorphic to [0,1)

Let X and Y be normed linear spaces and T : X — Y be a linear map . Then
(A) T is continwous on X if and only if T(B) is a bounded subset of Y for
some ball B of positive radius in X

(B) If §5:Y — X is linear and TS is the identity operator on Y then ST is the
identity operator on X
(C) T is continuous on X if kernel of T is closed in X

(D) T open does not imply T is onto
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24,

26.

217.

28.

29.

30.

Which is the smallest number that can be expressed as sum of two cubes in two
different ways?

(A) 343 (B) 927 (C) 1729 (D) 2322

ey

A subgroup H of a group G is a normal subgroup if and only if
(A) Gh = hG for every h in H (B) gH=Hgforeverygin(s
(C) gh=hgforeveryhinHandginG (D) GH=HG

Define a relation ~ in a group & as follows : a ~ b if there exists an element ¢ in G
such that ca = bec. Then the relation is

(A) reflexive but not transitive (B) symmetric but not transitive

(C) transitive but not symmetric (D) an equivalence relation

If 0({7) = p? where p is a prime number then
(A) G is cyclic (B) @ is abelian

(C) G has no proper nontrivial subgroup (D)) none of these

(A) splxe X || x|lc1}# splxe X || x||<e}, for any €#1

(B) splxe X || x|l<1}=splxe X || x|<e}. for every €>0 &
(C)  splxe X | x|l 1} =splxe X || x|l<e}.only if €21
(D)  splxe X i x|<1} # splxe X ¢ x|=1)
Let X be a normed linear space
(A) Every subspace of X is the kernal of some linear functional defined on X
(B) If Y is a subspace of X then ||[x+Y|=inf{||x—v|fyv€Y} is a norm on the
quotient space X /Y
(C) IfYis asubspace of X with nonempty interior then ¥ = X
(D) The closure of a subspace of X need not be a subspace
Let G be a group of order n p* and ged (n, p) = 1. Then the number of p-Sylow
subgroups of G is a C
(A) divisorofp (B) number relatively prime to n <
(C) powerof p (D) divisor of n
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31.

32.

33.

34.

36.

Mark the wrong Statement

Let G be a group of order 28. Then

(A) There exists only one subgroup of order 7

(B) Any subgroup of order 7 is a normal subgroup
(C) G is not simple

(D) G has no subgroup of order 4

Z, is a direct product of the groups
(A) Z,and Z, (B) Z, and Z,
(C) Z,,Z,and Z, : (D) Z, and Z,

The number of elements in a minimum generator set of Q[;ﬁ ] over the field @ is
(A 1 (B) 2 _ (C) 3 (D) 6

Let K be an extension of ¥. Then
(A) Every element of K is algebraic over F
{(B) For any element a in K every element of F (a) is algebraic over F

(C) If an element a in K satisfies a polynomial over F then every element of F (a) is
algebraic over F

(D) Only the elements of F' are algebraic over

Mark the wrong statement

(A} sinz iy an unbounded function on C

(B) {zeC:sinz=0}={(nwr,0):n=0,£1,+2——]}

5mz+l ZIEX
(X)) f(D=<z—-m ' has a pole at z=7
0 I=x

(D) sinzis periodic

If f is analytic on the open unit dise D ={z:|z|<1} and f{rl—) =0 for n=23... then
]

(A) [ isa non- zero constant on D (By f=0onD

(C) f vanishes only on the real axis (D) f is unbounded on D
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317.

38.

39.

40.

41.

42.

Let K be an extension of a field F and a in K

(A) Ifa is algebraic over F then a is algebraic over K

(B) Ifa is algebraic over K then a is algebraic over F

(C) Ifa is algebraic over some extension of K then a is algebraic over F
(D) Ifa is algebraic over K then a is algebraic over any extension of F

Let K be the splitting field of a polynomial of degree n over a field F. Then the degree
[K:Flis
(A) Atleastn (B} At least n! (C) exactly n! (D) At most n!

Mark the wrong statement

(A} There exists a field having 5 elements
(B) There exists a field having 16 elements
(C) There exists a field having 36 elements
(D) There exists a field having 125 elements

The dimension of the vector space V of all skew symmetric n *x n matrices with
complex entries over the field R is

(A) n’ . (B) o, | (C) n’—n (D 2

|..|-

41. In the plane Poiseulle flow inside a pipe of radius ‘a’ the mass flow is proportional
to

4

(A) @ (B) @ © a (D) @

Mark the wrong statement
Let F:D — C be a map where D={ze C:|z]<1}. Then

(A) If fis a continuous on D and analytic on
D\{ze C:|Imz =0}, then f is analytic on D
(B) Iff is analytic on D and
f'(z2)#0 for all ze D then f is a conformal mapping on D

(C) If f is analytic on D and f has no zeros in D and | f| attains its minimum
on D then fis the identify map

(D) Iffis analytic on D then | f | does not attain its supremum on D.
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43.

44

45.

46.

Let f£,:[0,1] = R be a Lebesgue measurable map for each n in N and assume (f},)
converges point wise to a map fon [0, 1]. Let E, =U,., {xe [0,1]:|f ,(x)~ f(x)| > 1}, for
nin N. Then

(A) E, is not a Lebesgue measurable set for every n

B) (Eisa decreasing sequence of measurable sets and lim m(E )=0

e

© (Eiisa decreasing sequence of measurable sets and lim m(E ) =1

i—hoo

(D) E. is a measurable set for each n and lim m (E)=eo

]

Let C'[0,1] denote the space of all real valued, continuously differentiable functions

on [0,1] with sup norm and C [0,1], the space of all continuous, real valued functions

on [0, 1] with sup norm. Suppose Tf (x) = f ' (x) +] f(t)dt, for xe[0,1]. Then

(A) T islinear but does not have a closed graph
(B) T is linear, has a closed graph but not continuous
(C) T islinear and continuous

(D) T isnot linear

Fermat’s little theorem states, if p is prime a =1(mod p) then
(A)  a”"'=1mod p) (B) a”" =l(mod p)

(C) a"”? = l(mod p) (D) &’ = l(mod p)

Mark the wrong statement
Let f:C — C be a map

(A) Iff is an entire function and doubly periodic then,f is a constant

(B) If fis an entire function and f has infinite number of zeroes in the unit disc then
fis a constant

f(z)

.
e

(C) If fis an entire function and is bounded in the region |z[>1 then fis a

constant

(D) Iff is an entire bounded function then fis a constant
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47.

48.

49,

50.

In Zi2, the set of zero divisors is exactly equal to
(A) {0} (B) {5.7.11)
(C) {57} (D) {2.3,4.6,8,10}

Suppose N is a normal subgroup of a group G such that the factor group % s

abelian. If G’ denotes the commutator subgroup, then

(A) N is a subgroup of G (B) G’is a subgroup of N
(C) N=@F (D) N=G
(A) 2 has an isolated removable singularity at z=0

(& ]

sin z
Z
sinz

(B) 270 is an isolated but not removable singularity of

(€) 2=0 s a removable but not an isolated singularity of

Z

| z€ U\{0}}=eo

SN 2

(D) For every open set U containing 0, sup{|

-
L

If f(2) =r_l:'i%_-—5 then the Laurent series of f centered at z = 1 converges in the

region

(A) ﬂ-=:|a—1|<:—;- (B) 0<z-ljl (C) 0<z-12 (D) {}{|:—1|{§

Let GG be a group of order 14. Then the number of elements in G of order 7 is
(A) 1 (B) 6 cy 7 (D) 13

In the ring of integers if I = (12) and J = (21) are two principal ideals, then the
ideals I +JJ and I J are respectively given by

{A) (34), (3) (B) (3), (252) (C) (3), (84) (D) None of these

Mark wrong statement

(A) is a meromorphic function on the complex plane

s8I £
(B) E’y; is a meromorphic function on the complex plane
(C) Any rational function is meromorphic on the complex plane
(D) Product of two meromorphic functions is again meromorphic.

252/118 10
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54.

55.

56.

58.

o9,

60.

61.

62.

The residue of f(z)= af z=11x

a A

(z"+1)
A) i ® - © oy =
21 3i 4
If wu(x,v)=xy is a harmonic function, a harmonic conjucate of u is
x° - B o wt i
@& = (B) x4y} © Ll i e
2 e 2 2 7 2

Let F be a field. When will a polynomial of degree 2 or 3 over F be reducible over F7
(A) always (B) if and only if it has no root in F
(C) if and only if it has a root in F' (D) if and only if it is monic

The number of elements of a principal ideal domain can be
(A) 15 (B) 25. (C) 35 (D) 36

The number of non-isomorphic simple graphs on 4 vertices is
(A) 8 (By 10 (cy 11 (D} 1

If m and n are sum of two squares, so is

(A) m+n (B) m-n (C) n-m (D} mn

In Couette flow with velocity {D,-ﬂ+ Br.0) the vorticity is given by
7

(a) (0,0,0) (B) (0,0, 2A) (C) (0,0, 2B) (D) (2A,2B,0)

-

If w(z)=2z"=(x+iy)

quadrant are given by

is the complex potential then the streamlines in the first

(A} xy=constant (B) x*-y*®=constant

(C)  x*+y° = constant (D) x-v=constant

The Legendre polynomials are orthogonal polynomials with weight function w (¢)
equal to

(A) 1 (B) I (C) (D) (1-1")

]
A=t
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63.

64.

65.

66.

68.

69.

z+1

z° =27

The residue at 2 of the function is

(A) —= (B) 0 C) 1 (D)

2 | L

Mark the Wrong stateﬁlent

(A) A tree has a cycle

(B) A tree is connected

(C) A treeis acyclic and connected

(D) Ifatree hasn vertices, then it has n - 1 edges

d d.
The general solution of ——— — ay £ FE is

y+z z+x x+y

3. .
@A) p(r+yrz xP-y | B o 22X (, _ . zz}
) {{?(r-f-_],- X y) (B) ﬁ[z—x (y x)(x+}+ )
(C) g{x_}', "'“Z] (D) ;a[” z—x—vJ

¥Y—-z z-—x 7

Mark the wrong statement
Let f:R—>Rand g:R SR be uniformly continuous functions,

(A) f+g is uniformly continuous (B) f-gis uniformly continuous

(C)  fg is uniformly continuous (D) 2f+3g is uniformly continuous

HT:R” >R is linear and T* =0 then the rank of T is
(A) =3 (B) >3 (C) 5 (D) 6

Let V be the vector space of 3 x 3 real matrices A = (ay) s.t a,, +a,, + ay; = 0. Then dim V is

(A) 3 (B) 7 (C) 8 (D) 9

A nontrivial solution of the equation u "+ g(x)u = 0 with g(x)<0in —oo < x < oo gy

(A) at most one zero (B) at least one zero

(C)  no zeros (D) infinitely many zeros

252/118 12
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70.

19

72.

73.

74.

75.

Let X have the topology in which the closed sets are the finite sets and the empty set.
If (x,) is asequence in X suchthat x_# x_ if n#m then,

(A)  (x,) is not convergent in X
(B) (x,) convergens to a unique element in X

(C) Theset {xe X :x=Ilim x,} is a nonempty finite set but is not a singleton set
(D) Theset {xe X :x=1im x,} is an infinite set

Iy

If U is the velocity at infinity and I' is the circulation around the boundary of an
olytacle then kutta-joukro ski theorem gives a non zero lift force when

(A) U#20and I'#0 (B) U=0and T#0

(C) U#0and T=0 (D) U=0and T'=0

The bd A =EﬂE, Then bd A=¢ if and only if
(A) A is compact : (B) A is finite
(C) A is open and closed (D) interior of A" is empty

If 7, and T, are two topologies on X and 7, <7, then

(A) 1, —closure of a set is contained in its T, — closure

(B) A sequence that is 7,convergent to x,€ X is T, —convergent 1o x,
(C) The identify map (X,7,) = (X,7,) is continuous '
(D) If (X,7,) is regular so is (X,1,)

Let (S,d) be a metric space and B (S) be the space of all real valued bounded functions
defined on § with supnorm. For each

S€ S define f,(t)=d(s,t) for all te S. Then the map s — f, from S into B(S) is

{(A) 1-1 but not an isometry (B) 1-1 but not continuous
(C) anisometry (D) continuous but not 1 -1

If A is a subset of the real sequence space [, givenby A={(x )" € Zu x, =0} then
it=l

(A) The sequence (0,0,1,0,0, ...) is not in the closure of A
(B) The sequence (0,1,0,0, ...} is not in the closure of A.
(C) The sequence (1,0,0...) is in the closure of A

(D) Ais closed

13 252/118



76.

77.

78.

79.

80.

81.

Let X be a normed linear space X and A be a proper dense subset of the unit
sphere {x€ X || x||=1}of X . If diameter of A is sup {|jx — ¥ : x and y are in A}, then

(A) diameter of 4 1s 2 (B) diameter of A <2
(C) diameterofAdis<1 (D) diameter of Ais 1

Let (X.d) be a metric space. Then the map d:X x X —X given by
(x,v)—=d(x,y), x,yinXis

(A) continuous in both the variables
(B} continuous in the first variable but not in the second variable
(C} continuous in the second variable but not in the first variable

(D) not continuous in both the variables

If Ac X where X is a metric space and x€ X then

(A) d {x,i} < d(x, A) and diameter of A <diameter of A
(B) d {x,i} =>d(x,A) and diameter of A >diameter of A
(C) d (._K,E} =d(x, A) and diameter of A = diameter of A
(D)  d(x, ;l'} <d(x,A) and diameter of A >diameter of A

Let X be a finite set that is not a singleton set. Then the number of Hausdorff
topologies that can be defined on X

(A) is finite and more than one

(B) isone

(C) is greater than 1 but less than the candinality of the set X
(D) is the candinality of the power set of X

The normal form of the Bessel's equation is u "+ u =0 when

@ p=Y (B) p=0 @ p=1 (D) p=4

Let f be an entire function satisfying | f(z)|Sk|z|’ for some constant k and for all
z& C . Then there is a constant a such that

(A) f=aonC (B) [f(z)=az for all ze C
(C) f(z)=az’ forall ze C (D) f(z)=€™ forall ze C

252/118 14
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82.

83.

84,

85.

86.

87.

If dix,y)=[x -y |+|x,=y,|is a metric on R* where x=(x,,x,) and y=(y,,y,) then
the set § ={x=(x,x,):d(x,0)=1} is

(A} acircle (B) anellipse

(C) arhombus which is not a rectangle (D) a rectangle

P(A/B)+P(A/B") is

(A) P(A) (B) 1
(CY Greater than P (A) (D) Lessthan FP(4)

If X isa finite dimensional normed linear space then

(A} X is homeomorphic to its closed unit ball but not to its open unit ball
(B) X is homeomorphic to its open unit ball and to its closed unit ball
(C) X is homeomorphic to its open unit ball but not to its closed unit ball

(D) X is not homeomorphic to its open unit ball and to its closed unit ball

A G set is countable intersection of open sets and F; set is countable union of closed
sets. Let X be a topological space and f:X — R is a continuous map. Then the set

fFop

(A)  is a closed, G; — set (B) is closed but not a G; — ser
(C) 1is a compact, F, — ser (D} is compact but not F, — set
: : : iy @y
A solution to the one-dimensional wave equation ¥ = e is
T X
{A)  sin(x+1) (B) sin{x+mt) (C)  sin(x—mt) (D) sin{mwx+1)

Mark the wrong statement
Let X be a metric space. Then
(A}  Any countable subset is a G; — ser

(B) Every closed set is a G; — set
(C) Ewveryopensetisa F, — set

(D)  Countable intersection of G; set is a G, set
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88. Let X be a topological space and A and B be open dense subsets of X . Then A B .
(A) can be empty |
(B) is nonempty open but not necessarily dense in X ?
(C) is open and dense in X

(D) isdensein AlJB but notin X

89. If (f,),., is a uniformly bounded sequence of real valued continuous functions on [a,b]

and f = sup f, then

| e

(A) f is uniformly continuous on [a, b]
(B) {xela.b]: f(x)<a)}is open for eachaxe R
(C) {xela.b): f(x)>a)}is open for eachae R

(D) fis continuous but need not be uniformly continuous on [a, ]

90. If ||.1l and ||.||, are two norms on a vector space X then the
identify map i:(X,|[.[,)=> (X,|].1,) is continuous if and only if
(A) 0is an interior point in the ||.|, topology, of the open unit ball of (X,||.]|) : |
(B) 0is an interior point in the ||.|| topology, of the open unit ball of (X,||.]|,)
(C) The [|.|| topology is weaker than the ||.|, topology

(D) the identity map i~ : (X ]| ALY = (XL || ) is continuous

91. If {x,:1=n <o} is an orthogonal subset of a Hilbert space and

T

l { ™~
[ x, ”=+F for 1 £ n <o then the series Z,m;

el
(A) does not converge in H
(B) converges in H to an element of norm 1

(C) converges in H to an element of norm }

L

(D) converges in H to an element of norm 2.2

V2

252/118 16



92.

93.

94,

95.

0if -1=1<0
Define f, :[-LI1] =R by f,(t)=<nt if 0 =t<Ll. Then the sequence (f,) of functions
1if 1<e<l

(A) is not bounded

(B) converges point wise to a continuous function on [-1,1]
(C) is Cauchy in the space C ([-1,1]) with sup norm

(D) is Cauchy in C([-1,1]) with the L,-norm

Mark the wrong statement

(A) A Hilbert space with an uncountable orthonormal set is not separable

(B) Every orthonormal set in a separable Hilbert space is at most countable

(C) A Hilbert space with a countable orthonormal subset is separable

(D) If H, and H, are twn-' separahlla Hilbert spaces then H, and H, are

isometrically isomorphic

Mark the wrong statement

Let X be a normal Hausdorff topological space. Then

(A) Every subset of X with subspace topology is normal
(B) Every element of X has a closed neighbourhood base

(C) If (A)., is a finite collection of pair wise disjoint closed subsets of X they can
be separated by pair wise disjoint open subsets of X

(D) X is completely regular

Mark the wrong statement
Let X be a topological space, A, a «closed subset of X and [/2A

be an open subset of X. Then there is a continuous map
f:X = [0.1] such that f=0on Aand f=1onU" if

- (A) X is Hausdorff (B) X is discrete

(C) X is T, and normal (D) X is metrizable
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96.

97.

98.

99,

100.

Mark the wrong statement
(A) A compact, locally connected space has only finite number of components

(B) € with usual subspace topology has only finite number of components
(C) The components of a locally connected space are both open and closed

(D) R is locally connected

Let P, denote the class of all polynomials of degree <n (with real coefficients) and let

T ={t,.1,} be a set of m distinct reals. ForP and q in P, set < p,q >= Zp{r]q{ﬂl.
iET

Then

(A) <.>is aninner product on T for any me [
(B) <..>is an inner product if m<n
(C) <..>is an inner product if m=n

(D) <..=is an inner product if m=zn+1

Let H be a Hilbert space and C € H be a closed convex set. If x& H the set x+C

(A) has a unique element of smallest norm
(B) has a unique element of smallest norm only if x=0
(C) has an element of smallest norm but that need not be unique

(D) has no element of smallest norm

Let H be an Hilbert space, Y be a closed subspace of H and

x€ H.Then y,€Y satisfies || x—y, ||=inf || x—y]||
ey Z

if and only if
(A) <x=y,, y>=0 VyeY (B) <x-y,y>=20 VYyeY
(C) <x—y,¥y>=0 Yye¥ (D) <x,y,—-y>=0 V¥yeV¥

'The value of p(4) where p is the number of possible partitions of 4 is

(A) 4 (B) 1 (C) 5 (D) 10
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