ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

Ph.D. (MECHANICAL ENGINEERING)

COURSE CODE: 139

Signature of the Invigilator (with date)

COURSE CODE: 139

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	1100	ke s raw nords good upto		
5-	(A)	yield point	(B)	proportional limit
	(C)	breaking point	(D)	plastic limit
2.	Mat	erial which exhibit the same elastic p	ropert	ies in all directions are called
	(A)	homogeneous	(B)	inelastic
	(C)	isotropic	(D)	isentropic
3.	Mon	nent of inertia of an area is always le	ast wit	h respect to
	(A)	bottom most axis	(B)	radius of gyration
	(C)	central axis	(D)	centroidal axis
4.	The	design of a thin cylindrical shells is b	ased o	n
	(A)	hoop stress	(B)	longitudinal stress
	(C)	volumetric stress	(D)	none of the above
5.	Dur	ing the tensile test of a glass rod the	nature	of the stress-strain curve is
	(A)	straight and dropping	(B)	
	(C)	straight line	(D)	parabolic
6.	The	point of contra-flexure occurs only in		
	(A)	overhanging beam	(B)	cantilever beam
	(C)	simply supported beam	(D)	continuous beam
7.	Tor	sional rigidity of a sold circular shaft	of dian	neter 'd' is proportional to
	(A)		(C)	
8.	If a	coil is cut into two halves, the stiffne	ss of cu	nt-coils will be
653	(A)	same	(B)	half
	(C)	double	(D)	none of the above
9.	She	ar stress theory is applied to		
J.	(A)	ductile materials	(B)	brittle materials
	(C)	elastic materials	(D)	all of the above
	(0)			
10.	In V	V-belt drive, belt touches		
	(A)	at the bottom	(B)	at sides only
	(C)	both at the bottom and sides	(D)	none of the above

11.	Types of	gear used in	trans	smission for no	n-para	llel and non-inte	rsecti	ng shafts are
	(A) wo	rm gears			(B)	helical gears		
	(C) hy	poid gears			(D)	herringbone ge	ars	
12.	Which	of the followi	ng allo	oys does not co	ntain t	in?		
	(A) ph	osphor bronz	ze		(B)	fusible metal		
	(C) gu	n metal			(D)	white metal		
13.	Constan	tan, an alloy	used	in thermocoup	le, is a	n alloy of		
	(A) con	oper and tin			(B)	copper and iron	L	
	(C) con	oper and zinc			(D)	copper and nick	cel	
14.	Lime sto	ne is added	in blas	st furnace to fl	ux			
	(A) Mr	$_{1}O_{2}$	(B)	SiO_2	(C)	$KMnO_2$	(D)	Carbon
15.	High spe	eed steel belo	ongs to	the category	of			
	(A) lov	-carbon stee	el		(B)	medium carbon	steel	
	(C) hig	h carbon ste	el		(D)	alloy steel		
16.	Pick up	the wrong pr	roperty	y of austenite				
	(A) sof	tness			(B)	malleability		
	(C) ma	gnetism			(D)	ductility		
17.	Which o	f the followir	ng is a	n amorphous n	nateria	11?		
	(A) Mi	ca	(B)	Lead	(C)	Plastic	(D)	Glass
18.	Haemat	ite is the mir	neral f	form of				1
	(A) alu	minum oxid	е		(B)	copper oxide		
						1.1		
	(C) iro	n oxide			(D)	gold		
19.			l for ce	ementite carbic				
19.	The bind		l for ce	ementite carbic				
19.	The bind	ling materia	l for ce	ementite carbic	le tools	s is cobalt		
19. 20.	The bind (A) nic (C) chr	ling materia kel omium		ementite carbic	le tools (B)	s is cobalt		

21.	Core	es are used to						
	(A)	make desired re	ecess	in castings	(B)	strengthen mou	lding	sand
	(C)	support loose pi	eces		(D)	remove pattern	easily	
22.	In s	and moulding the	botto	om most part o	f the fl	ask is called		
	(A)	cope			(B)	cheek		
	(C)	drag			(D)	none of the abov	ve	
23.	Cow	dung is sometim	ies us	ed in				
	(A)	bench moulding	5		(B)	green sand mou	lding	
	(C)	dry sand mould	ing		(D)	all of the above		
24.	Coir	ning is the operat	ion of					
	(A)	piercing			(B)	cold extrusion		
	(C)	cold forging			(D)	hot forging		
25.	Stee	el balls are manuf	factur	red by				
	(A)	machining			(B)	sintering		
	(C)	casting			(D)	cold heading		
26.	Elec	trode gets consur	ned i	n the following	weldin	ng process		
	(A)	Arc	(B)	Gas	(C)	Thermit	(D)	TIG
27.	The	carburizing flam	e as c	ompared to oxi	idizing	flame is		
	(A)	less luminous			(B)	more luminous		
	(C)	equally luminou	1S		(D).	unpredictable		
28.	The	gas used in TIG	weldi	ng process is				
	(A)	hydrogen	(B)	helium	(C)	acetylene	(D)	argon
29.	Cen	tering can be don	e mos	st accurately or	1			
	(A)	collet chuck			(B)	three jaw chuck		
	(C)	four jaw chuck			(D)	all of the above		
30.	Car	bide tips are fixed	l to th	ne shanks of cu	tting to	ools by		
	(A)	brazing	(B)	soldering	(C)	sintering	(D)	welding

01.	1116	process or crimin	mig is	associated wi	LUII				
	(A)	forging			(B)	electroplating	5		
	(C)	machining			(D)	press work			
32.	The	process of impro	ving o	cutting action	of grind	ing wheel is ca	lled		
	(A)	clearing operat	ion		(B)	facing operati	on		
	(C)	dressing opera	tion		(D)	turning opera	tion		
33.	Dov	etail milling cutt	er fall	ls under the ca	ategory				
	(A)	plain milling cu	ıtter		(B)	side milling c	utter		
	(C)	end milling cut	ter		(D)	none of the al	oove		
34.	Ker	osene is a good c	utting	fluid to use w	hen dri	lling			
	(A)	aluminium	(B)	brass	(C)	bronze	(D)	cast iron	
35.	The	process used for	produ	icing fine surf	ace finis	sh is			
	(A)	broaching	(B)	tumbling	(C)	sintering	(D)	swaging	
36.	A fe	eler gauge is use	d to cl	heck					
	(A)	surface roughn	ess		(B)	unsymmetric	al shape		
	(C)	thickness of cle	aranc	е	(D)	none of the al	oove		
37.	Opt	ical flats are mad	de of						
	(A)	silicon	(B)	glass	(C)	plastic	(D)	quartz	
38.	The	device that can l	be use	d to scribe line	es paral	lel to the edges	s of a par	rt is	
	(A)	divider			(B)	screw gauge			
	(C)	combination se	t		(D)	hermaphrodit	e calipe	r	
39.	Asu	urface gauge is us	sed for						
	(A)	leveling the sur	rface p	olate	(B)	laying out the	work a	ccurately	
	(C)	finding flatness	s of th	e surfaces	(D)	checking the			
40.	Mill	imeter scale in a	micro	meter is mark	xed on				
		anvil		thimble	(C)	barrel	(D)	ratchet	

41.	A pe	erfect gas		
	(A)	is a perfect fluid	(B)	is incompressible
	(C)	does not have viscosity	(D)	does not really exist
42.	Abs	olute pressure is measured by		
	(A)	a Bourdon gauge	(B)	an aneroid barometer
	(C)	a differential manometer	(D)	a hook gauge
43.	A flo	pating body displaces a volume of liqui	d equ	al to
	(A)	its own volume	(B)	its submerged weight
	(C)	its own weight	(D)	all of the above
44.		en a block of ice floating on water in	a con	tainer melts the level of water in the
	(A)	falls	(B)	rises
	(C)	first falls and then rises	(D)	remains the same
45.	The	difference between the total head line	and t	the hydraulic grade line represents
	(A)	the velocity head	(B)	the piezometric head
	(C)	the pressure head	(D)	the elevation head
46.		continuity equation in fluid mechani principle of	cs is	a mathematical statement embodying
	(A)	conservation of energy	(B)	conservation of mass
	(C)	conservation of momentum	(D)	none of the above
47.	Ast	atic tube is used to measure		
	(A)	the velocity	(B)	the total head
	(C)	the datum head	(D)	undisturbed fluid pressure
48.	Kap	lan turbine is		
	(A)	an axial flow turbine	(B)	a radial flow turbine
	(C)	an impulse turbine	(D)	none of the above
49.	A fa	st centrifugal pump impeller will have)	
	(A)	radial blades	(B)	forward facing blades
	(C)	backward facing blades	(D)	propeller type blades

ma	nyuraune pump, me term Nron star	nus 101	
(A)	net pressure static head	(B)	net positive suction head
(C)	net pressure suction head	(D)	none of the above
No l	liquid can exist as liquid at		
(A)	−273°C	(B)	vacuum
(C)	in space	(D)	zero pressure
		energy	and mass do not cross its boundaries
(A)	closed system	(B)	open system
(C)	isolated system	(D)	none of the above
Wor	k in a free expansion process is		
(A)	positive	(B)	negative
(C)	zero	(D)	unpredictable
Hea	t and work are		
(A)	point functions	(B)	path functions
(C)	system properties	(D)	none of the above
Tota	al heat of a substance is also known as	S	
(A)	internal energy	(B)	enthalpy
(C)	entropy	(D)	heat capacity
The	rmal efficiency will be maximum for		
(A)	reversible engine	(B)	irreversible engine
(C)	new engine	(D)	all of the above
In a	Carnot engine heat is supplied at		
(A)	constant entropy	(B)	constant volume
(C)	constant pressure	(D)	constant temperature
A di	athermic wall is one which		
(A)	does not exit	(B)	prevents thermal interaction
(C)	permits thermal interaction	(D)	none of the above
	(A) (C) No I (A) (C) A th is k (A) (C) Wor (A) (C) Tota (A) (C) Tota (A) (C) The (A) (C) A di (A) (C)	(A) net pressure static head (C) net pressure suction head No liquid can exist as liquid at (A) -273°C (C) in space A thermodynamic system in which both is known as (A) closed system (C) isolated system Work in a free expansion process is (A) positive (C) zero Heat and work are (A) point functions (C) system properties Total heat of a substance is also known as (A) internal energy (C) entropy Thermal efficiency will be maximum for (A) reversible engine (C) new engine In a Carnot engine heat is supplied at (A) constant entropy (C) constant pressure A diathermic wall is one which (A) does not exit	No liquid can exist as liquid at (A) -273°C (B) (C) in space (D) A thermodynamic system in which both energy is known as (A) closed system (B) (C) isolated system (D) Work in a free expansion process is (A) positive (B) (C) zero (D) Heat and work are (A) point functions (B) (C) system properties (D) Total heat of a substance is also known as (A) internal energy (B) (C) entropy (D) Thermal efficiency will be maximum for (A) reversible engine (B) (C) new engine (D) In a Carnot engine heat is supplied at (A) constant entropy (B) (C) constant pressure (D) A diathermic wall is one which (A) does not exit (B)

59.	Dur	ng an isothermal	proce	ess the intern	ai energ	y of gas molecule	es	
	(A)	increases			(B)	decreases		
	(C)	remains constan	ıt		(D)	remains unpred	ictable	
60.	The	principle of meas	urem	ent of temper	ature is	based on		
	(A)	zeroth law of the	ermod	lynamics	(B)	first law of ther	modyn	amics
	(C)	second law of th	ermo	dynamics	(D)	third law of the	rmody	namics
61.	Mas	s number of an el	emen	t represents				
	(A)	mass of electron	s		(B)	mass of protons	1	
	(C)	mass of neutron	S		(D)	none of the above	ve	
62.	Isoto	opes of an elemen	t have	e same				
	(A)	mass number			(B)	atomic number		
	(C)	chemical proper	ties		(D)	none of the above	ve	
63.	The	process during w	hich a	a heavy nucle	us splits	into many light	t nucle	i is known as
	(A)	disintegration			(B)	fission		
	(C)	fusion			(D)	none of the abo	ve	
64.	The	function of contro	ol rod	s in a nuclear	reactor	is to control		
	(A)	temperature			(B)	radioactive poll	ution	
	(C)	absorption of ne	utron	ı	(D)	fuel consumption	on	
65.	The	risk of radioactiv	e haz	ard is greate	st in the	turbine with foll	owing	reactor
	(A)	pressurized wat	er rea	actor	(B)	boiling water re	eactor	
	(C)	gas cooled react	or		(D)	all of the above		
66.	The	air-fuel ratio in a	petre	ol engine is c	ontrolled	l by		
	(A)	fuel pump	(B)	governor	(C)	carburettor	(D)	injector
67.		iesel engine the c			٠.,			
	(A)	same	(B)	less	(C)	more	(D)	unpredictable
68.	The	theoretically corn	rect a	ir-fuel ratio f	or petrol	engine is of the	order	of
	(A)	6:1	(B)	10:1	(C)	12:1	(D)	15:1

69.	The	top piston ring nearer to the piston cro	own is	s known as	
	(A)	compression ring	(B)	oil ring	
	(C)	scrapper ring	(D)	leading ring	
70.	Octa	ane number of iso-octane is about			
	(A)		(C)	80	(D) 100
71.		the four operations in a two stroke engevolutions of crank shaft	gine a	are performed in the	he following number
	(A)	one (B) two	(C)	four	(D) eight
72.	Con	necting rods are generally forged from			
	(A)	cast iron	(B)	carbon steel	
	(C)	stainless steel	(D)	aluminium alloy	
73.	The	most efficient method of compressing	air is	to compress it	
	(A)	adiabatically	(B)	isentropically	
	(C)	isothermally	(D)	isochorically	
74.	A co	empressor at high altitude will draw			
	(A)	more power (B) less power	(C)	same power	(D) no power
75.		optimum intermediate pressure in ion and delivery pressures as	two	stage compressor	is computed using
	(A)	geometric mean of the two pressures			
	(B)	average of the two pressures			
	(C)	one fourth of sum of the two pressure	s		
	(D)	none of the above			
76.	The	advantage of multistage compression	over s	single stage compr	ession is
	(A)	lower power per unit of air delivered	(B)	higher volumetr	ic ratio
	(C)	decreased discharge temperature	(D)	all of the above	
77.	Sep	arators are generally installed in comp	resso	rs	
	(A)	after the intercooler	(B)	before the interc	ooler
	(C)	before the first stage suction	(D)	before the receiv	er tank

78.	Gas	turbine works on			
	(A)	Carnot cycle	(B)	Brayton cycle	
	(C)	Rankine cycle	(D)	Diesel cycle	
79.		perature of gases at the enturbine is	nd of compression	on as compared to exl	naust gases in a
	(A)	equal (B) high	her (C)	lower (D)	unpredictable
80.	The	fuel consumption in a gas t	urbine is accoun	ted for by	
	(A)	lower heating value	(B)	higher heating value	
	(C)	lower calorific value	(D)	all of the above	
81.	Mec	hanical efficiency of gas tur	bines as compare	ed to IC engines is	
	(A)	same (B) high	her (C)	lower (D)	unpredictable
82.		et aircraft engines, the pr ine are discharge into	oducts of combu	stion after passing t	hrough the gas
	(A)	atmosphere	(B)	back to the compress	or
	(C)	discharge nozzle	(D)	none of the above	
83.	Prop	oulsive efficiency is defined	as the ratio of		
	(A)	engine output to propulsiv	ve power (B)	propulsive power to f	uel input
	(C)	thrust power to fuel input	(D)	thrust power to prop	ulsive power
84.	Whe	en the pressure increases th	e latent heat of s	team	
	(A)	increases	(B)	decreases	
	(C)	remains same	(D)	becomes unpredictab	le
85.	The	following is a boiler mounti	ng		
	(A)	feed check valve	(B)	feed water pump	
	(C)	air pre-heater	(D)	economizer	
86.	In a	thermal power plant balance	ced draught refer	s to system or system	s having
	(A)	forced draught	(B)	induced draught	
	(C)	forced and induced draugh	nts (D)	all of the above	

87.		the same diameter and thickness on a fire tube boiler has	f tube,	a water tube boiler when compared
	(A)	less heating surface	(B)	more heating surface
	(C)	equal heating surface	(D)	none of the above
88.	Cur	tis turbine is basically		
	(A)	a simple impulse turbine		
	(B)	a reaction turbine		
	(C)	a velocity compounded impulse turk	oine	
	(D)	a pressure compounded impulse tur	bine	
89.	Stea	am turbine works on		
	(A)	Atkinson cycle	(B)	Bell-Coleman cycle
	(C)	Joule cycle	(D)	None of the above
90.	Air	from a condenser is extracted from		
	(A)	the coldest zone in the condenser	(B)	the hottest zone in the condenser
	(C)	the centre of the condenser	(D)	anywhere in the condenser
91.		ording to Dalton's law, volumes of ssures and at the same temperature a		and steam occupied at their partial
	(A)	same	(B)	different
	(C)	zero	(D)	unpredictable
92.		m the point of view of pollution cont trostatic precipitator is	rol, cy	clone separator when compared with
	(A)	more effective	(B)	less effective
	(C)	same effective	(D)	none of the above
93.	One	ton of refrigeration is equal to about		
	(A)	1.5 kW (B) $2.5 kW$	(C)	3.5 kW (D) 5.5 kW
94.	The	COP of a domestic refrigerator is		
	(A)	more than 1	(B)	less than 1
	(C)	equal to 1	(D)	unpredictable

95.	For	unsaturated air, wet bulb temperatur	e is	
	(A)	less than dew point	(B)	more than dew point
	(C)	less than dry bulb temperature	(D)	unpredictable
96.	For :	NPN transistor, negative voltage is re	quire	d at the
	(A)	base	(B)	emitter
	(C)	collector	(D)	all of the above
97.		substitution of machinery that has se est described by the term	ensing	and control devices for human labour
	(A)	computer aided manufacturing		
	(B)	computer integrated manufacturing		
	(C)	automation	20	
	(D)	none of the above		
98.	The	benefit of flexible manufacturing syst	ems (FMS) include
	(A)	reduced labour costs		
	(B)	higher flexibility than automation		
	(C)	quick change over from part to part		
	(D)	all of the above		
99.	In c	omputer aided manufacturing, DNC s	tands	for
	(A)	direct numerical control	(B)	digital number control
	(C)	digital number code	(D)	none of the above
100	771	11. 1		y = 42
100.		xible design and manufacturing is kno	wn as	
	(A)	computer aided manufacturing		
	(B)	computer integrated manufacturing		
	(C)	computer aided design		
	(D)	all of the above	•	