Module Name : PhD Microbiology-E Exam Date : 20-Sep-2020 Batch : 16:00-18:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
bject	ive Question			
	1	The Ebola virus in parts of Africa is in excess of what is expected for this region. This virusis a/an	4.0	1.00
		A1 Epidemic		
		A2 Endemic		
		A3 Pandemic		
		A4 Cluster		
bject	tive Question			
3	2	Epidemiologists use a model for studying infectious disease and its spread that involves the microbe that causes the disease, the organism that harbors the disease, and the external factors that cause or allow disease transmission. This is also known as	4.0	1.00
		A1 Host, vector, and transmission.		
		A2 Transmission, host, and environment.		
		A3 Host, agent, and environment.		
		A4 Organism, transmission, and environment		
biect	tive Question			
-,	3	Droplet nuclei are dried residues of infectious agents remain suspended in air for long time having a size of	4.0	1.00
		A1 1-5 microns in diameter		
		A2 >5 microns in diameter		
		A3 <0.5 microns in diameter		
		A4 >50 microns in diameter		
1.1.	· 0			
bject	ive Question 4	A particular trait imparts partial protection from particular type of malaria.	4.0	1.00
		A1 Polycythemia		

	$\ $:		
	A2 Sickle cell anemia		
	A3 Sideroblasticanemia		
	A4 Hemochromatosis		
Objective Question 5 5	The genetic material of influenza virus is	4.0	1.00
	The genetic material of influenza vitus is		
	A1 Single stranded DNA		
	A2 Double stranded RNA		
	A3 Single stranded RNA		
	A4 None of these		
Objective Question			
6	Genetic variation in viruses contributes to their ability to evade theimmuneresponse. Select the principal means by which antigenic shift occurs in influenza A virus.	4.0	1.00
	A1 Low fidelity of DNA dependent DNA polymerase		
	A2 Low fidelity of reverse transcriptase		
	A3 Reassortment of fragments of the RNA genome:		
	A4 Recombination between RNA genomes:		
Objective Question			
7 7	The cell wall of gram-positive bacteria may contribute to the development of septic shock. Identify the component which is most associated with the induction of septic shock.	4.0	1.00
	A1 Capsular protein		
	A2 Endotoxin		
	A3 Peptidoglycan :		

Object	tive Question			
8	8	The aminoglycosides are a very active group of antibacterial agents, particularly against Gram-negative bacilli. Identify their mode of action from the list.	4.0	1.00
		Al Disruption of cytoplasmic membrane function :		
		A2 Inhibition of bacterial cell wall synthesis		
		A3 Inhibition of bacterial DNA gyrase		
		A4 Inhibition of protein synthesis		
Ohiect	tive Question			
)	9	Select the culture medium which would be most appropriate to isolate Haemophilus influenzae from the patient.	4.0	1.00
		A1 Blood agar		
		A2 Chocolate bacitracin agar		
		A3 MacConkey agar		
		A4 Methicillin mannitol salt agar		
Ohiaat	tive Question			
10	10	Which of the following structures contains genes for enzymes and antibiotic resistance?	4.0	1.00
		A1 Plasmid :		
		A2 Pilus :		
		A3 Capsule		
		A4 Plasma membrane		
Object 11	tive Question	Which of the following is the most important structure related to microbial attachment to cells?	4.0	1.00
		Al Flagellum		
		A2 Plasmid		
		A3 Peptidoglycan		

		A4 Glycocalyx		
	tive Question			
12	12	Which of the following diseases and bacteria are matched up incorrectly?	4.0	1.00
		A1 Treponema pallidum – syphilis		
		A2 : Tinea nigra – Cladosporiumwerneckii		
		A3 Borreliaburgdorferi – lyme disease		
		A4 Yersinia enterocolitica – diptheria		
Objec	tive Question			
13	13	Which of the following is not true concerning Staphylococcus aureus?	4.0	1.00
		A1 S. Aureus is related to inflammation.		
		A2 S. Aureus can cause pneumonia		
		A3 S. Aureus can lead to acute bacterial endocarditis		
		A4 S. Aureus does not make coagulase		
Ohiec	tive Question			
14	14	Which of the following microorganisms has not been linked to UTI's?	4.0	1.00
		A1 E. Coli		
		A2 Pseudomonas :		
		A3 Klebsiella		
		A4 Haemophilus		
01:				
Objec 15	tive Question	The vector which transmits zika, chikungunya and dengue viruses are	4.0	1.00
			1.0	1.00
		A1 Aedes. Albopictus		
		A2 Aedesaegypti		
		A3 Anopheles stephensi		

	A4 Both Aedes. Albopictus&Aedesaegypti		
Objective Question			
6 16	The new coronavirus (COVID-19) is identical to which of the following previous outbreak viruses.	4.0	1.00
	A1 MERS-CoV		
	A2 SARS-CoV		
	A3 NL63 (alpha coronavirus)		
	A4 All of these		
Objective Question			
7 17	Which of the following assays are widely used to investigate antibiotic resistance of some bacteria.	4.0	1.00
	A1 Resazurin assay		
	A2 Mtt assay		
	A3 Trypan blue assay		
	A4 Gram stain assay		
Objective Question			
18	Which of the following chemical modifications in bacterial cells inactivates the activity of antibiotics	4.0	1.00
	A1 Hydrolyzation		
	A2 Acetylation :		
	A3 Phosphorylation		
	A4 All of these		
Objective Question			
19 19	The genes which encodes beta lactamases and imparts resistance to beta lactam drugs	4.0	1.00
	A1 Ampc gene		
	A2 Bla gene		

		A3 P-glycoprotein gene		
		A4 Both Ampc gene & Bla gene		
Objec	tive Question			
20	20	The target antigen for malaria rapid diagnosis are	4.0	1.00
		A1 Hrp-2		
		A2 Adh & aldolase		
		A3 Both Hrp-2 & Adh, aldolase		
		A4 None of these		
01.	···· O			
Objec 21	tive Question	Protozoa have several types of vacuoles. The function of a contractile vacuole is to	4.0	1.00
		110020a have several types of vacuoles. The function of a contractic vacuole is to		
		A1 Maintain osmotic balance by continuous water expulsion		
		A2 Creates sites of food digestion		
		A3 Contain specific enzymes that perform various functions:		
		A4 Have sites for photosynthesis		
Objec	tive Question			
22	22	Human transmission of Brucellae occurs by	4.0	1.00
		A1 Ingestion of contaminated meat		
		A2 Direct contact with animal tissues		
		A3 Ingestion of infected milk:		
		A4 All of these:		
	tive Question		4.0	1.00
23	23	Viral RNA is replicated in the host cell	4.0	1.00
		A1 Cytoplasmic matrix		

		A2 Nucleus		
		·		
		A3 Mitochondria		
		A4 Lysozomes		
Objec	ctive Question			
24	24	Virulent and nonvirulent viruses may not	4.0	1.00
		A1 inhibit host cell DNA synthesis		
		A2 inhibit host cell RNA synthesis		
		A3 : stimulate host cell macromolecule synthesis		
		A4 degrade host cell DNA :		
	ctive Question			
25	25	Which of the following virus is always detectable after infections?	4.0	1.00
		A1 Hepatitis B virus		
		A2 Herpes simplex virus		
		A3 Varicella-zoster virus		
		A4 Cytomegalovirus		
Obiec	ctive Question			
26	26	CoVs are	4.0	1.00
		A1 RNA viruses		
		A2 DNA Viruses		
		A3 Prions		
		A4 None of these		
Ohiec	ctive Question			
27	27	Blight diseases of rice is caused by	4.0	1.00
		A1 Oryzasativa		

		A2 Xanthomonasoryzae		
		A3 Clostridium sp		
		A4 Enteroccocusfaecalis		
hiec	tive Question			
28	28	Which of the following is not essential for Immunoprecipitation?	4.0	1.00
		Al Protein A		
		A2 Protein G		
		A3 Anti-mouse HRP conjugate		
		A4 Anti-mouse sepharose conjugate		
Ohiec	tive Question			
9 9	29	Maturation of B cell occurs in	4.0	1.00
		Al Thymus		
		A2 Lymph node		
		A3 Blood		
		A4 Bone marrow :		
Objec	tive Question			
30	30	The consensus sequence required for the initiation of translation is termed as:	4.0	1.00
		A1 Pribnow Box		
		A2 Kozak Sequence		
		A3 Shine Dalgarno Sequence		
		A4 TATA Box		
Objec	tive Question			
-,,	31	All the amino acids are encoded by more than one codon except	4.0	1.00

II		ĮI.	II
	A1 Methionine and tryptophan		
	A2 Serine :		
	A3 Methionine		
	A4 Valine :		
Objective Question 32 32		4.0	1.00
32 32	The protein which regulates the expression of genes by decreasing the rate of transcription is called	4.0	1.00
	A1 Inducer		
	A2 Repressor		
	A3 Enhancer		
	A4 Both Inducer & Enhancer		
Objective Question			
33 33	In eukaryotes, DNA methylation is catalysed by	4.0	1.00
	Al DNA methyl transferases:		
	A2 methyl isocyanate		
	A3 methyl ester protease:		
	A4 terminal DNA transferase		
Objective Question 34 34	Ribosomes are made up of	4.0	1.00
	racesones are made up of		
	A1 Proteins		
	A2 RNA		
	A3 RNA and Proteins		

	ctive Question			
35	35	The binding of mRNA to 30S subunit is initiated by	4.0	1.00
		A1 : Initiation factor IF3		
		A2 Initiation factor IF1		
		A3 Initiation factor IF5		
		A4		
		A4 Initiation factor IF4		
	ctive Question			
86	36	Sterilization can be performed by using	4.0	1.00
		A1 : Heat		
		A2 Filtration		
		A3 Chemicals		
		A4		
		A4 All of these		
	ctive Question			
37	37	Which of the following are commonly used control/housekeeping gene in QRT-PCT?	4.0	1.00
		A1 Actin		
		A2 GAPDH:		
		A3 P53		
		A4 Deals Action & CARDII		
		A4 Both Actin & GAPDH		
	ctive Question			
38	38	Which of the following method cannot be used to study the protein-protein interaction?	4.0	1.00
		A1 Surface plasmon surface detection		
		A2 Yeast-2-hybrid screening:		
		A 2		
		A3 GST-pull down		
		A4 Flow cytometer		

01:				
Objec 39	etive Question		4.0	1.00
37	39	Bacterial artificial chromosome can be best transformed to Escherichia coli using	4.0	1.00
		Δ1		
		A1 Microinjection		
		A2 Electroporation		
		A2		
		A3 Lipofection		
		A4 Liposuction		
		: Exposition		
Objec 40	tive Question	TY IN THE STATE OF	4.0	1.00
+0	40	Unspecific amplification in polymerase chain reaction can be avoided by using	4.0	1.00
		A1		
		A1 High annealing temperature		
		A2 Increased template DNA		
		A3		
		A3 High DNA Polymerase		
		A4 Low annealing temperature		
Ohiec	tive Question			
41	41	Which of the following dye can be used to study cell proliferation in flow cytometry?	4.0	1.00
		A1 Ethidium bromide		
		: Eundrum oronide		
		A2 Propidium iodide		
		A3 Phycoerythrin		
		: Inycocrythin		
		A4 Phycocyanin		
Objec	tive Question			
42	42	The dye used in two-dimension differential gel electrophoresis is	4.0	1.00
		A1 Cy2, 3 & 5		
		A2		
		A2 Cy2, 3 & 4		
		A3 Cy1, 2 & 3		

	A4 Cy3, 4 & 5		
Objective Question			
43 43	Study of all protein samples recovered directly from environmental sources is termed as	4.0	1.00
	A1 Proteomic :		
	A2 Transcriptomics		
	A3 Metaproteomics		
	A4 Metagenomics		
Objective Question			
44 44	Bioaugmemtation involves	4.0	1.00
	A1 Use of genetically modified DNA for bioremediation		
	A2 Use of microbes for bioremediation		
	A3 Use of compost for bioremediation :		
	A4 None of these		
Objective Question			
45 45	All organic matters are finally broken down to	4.0	1.00
	Al Carbon :		
	A2 Urea :		
	A3 Oxygen		
	A4 None of these:		
Objective Question			
46 46	Rhizofiltration is used to	4.0	1.00
	A1 Reduce mobility of contaminated soil		
	A2 Reduce contamination of natural wetland		

		A3 Reduce pesticide accumulation		
		A4 Prevent leaching contaminants from the disposal site		
Obiect	rive Question			
47	47	Which of the following is not a vector used in gene therapy?	4.0	1.00
		A1 AAV :		
		A2 Herpes		
		A3 Retro virus		
		A4 HIV		
Object	rive Question			
48	48	One gram of soil sample has been diluted to 10 ⁻⁵ and 0.5 ml of it has been inoculated in a petri plate containing agar media. The number of colonies recorded in the plate after 24hrs incubation is 60. The CFU count will be:	4.0	1.00
		A1 60 x 10 ⁻⁵ /g		
		$^{A2}_{:}$ 60 x 10 ⁵ /g		
		A3 : 120 x 10 ⁻⁵ /g		
		$ \stackrel{\text{A4}}{:} 120 \times 10^5/\text{g} $		
Object	rive Question			
49	49	An Hfr strain of E. coli contains	4.0	1.00
		A1 A vector of yeast or bacterial origin which is used to make many copies of particular DNA sequence		
		A2 A bacterial chromosomes with a human gene inserted:		
		A3 Bacterial chromosomes with a F factor inserted :		
		A4 Human chromosome with a transposable element inserted		
Obiac	ive Question			
50	50	Which component of transcribed RNA in eukaryotes is present in the initial transcript but is removed before translation occurs?	4.0	1.00

		A2 3'-poly A tail		
		A3 Ribosome binding site		
		A4 D 5' cap		
	ctive Question			
51	51	A linkage map	4.0	1.00
		A1 orders genes on a chromosome based on recombination frequencies		
		A2 can only be constructed for sex chromosomes		
		A3 : orders genes on a chromosome based on their location with respect to a stained band		
		A4 shows the actual ordering and spacing of genes on a chromosome		
	ctive Question			
52	52	Each cell in an individual with Down syndrome contains chromosomes.	4.0	1.00
		A1 47 :		
		A2 22 :		
		A3 ₂₄		
		A4 45 :		
Objec	ctive Question			
	53	The acrosome of the sperm is formed from the	4.0	1.00
		A1 Mitochondria		
		A2 Centrosome		
		A3 Lysosome		
		A4 Golgi bodies		
Ohiec	ctive Question			
Cojes	54	An open reading frame is one that has-	4.0	1.00

		A1 No start and stop codon :		
		A2 A start & stop codon		
		A3 No start but stop codon		
		A4 A start but no stop codon		
Objec	ctive Question			
55	55	Which of the following is not associated with cell cycle-?	4.0	1.00
		A1 Cyclins		
		A2 Myosins		
		A3 CDK		
		A4 DNA polymerases		
Object	ctive Question			
56	56	In a Sephadex gel filtration column, a mixture of albumin, lysozyme and thymidine was loaded. In what sequence these will be eluted from the column-	4.0	1.00
		A1 Albumin > Lysozyme > Thymidine		
		A2 Lysozyme > Thymidine > Albumin		
		A3 Thymidine > Albumin > Lysozyme		
		A4 Thymidine > Lysozyme > Albumin		
O1.	tive Or esti			
Object 57	etive Question	Compound microscope was discovered by	4.0	1.00
		A1 Antony von	1.0	1.00
		A2 Pasteur		
		A3 Johnsen & Hans		
		A4 None of these		

58	tive Question 58	Which of the following is ionizing radiation?	4.0	1.00
		A1 U.V. rays		
		:		
		A2 Infrared rays		
		A3 X-rays		
		: A-rays		
		A4 None of these		
Objec	tive Question			
59	59	Nagler's reaction detects	4.0	1.00
		Al Coagulase		
		:		
		A2 Hyaluronidase		
		A3 Lecithinase		
		: Lectumase :		
		A4 None of these		
Objec	tive Question			
60	60	Which of the following is an example of RNA virus?	4.0	1.00
		A1 SV 40		
		42		
		A2 T4 phage		
		A3 Tobacco mosaic virus		
		:		
		A4 Adeno virus		
Objec	tive Question			
61	61	In which medium the hydridoma cells grow selectively?	4.0	1.00
		A1 Polyethylene glycol		
		A2		
		A2 Hypoxanthine aminopterinthyminine:		
		A3 : Hypoxathing-guaning phosphoribosyl transferase		
		: 11) portuning guaining phosphoticosy transitiase		
		A4 Both Hypoxanthine aminopterinthyminine and Hypoxathing-guaning phosphoribosyl transferase		

Objective Questi	on		
62 62	Double standard RNA is seen in	4.0	1.00
	A1 Reo virus		
	A2 Rhabdo virus		
	A3 Parvo virus		
	A4 Retro virus		
Objective Question			
63 63	Shick test is used for the detection of	4.0	1.00
	A1 Diphtheria		
	A2 T.B.		
	A3 Cholera		
	A4 Typhoid		
Objective Questi	on		
64 64	Attenuated, oral poliomyelitis vaccine is	4.0	1.00
	A1 BCG		
	A2 Measles vaccine		
	A3 Sabin vaccine		
	A4 TAB vaccine		
Objective Question			
65 65	Mountax reaction is used for detection of	4.0	1.00
	A1 Tuberculosis		
	A2 Diphtheria		
	A3 Cholera		

Objective Question			
66 66	Example for live vaccine is	4.0	1.00
	A1 Rubella & BCG		
	A2 Polio & TAB		
	A3 Diphtheria & Tetanus		
	A4 Hepatitis A & Rabies		
Objective Question			
67 67	Kinetosomes are observed in	4.0	1.00
	Al Algae		
	A2 Fungi		
	A3 Protozoa		
	A4 Viruses		
Objective Question 68 68	Lyme disease is caused by	4.0	1.00
	Lyme disease is caused by		1.00
	A1 Bacteria		
	A2 Fungi		
	A3 Spirochaete		
	A4 Virus :		
Objective Question 69 69	"Toxic shock syndrome" is caused by the toxin of	4.0	1.00
	A1 Staphylococcus aureus		
	A2 Streptococcus pyogen		

		A3 Vibrio cholera		
		A4 Candida		
Objec	ctive Question			
70	70	Yellow fever is caused by	4.0	1.00
		Al Bunya virus		
		A2 Calci virus		
		A3 Arbo virus		
		A4 None of these		
Ohied	ctive Question			
71	71	Pfeiffer phenomenon is related to	4.0	1.00
		A1 Vibrio cholerae		
		A2 Bacillus anthrax		
		A3 Rickettsial pox		
		A4 All of these		
Obied	ctive Question			
72	72	Endotoxin produced by gramnegative bacteria is present in	4.0	1.00
		A1 Peptidoglycan		
		A2 Lippolysacharide		
		A3 Theichoic acid:		
		A4 Inner membrane :		
Objec	ctive Question			
73	73	Which one of the following was Gramnegative, chemolithotrophic bacteria is	4.0	1.00
		A1 Siderococcus		
		A2 E.coli		

	A3 Spirellum		
	A4 Mycoplasms		
Objective Question			
74 74	The mode of reproduction which occurs in mycoplasma is	4.0	1.00
	A1 Budding		
	A2 Bursting		
	A3 Binary fission		
	A4 Binary fusion		
Objective Question			
75 75	Which one of the following is about Herpes viruses?	4.0	1.00
	A1 Icosahedral, with envelope, ds DNA		
	A2 Polyhedral with envelope, ds DNA		
	A3 RNA, helical with envelope		
	A4 dsDNA, brick shape		
Objective Question			
76 76	The smallest virus is	4.0	1.00
	A1 Parvo virus		
	A2 Rhabdo virus		
	A3 Pox virus		
	A4 Adeno virus		
Objective Question			
77 77	Influenza virus contains	4.0	1.00
	A1 Eight segments of RNA		

		A2 Two strands of RNA		
		A3 Single RNA		
		A4 None of these		
	ctive Question			
78	78	What are the Cell receptors for Influenza viruse	4.0	1.00
		A1 Sialic acid		
		A2 Sialic acid containing glycoproteins		
		A3 Glycolipid :		
		A4 Sialic acid containing glycolipid		
Objec	ctive Question			
79	79	CD155 is receptor for	4.0	1.00
		A1 Poliovirus		
		A2 HIV		
		A3 Hepatitis virus		
		A4 Rabies virus		
Objec	ctive Question			
80	80	Myristylated protein in the picornavirus capsid is	4.0	1.00
		A1 VP4:		
		A2 _{VP2} :		
		A3 VP6 :		
		A4 VPm:		
Objec	ctive Question		4.0	1.00

		A1 RNase II :		
		A2 RNase III		
		A3 DNase II		
		A4 DNase III		
Object	tive Question			
82	82	The rate at which the DNA Sequences evolve and diverge at a constant rate is known as	4.0	1.00
		A1 Molecular evolution		
		A2 Molecular divergence		
		A3 Molecular clock		
		A4 Genetic drift		
Object	tive Question			
83	83	Given below are two statements, one labelled as Assertion (a) and the other labelled as reason(R):	4.0	1.00
		Assertion (A): Most of the evolutionary theories support natural selection Reason (R): Mass extinction of giant and dominating dinosaurs is due to natural selection		
		In the context of the above two statements, which of the following statements is correct		
		A1 Both (A) and (R) are true and (R) is the correct explanation of (A)		
		A2 Both (A) and (R) are true but (R) is not the correct explanation of (A)		
		A3 (A) is true and (R) is false		
		A4 (A) is false and (R) is true		
Object	tive Question			
84	84	In the light of modern evidences, the original theory of Darwin is now known as a	4.0	1.00
		A1 Re- Darwinism		
		A2 Neo- Darwinism		
		A3 Iso- Darwinism		

		A4 Trans- Darwinism		
Objec	tive Question			
85	85	Member of the same species which are capable of interbreeding is best describe as	4.0	1.00
		A1 Community		
		A2 Population :		
		A3 Eco system		
		A4 Biosphere		
Ohiec	tive Question			
86	86	Which of the fact suggests that eukaryotic mitochondria and chloroplast are evolved from prokaryotes?	4.0	1.00
		A1 The ribosome found in chloroplast and mitochondria are similar in size as found in prokaryotes		
		A2 DNA is present in both chloroplast and mitochondria :		
		A3 The inner membrane of chloroplast and mitochondria is similar to prokaryotes while outer membranes are similar to eukaryotes		
		A4 All of these		
Ohiec	etive Question			
87	87	Which of the following would cause deviation from the Hardy – Weinberg equilibrium?	4.0	1.00
		Al Small population		
		A2 Isolation		
		A3 Random mating		
		A4 Lack of selection pressure		
Ohiaa	etive Question			
88	88	If 16% of the persons in a population show a recessive trait, what is the allelic frequency for the dominant allele?	4.0	1.00
		A1 4%		
		A2 16%		
		A3 84%		

		A4 96% :		
	ctive Question		4.0	1.00
89	89	Choose the correct sequence of evolutionary events in one form of allopatric speciation, using the codes given below I. Geographical isolation III. Ecological isolation III. Increased pre- mating reproductive isolation IV. Increased genetic divergence V. Selection completed. A1 III IV II V A2 I IV III V A3 III II IV V A3 III II IV V	4.0	1.00
		A4 I II III V		
	ctive Question			
90	90	Mangroves are highly productive eco system but they are poor in bird diversity because	4.0	1.00
		A1 Lack of structural diversity A2 Lack of food diversity :		
		A3 More number of predators that feed on birds:		
		A4 Lack of breeding place		
	ctive Question			
91	91	Among the following which would lead into new species formation	4.0	1.00
		A1 Increased resources		
		A2 Niche overlapping tolerance		
		A3 Niche specialization		
		A4 Lack of competition		
	ctive Question			
92	92	"Inclusive fitness " theory was originally put forward by	4.0	1.00

	A1 Hamilton		
	: A2 RA Fisher		
	A3 JBS Haldane		
	A4 Darwin		
Ohi antina Omanti			
Objective Question 93 93	Altruistic behaviour is not seen in	4.0	1.00
	And distributed is not seen in		
	A1 Ant :		
	A2 Bee		
	A3 Termite :		
	A4 Silk Worm		
Objective Questi	on		
94	Consider the following statement I. Reciprocal altruism health or sacrifice repaid later II. Kin selection present when self-sacrifice relatives lead to altruism III. Courtship ritual minimizes agonistic behaviour before mating IV. Cognition is the ability to store, process and use sensory information	4.0	1.00
	Which of the above statement are correct regarding animal behaviour?		
	A1 I, II, and III		
	A2 II, III, and IV		
	A3 I, III, and IV		
	A4 I, II, III, and IV		
Objective Questi	on.		
95 95	Which of species are occupationally referred to us "opportunist"?	4.0	1.00
	A1 Allopatric species		
	:		
	Δ2		
	A2 Sympatric species:		

		$\begin{vmatrix} A4 \\ \vdots \end{vmatrix}$ r – selected species		
Object 96	tive Question	Alpha mala ara ayampla of	4.0	1.00
<i>7</i> 0		Alpha male are example of	4.0	1.00
		A1 Social dominance		
		A2 Intragroup aggression		
		A3 Agnostic behaviour		
		A4 All of these		
Obiec	tive Question			
97	97	In plant tissue culture – callus is	4.0	1.00
		Al Differentiated non – dividing mass of cells		
		A2 Differentiated actively dividing mass of cell		
		A3 Undifferentiated non – dividing mass of cells		
		A4 Undifferentiated actively dividing mass of cell		
Objec	tive Question			
98	98	The production of substance in industrial microbiology occur in the sequence	4.0	1.00
		A1 Fermentation, downstream processing, removal of waste and inoculation		
		A2 Inoculation, downstream processing, fermentation and removal of waste		
		A3 Inoculation, fermentation, downstream processing and removal of waste		
		A4 Removal of waste, inoculation, fermentation, and downstream processing		
Objec	tive Question			
99	99	Thermal death point is	4.0	1.00
		Al Time require to kill all cell at given temperature		
		A2 Lowest temperature necessary to kill all cells in 10 minutes		
		A3 Time and temperature require to kill all cells		

		: A4 All of these						
-	Objective Question							
100	100	Dysbiosis of microbiome indicates	4.0	1.00				
		A1 Probiotics A2 Impaired microbiota						
		A3 : Abundance of Genus						
		A4 Abundance of Species						