ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (NANO SCIENCE AND TECHNOLOGY)

COURSE CODE: 160

Registe	er Number :		
		Sign	ature of the Invigilator (with date)
			(with date)

COURSE CODE: 160

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Mag	nitude of a vector	r is 2i	+3j+k is					
	(A)	$\sqrt{14}$	(B)	6	(C)	14	(D)	$\sqrt{6}$	
2.	The	set of elements is	said	to be group	of it has				
	(A)	Closed property			(B)	Associate p	roperty		
	(C)	Identity proper			(D)	All of the a	bove		
3.	Wha	it is the probabili	ty of	getting 2 an	d 3 when	throwing a d	lice		
	(A)	1/6	(B)	3/6	(C)	2/6	(D)	4/6	
	T25 J	1 : 41: (1 1 0	E 96 90	2020				
4.		x in the series:				696	(D)	697	
	(A)	652	(B)	600	(C)	626	(D)	627	
5.	Four	rier series expan	sion is	s possible or	aly if the f	unction is			
		Periodic			(B)	Non-period	ic		
	(C)	Discontinuous			(D)	All of the a	bove		
6.	If th	e two ends of a F	N jur	action are jo	ined by a	wire			
	(A)	There will not h	e stea	ady current	in the circ	cuit			
	(B)	There will be a	stead	~ current fr	om n-side	to p-side			
	(C)	There will be a	stead	y current fr	om p-side	to n-side			
	(D)	There may or connecting wire		not be a c	current de	epending up	on the re	sistance (of the
7.	The	mass number of	a nuc	leus is equa	ıl to				
	(A)	Number of neu	trons	in the nucle	eus				
	(B)	Number of Prof	tons in	n the nucleu	ıs				
	(C)	None of these							
	(D)	Number of Nuc	leons	in the nucle	eus				
8.	As c	compared to ^{12}C	atom,	14C atom ha	as				

(B)

(C)

(D)

Two extra Protons and two extra electrons Two extra Protons but no extra electrons

Two extra neutrons and no extra electrons

Two extra neutrons and two extra electrons

9.		a particle is bo mitted This par		l on ¹⁴ N . As re	esult a	a 17 O nucleus is	formed	and a particle
	(A)	Neutron	(B)	Proton	(C)	Electron	(D)	Positron
10.	Dur	ing a nuclear f	ission re	action				
	(A)	A heavy nucl	eus brea	ks into two fra	gment	s by it self		
	(B)	A light nucle	us bomb	arded by thern	nal nev	itrons breaks u	р	
	(C)	A heavy nucl	eus bom	barded by ther	mal ne	eutrons breaks	up	
	(D)	Two light nu	clei comb	oine to give a h	eavier	nucleus and ot	her prod	lucts
11.	Whi	ch of the follov	ving pro	perty does not	have a	ny unit?		
	(A)	Ionization po	tential		(B)	Electro negati	vity	
	(C)	Atomic radii			(D)	Electron affin	ity	
12.	Whi	ch of the follov	ving halo	gen has highe	st bone	d energy?		
	(A)	Cl ₂	(B)	Br_2	(C)	I_2	(D)	F_2
13.	NO.	has bond orde	er					
	(A)	2	(B)	$2\frac{1}{2}$	(C)	3	(D)	$3\frac{1}{2}$
14.	The	lowest boiling	point ar	nong the follow	ving hy	drides is of		
	(A)	NH_3	(B)	PH_3	(C)	AsH_3	(D)	SbH ₃
15	Y 17		CNT+ C	Nlocale	اء ما		ad from	
15.			-			ectron is remov		
	(A)	π orbital	(B)	π^* orbital	(C)	σ orbital	(D)	σ^* orbital
16.	If p	ure Copper wir	e is bent	t multiple time	s. its r	esistivity		
10.	(A)	increases			(B)	decreases		
	(C)	does not char	nge		(D)		then in	creases
17.	The	plastics which	soften i	ipon being hea	ted bu	t regains all its	origina	propeties on
		ing are known					0	
	(A)	thermoplasti			(B)	thermosetting	g plastic	S
	(C)	thermoelasti			(D)	cellulose		

18.	Smal	llest repea	at entity o	of the	crystal str	uctures i	s known as		
	(A)	lattice		В) т	unit cell	(C)	Miller indices	(D)	phase
19.	Diffu	sion can	occur in						
	(A)	Solids	. (B)]	Liquids	(C)	Gases	(D)	All
20.		relation be		ne ph	ase (P), com	ponent (C) and degrees o	f freed	lom (F) is given
	(A)	C+P	(B)]	P(C-l)	(C)	C-P+2	(D)	C-P
21.	At ne	eutral pH,	a mixtur	re of a	amino acids	in solut	ion would be pre	domin	antly
	(A)	dipolar io	ons			(B)	non polar molec	cules	
	(C)	positive a	and mono	valer	nt	(D)	hydrophobic		
22.					city at phy g amino acid		l pH would be p	provide	ed by a protein
	(A)	Lysine	. (B)	Histidine	(C)	Aspartic acid	(D)	Valine
23.	Whic	ch of the fe	ollowing	classe	es of aminoa	acids con	tains only nones	sentia	l aminoacids?
	(A)	Basic am	inoacids			(B)	Branched-chair	amin	oacids
	(C)	Aromatic	aminoac	eids		(D)	None of the abo	ve	
24.		ch of the f e same?	following	state	ements abou	ıt solutio	ons of aminoacid	s at p	hysiological pH
	(A)	All amin	oacids co	ntain	both positi	ve and n	egative charges		
	(B)	All amin	oacids co	ntain	positively o	charged a	side chains		
	(C)	Some am	inoacids	conta	ain negative	ly charg	ed side chains		
	(D)	All amin	oacids co	ntain	negatively	charged	side chains		
25.	In pr	roteins, th	e α-helix	k and	β -pleated	sheet ar	e examples of		
	(A)	Primary	structure	9		(B)	Secondary struc	cture	
	(C)	Tertiary	structure	9		(D)	Quaternary str	ucture	
26.	$\lim_{x\to 0} \frac{1}{x}$	$\frac{(1-\cos x)}{x^2}$							
	(A)	1	(B)	00	(C)	- 00	(D)	1

- 27. Value of $\int_{0}^{1} xe^{x} dx = ?$
 - (A) 0

- (B) -∞
- (C) +∞
- (D) 1

- 28. Slope of a line passing parallel to x axis is
 - (A) 0
- (B) ∞
- (C) --
- (D) 1

- 29. Equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ represents
 - (A) Square
- (B) Straight line
- (C) Parabola
- (D) Ellipse

30. The curve in the figure is described by a function

- (A) $\sin x$
- (B) cos x
- (C) sinh hx
- (D) $\cos hx$
- A charged particle is projected at a very high speed perpendicular to a uniform magnetic field. The particle will
 - (A) Move along a circle
 - (B) Move along a curve with increasing radius of curvature
 - (C) Move along a curve with decreasing radius of curvature
 - (D) Move along a straight line
- 32. An experimenter measures the length of a rod. Initially the experimenter and the rod are at rest with respect to the lab. Consider the following statements.
 - It the rod starts moving parallel to its length but the observer stays at rest the measured length will be reduced
 - If the rod stays at rest, but the observer starts moving parallel to the measured length of the rod, the length will be reduced
 - (A) i is true but ii is false
 - (B) ii is true but i is false
 - (C) Both i and ii are true
 - (D) Both i and ii are false
- 33. In which of the following transitions will the wavelength be minimum?
 - (A) n=5 to n=4
- (B) n=4 to n=3
- (C) n=3 to n=2
- (d) n=2 to n=1

- 34. Which of the following parameters are the same for all hydrogen like atoms in their ground state?
 - (A) Radius of the orbit
 - (B) Speed of the electron
 - (C) Energy of the atom
 - (D) Orbital angular momentum of the electron
- 35. In a LASER tube, all the photons
 - (A) Have the same wavelength
 - (B) Have same energy
 - (C) Move in the same direction
 - (D) Move with the same speed
- The Born exponent for Ag⁺ ion type is
 - (A) 5

- (B) 7
- (C) 9

(D) 10

- 37. The example of covalent solid is
 - (A) CaSO₄
- (B) SiC
- (C) NaCl
- (D) CaF2
- 38. Which of following set of molecules have 2 lone pairs in each
 - (A) IF5, BrF5, PF5

(B) XeF₄, BrF₃, SCl₂

(C) SF₆, XeF₆, PCl₃

- (D) TeCl₄, XeOF₄, SnCl₂
- 39. The correct structure for 2-napthanoic acid is

40. The correct IUPAC name of the compound

(A) 2-amino pyridine

(B) 2-amino pyrole

(C) 3-amino pyridine

(D) 3-amino pyrole

41. In heat treatment quenching refers to

(A) Slow cooling

(B) Rapid cooling

(C) Slow heating

(D) Rapid heating

42. Ductility arise from

(A) Single crystal

- (B) Glassy structure
- (C) Stress to move a dislocation is low
- (D) Stress to move a dislocation is high

43. For good photoemission semiconductors should have

(A) Direct bandgap

(B) Indirect bandgap

(C) Photonic bandgap

(D) All

44. The temperature at which new grains are formed in a metal are known as

(A) Curie temperature

- (B) Upper critical temperature
- (C) Lower critical temperature
- (D) Recrystallization temperature

45. Number of atoms in a FCC unit cell is

- (A) 1
- (B) 2
- (C) 3

(D) 4

46. The following facts are true of all transfer (t) RNAs EXCEPT that

- (A) the 5' end is phosphorylated
- (B) they are single chains
- (C) methylated bases are found
- (D) the anticodon loop is identical

47. Some of the enzymes utilized in DNA replication are (1) DNA-directed DNA polymerase, (2) unwinding proteins, (3) DNA polymerase I, (4) DNA-directed RNA polymerase, and (5) DNA ligase. What is the correct sequence of their use during DNA synthesis?

- (A) 4, 3, 1, 2,5
- (B) 2, 3, 4, 1.5
- (C) 4, 2, 1, 5, 3
- (D) 2, 4, 1, 3, 5

- Which of the following statements regarding a double helical molecule of DNA is true?
 - All hydroxyl groups of pentoses are involved in linkages
 - Bases are perpendicular to the axis (B)
 - (C) Each strand in identical
 - (D) Each strand in parallel
- 49. S-Adenosylmethionine is shown below with 4 substituent groups labeled A through D. Which group is S-Adenosylmethionine able to donate in creatine synthesis?

- (A) A
- (B) B
- (C) C

- (D) D
- 50. Which of the following is a metabolic pathway common to bacteria and humans?
 - (A) Purine synthesis

- Nitrogen fixation (B)
- (C) Cell wall mucopeptide synthesis
- (D) Fermentation to ethyl alcohol
- Multiplicative inverse of a matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

- (B) $\begin{pmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{pmatrix}$ (D) $\begin{pmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$
- (A) $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ (C) $\begin{pmatrix} -\cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$

- 52. $(AB)^T = ?$
 - (A) (AB)-1
- (B) $A^{-1}B^{-1}$
- (C) B^TA^T
- (D) A^TB^T

- Trace of a matrix is $\begin{pmatrix} 5 & 7 & 9 \\ 2 & 3 & 5 \\ 1 & 4 & 2 \end{pmatrix}$
 - (A) 5
- (B) 13
- (C) 16
- (D) 10

54. If
$$A = \begin{pmatrix} A & D & G \\ B & E & H \\ C & F & I \end{pmatrix}$$
 then $\begin{pmatrix} D & A & G \\ E & B & H \\ F & C & I \end{pmatrix}$

- (C) A

- 55. Find the value of $\int_{-\pi}^{\frac{x}{2}} \sin x dx =$

 - (A) $\frac{1}{2}$ (B) $\sqrt{\frac{3}{4}}$
- (C) $\frac{-1}{2}$
- (D) 0
- The work function of a metal is hvo. Light of frequency v falls on this metal. The 56. photoelectric effect will take place only if

- (B) $v > 2v_0$ (C) $v < v_0$ (D) $v < v_0/2$
- 57. When stopping potential is applied in an experiment on photoelectric effect, no photo current is observed. This means that
 - The emission of photoelectrons is stopped
 - The photoelectrons are emitted but are reabsorbed by emitter metal
 - (C) The photoelectrons are accumulated near the collector plate
 - (D) The photoelectrons are dispersed from the sides of the apparatus
- The anode of a thermionic diode is connected to the negative terminal of a battery and 58. cathode to its positive terminal
 - (A) No appreciable current will pass through the diode
 - (B) A large current will pass through diode from anode to cathode
 - (C) A large current will pass through diode from cathode to anode
 - (D) The diode will be damaged
- A magnetic field directed in north direction acts on an electron moving in east direction. The magnetic force on the electron will act
 - (A) Vertically upward

(B) Towards the east

(C) Vertically downward

- (D) Towards the north
- 60. A person is facing magnetic north. An electron in front of him flies horizontally towards the north and deflects towards east. He is in/at
 - (A) Southern hemisphere

(B) Equator

(C) Northern hemisphere

(D) None of these

61.	Pick	out the incorrect match		
		Common Name	IUP	AC name
	(A)	Formamide	Met	hanamide
	(B)	Ethyl acetate	Eth	yl ethanoate
	(C)	Acetic anhydride	Acet	tic anhydride
	(D)	Methyl cyanide	Eth	anenitrile
62.	The	IUPAC name for urea is		
	(A)	diamide ketone	(B)	Carbamide
	(C)	Amine formamide	(D)	diamine methanone.
63.	Opti	cal activity is shown by a molecule wh	ich	
	(A)	contains at least three asymmetric ce	ntres	3
	(B)	is asymmetric as a whole		
	(C)	contains a double bone		
	(D)	has a centre of symmetry		
64.	Eryt	hrose and threose		
	(A)	arehomomers	(B)	are cis-trans isomers
	(C)	arediasterecoisomers	(D)	are optimers
65.	The	concept of stereochemistry is based on		
	(A)	VSEPR theory	(B)	Molecular orbital theory
	(C)	Valence bond theory	(D)	Vant'Hoff and Label's theor
66.	The	use of germanium in integrated circuit	t inst	ead of silicon is limited as
	(A)	Germanium has higher band gap ene	rgy	
	(B)	Junction leakage current is less		
	(C)	Germanium forms water soluble oxid	les	
	(D)	Melting point of germanium is higher	r	
67.	Indi	um tin oxide is widely used as in touch	-scre	en displays due to
	(A)	High adhesion properties		
	(B)	Transparent and conductive properti	es	
	(C)	Microwave characteristics		
	(D)	Dust proof properties		

68.	In to	elecommunication tecl	hnology optical f	fibers a	are preferre	ed over copp	er wires as
	(A)	Optical fibers have l	nigher electrical	condu	ctivity		
	(B)	Fibers are optically	translucent				
	(C)	Optical fibers show	higher photon tr	ansfer	than copp	er	
	(D)	Copper shows electr	omigration				
69.	Rule	e of mixtures are usef	ul				
	(A)	To predict the mech	anical property	of com	posites		
	(B)	To predict surface en	nergy				
	(C)	To predict the weldr	nent dissolution				
	(D)	To predict the stress	3				
70.	Car	bon nanotubes are					
	(A)	Conductors (B)	Insulators	(C)	Semicond	uctors (D)	All the above
71.		synthesis of fatty ivalent for fat product					
	(A)	Nicotinamide adenia	ne dinucleotide I	phosph	ate (NADI	P+)	
100	(B)	Flavin adenine dinu	cleotide (FAD+)			
	(C)	The reduced form of	Flavin adenine	dinucl	eotide (FA	$\mathrm{DH}_2)$	
	(U)	The reduced form of	Nicotinamide a	denine	dinucleoti	de phosphat	te (NADPH)
72.	-7.3	en that the standard kcal/mol and that for ne Δ G°' for the phospl	the hydrolysis	of gluc	(ΔG°') for ose 6-phos	the hydrol phate is -3.3	ysis of ATP is kcal/mol, what
		cose + ATP → Glucos					
		- 10.6 kcal/mol.	1 1		- 7.3 kcal/	mol.	
		- 4.0 kcal/mol.			+ 4.0 kcal	1.5	
				(-/			
73.	The	structure of glycerol i	for fatty acid est	erifica	tion in adi	pocytes is	
	(A)	for the most part de	rived from gluco	se			
	(B)	obtained primarily f	_		f glycerol b	ov glycerol k	inase
	(C)	formed by gluconeog			0.0		
	(D)	inhibited by insulin					
74.	that	yield from complete of from carbohydrates of ely represents the rati	on a dry-weight	basis.	Which of t	he following	is greater than fractions most
		1:2 (B)		(C)	1:4		2:3
75.	The	substrate for adolase	is				
	(A)	glucose 6-phosphate		(B)	fructose 6	-phosphate	
	(C)	fructose 1, 6-diphosp		(D)		lyceric acid.	
	00000					A CONTRACTOR OF THE PARTY OF TH	

76.		ition of different		2000				
	(A)	$Ae^{-3x} + Be^{-2x}$	(B)	$Ae^{3x} + \mathbf{B}e^{2x}$	(C)	$Ae^{-3x} + Be^{2x}$	(D)	$Ae^{3x} + Be^{-2x}$
77.	Inte	grating factor of	differ	ential equation	$\cos x$	$\left(\frac{dy}{dx}\right) + y\sin x = 1$	1	
	(A)	cosx	(B)	tan x	(C)	secx	(D)	$\sin x$
78.	cos($(180 - \theta)$ is						
	(A)	$-\sin\theta$	(B)	$-\cos\theta$	(C)	$\sin \theta$	(D)	$\cos \theta$
79.	If co	$\cos A = \frac{3}{4} \text{ then } 32$	$\sin\left(\frac{2}{3}\right)$	$\left(\frac{5A}{2}\right)\sin\left(\frac{5A}{2}\right) = ?$				
	(A)	7	(B)	8	(C)	11	(D)	15
80.	Proj	ection of $i + 2j +$	3k on	i-2j-2k is				
	(A)			3	(C)	-9	(D)	9
81.	At C	Curie temperatu	re the	ferromagnetic	materi	al gets converte	d into	
	(A)	Non-magnetic				Paramagnetic		al
	(C)	Diamagnetic n	nateria	1	(D)	Antiferromagn	netic ma	aterial
82.	Whi	ch of the followi	ng is c	orrect?				
	(A)	At Curie tempe	eratur	e ferromagneti	c mate	rial becomes fer	rimagn	etic
	(B)	At Curie tempe	eratur	e antiferromag	netic n	naterial become	s paran	nagnetic
	(C)	At Neel's temp	eratur	e antiferromag	gnetic r	naterial change	s to par	ramagnetic
	(D)	At Ned's tempe	eratur	e ferromagneti	c mate	rial becomes fer	rimagn	etic
83.		esistor 'R' dissipa		_			nerator.	If a resistance
	(A)	Increases			(B)	Decreases		
	(C)	Remains the sa	ame		(D)	Depends on th	e value	es of R ₁ and R ₂
84.	disp	simple pendul lacements in the r short pendulur	e same	direction at tl	he sam	e instant. They		
	(A)	1/3	(B)	1/4	(C)	4	(D)	5

85. According to Bohr's hypothesis, which of the following quantities is discre							es is discrete?			
	(A)	Angular velocity	7		(B)	Potential energ	gy			
	(C)	Momentum			(D)	Angular mome	entum			
86.	The	angle strain in pl	anar	cyclohexane is	nearly	,				
	(A)	13°	(B)	10°	(C)	20°	(D) 25°			
87.	Whi	ch of the following	g set	of quantum nu	mbers	is possible?				
	(A)	n=2, l=1, m=0, s	$=+\frac{1}{2}$		(B)	n=2, l=0, m=0,	$s = +\frac{1}{2}$			
	(C)	n=2, l=1, m=0, s=	=0		(D)	n=2, l=-2, m=-	$-2, s = +\frac{1}{2}$			
88.	The	f-type orbitals ha	ve m	aximum numbe	er of					
	(A)	3 sub shells	(B)	7 sub shells	(C)	5 sub shells	(D) 9 sub shells			
89.	Stru	acture of solid Na	Cl cry	rstal is						
	(A)	Cubic	(B)	Tetragonal	(C)	Triclinic	(D) Monoclinic			
90.	Boh	r's atomic model o	does 1	not agree with						
	(A)	Line spectra of l	nydro	gen atom	(B)	Heisenberg's p	orinciple			
	(C)	Planck's theory			(D)	Pauli's princip	le			
91.	Amo	ong the following	which	n statement is f	alse					
	(A)	Heat treatment	can o	change mechan	ical pr	operty				
	(B)	Heat treatment	can r	nodify microstr	ucture					
	(C)	(C) Heat treatment cannot be decided by phase diagram								
	(D)	Heat treatment	usefi	ıl in designing	proper	ties of material	s			
92.	Ion	implantation is a	proce	ess						
	(A)	To dope semicor	nduct	ors	(B)	In dental appl	ication			
	(C)	To predict cytot	oxicty	7	(D)	In residual life	e assessment			
93.	In a	irplanes the struc	ctural	material used	is					
	(A)	Silicon	(B)	Vanadium	(C)	Aluminum	(D) Steel			

94.	The	rmal barrier coatings are applied									
	(A)	(A) For high temperature protection of turbine components									
	(B)	In solid oxide fuel cells									
	(C)	To protect polymer life									
	(D)	To improve tensile strength									
95.	The	mechanical properties of fiber rein	forced co	mposite does not depend on							
	(A)	Stress loading direction									
	(B)	Interfacial bonding between fiber	-matrix								
	(C)	Orientation of fibre									
	(D)	None of the above									
96.	Whi	ch of the following statement is cor	rect?								
	(A)	All coenzymes are vitamins									
	(B)	All coenzymes contain vitamins of	r are vita	mins							
	(C)	Prostaglandins may be derived fr	om fat-so	luble vitamins							
	(D)	All water-soluble vitamins act as	coenzym	es or coenzyme precursors							
97.	All t	he following hormones use cyclic A	MP as a	second messenger EXCEPT							
	(A)	follicle-stimulating hormone	(B)	luteinizing hormone							
	(C)	glucagon	(D)	estrogen							
98.	liver		r activiti	ypes from such tissues as muscle, fat, es are increased following exposure to							
	(A)	plasma membrane transfer of glu	cose								
	(B)	glucose oxidation									
	(C)	gluconeogenesis									
	(D)	lipogenesis									
99.	sligh			f black coffee, a diabetic woman feels t. However, she does take her shot of							
	(A)	heightenedglycogenolysis	(B)	hypoglycemia							
	(C)	increased lipolysis	(D)	glucosuria							
100.	All t	he following are involved in calciu	n metabo	olism and function EXCEPT							
	(A)	thyroxine	(B)	parathyroid hormone							
	(C)	calcitonin	(D)	vitamin D							