ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (NANO SCIENCE AND TECHNOLOGY)

COURSE CODE: 160

Register Number :			
			Signature of the Invigilator (with date)
	COURSE CODE	. 160	

Instructions to Candidates :

Time: 2 Hours

1. Write your Register Number within the box provided on the top of this page and

2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.

Max: 400 Marks

- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.

fill in the page 1 of the answer sheet using pen.

- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Der is	nsity of 2.05M solution	of acetic acid in wate	er is 1.02g/mL. The molality of solution
	(A)	2.28 mol/Kg	(B)	0.044 mol/Kg
	(C)	1.14 mol/Kg	(D)	3.28 mol/Kg
2.	Var	our pressure of solution	n containing 18g of g	lucose and 178.2g of water at 100°C is
	(A)	76.0 Torr	(B)	759.0 Torr
	(C)	752.40 Torr	(D)	7.60 Torr
3.	Con 1.80	acentrated aqueous sul Og/mol. The volume of a	phuric acid is 98% cid required to make	H ₂ SO ₄ by mass and has a density of one liter of 0.1MH ₂ SO ₄ solution is
	(A)	5.56ml	(B)	11.10ml
	(C)	16.65ml	(D)	22.20ml
4.	Disa	solution of sugar in wat	er can be explained b	ру
	(A)	Hydrogen bonds	(B)	Ion-ion interaction
	(C)	Vander waals force	(D)	Ion-dipole interaction
5.	The	mathematical relation	, P=K _H X _B is based on	•
	(A)	Babo's law	(B)	Henry's law
	(C)	Raoult's law	(D)	Kohlrausch law
6.	Whi	ch of the following ions	has zero CFSE	
	(A)	$\mathrm{Fe^{2+}}$	(B)	Zn ²⁺
	(C)	Co3+	(D)	Ni ²⁺
7.	Whi	ch of the following cond	litions are suitable fo	r ideal solution?
	(A)	$\Delta Hmix > 0$	(B)	ΔSmix < 0
	(C)	$\Delta Gmix < 0$	(D)	$\Delta V mix = 0$
8.	Hyd	rogen bonding is maxin	num in	
	(A)	(CH ₃) ₃ N	(B)	(C ₂ H ₅) ₂ O
	(C)	C ₂ H ₅ OH	(D)	CH₃Cl
9.	An e	example for highly polar	r aprotic solvent is	
	(A)	CH ₃ CN	(B)	CCl ₄
	(C)	C ₆ H ₁₂	(D)	NH ₃
10.	Supe	erconductors are		
	(A)	Diamagnetic	(B)	Paramagnetic
	(C)	Ferromagnetic	(D)	Anti-Ferromagnetic
		the same of the sa		-

11.	A l	iquid was mixed with etha pound with a fruity smell v	nol and a drop vas formed. The	of concentrated H ₂ SO ₄ was added. A			
	(A)	СН₃СООН	(B)	CH₃OH			
	(C)	НСНО	(D)	CH₃COCH₃			
12.	Wh	ich of the following on heati	ng with aqueous	KOH, produces acetaldehyde?			
	(A)	CH ₃ CHCl ₂	(B)	CH ₃ COCl			
	(C)	CH ₃ CH ₂ Cl	(D)	CH ₂ ClCH ₂ Cl			
13.	Wh	ich of the following reaction	s does NOT give	H ₃ PO ₄ ?			
	(A)	$Ca_3(PO_4)_2 + H_2SO_4 \rightarrow$	(B)	$P_4O_6 + H_2O \rightarrow$			
	(C)	$PCl_5 + H_2O \rightarrow$	(D)	$P_4S_{10} + H_2O \rightarrow$			
14.	The	complex with the most inte	nse colour amon	g the following is			
	(A)	$[FeF_6]^3$	(B)	[MnCl ₄] ²			
	(C)	[CoCl ₄] ²	(D)	$[CoF_6]^3$			
15.	On a	addition of a solution of AgN to the formation of	IO3 to a solution	of Na ₂ S ₂ O ₃ , it turns black on standing			
	(A)	Ag	(B)	Ag_2S			
	(C)	$Ag_2S_2O_3$	(D)	Ag ₂ SO ₄			
16.	The octal	electronic configurations th hedral environment are	at have orbital a	ngular momentum contribution in an			
	(A)	$d^{\it l}$ and high spin $d^{\it d}$	(B)	d^{1} and d^{2}			
	(C)	d^2 and high spin d^6	(D)	high spin d^4 and high spin d^6			
17.	The unit of rate constant (k) for zero-order reaction is						
•	(A)	8 ⁻¹	(B)	L mol·1s-1			
	(C)	8	(D)	$\mathrm{mol}\;\mathrm{L}^{\cdot 1}s^{\cdot 1}$			
18.	Whic	Which of the following statements about the Eigenfunctions is NOT true					
	(A)	Eigen functions belonging t	o different eiger	ivalues are orthogonal			
	(B)	No two Eigen functions can	have the same	eigenvalue			
	(C)	An Eigenfunction is norma	lized if $\int \psi_n * \psi_n$	$d\tau = 1$			
	(D)	A constant multiplied by ar	n Eigen function	is still an Eigen function			

19.	In van der Waals equation of state of the gas law, the constant 'b' is a measure of			
	(A)	Intermolecular repulsions		
	(B)	Intermolecular attraction		
	(C)	Volume occupied by the molecules		

(D) Intermolecular collisions per unit volume

20. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJmol⁻¹ respectively. The enthalpy of formation of carbon monoxide per mole is

(A) 110.5 kJ (B) 676.5 kJ (C) -676.5 kJ (D) -110.5 KJ

21. An arithmetic progression consists of 21 terms. The sum of three terms in the middle is 129 and the sum of the last three terms is 237. The series is

(A) 2,7,12,17,.... (B) 3,7,11,15.... (C) 4,9,14,19.... (D) 6,10,14,18....

22. If α and β are the roots of quadratic equation $ax^2 + bx + c = 0$ then $\alpha^2 + \beta^2$ is equal to

(A) $\sqrt{\frac{b^2 - 4ac}{a}}$ (B) $\sqrt{\frac{b^2 - 4ac}{2a}}$ (C) $\frac{b^2 - 4ac}{a^2}$ (D) $\frac{b^2 - 2ac}{a^2}$

23. If $x + iy = \sqrt{\frac{a+ib}{c+id}}$ then $(c^2 + d^2)(x^2 + y^2)$ is equal to

(A) $a^2 - b^2$ (B) $a^2 + b^2$

(C) $(a+b)^2$ (D) $(a-ib)^2$

24. The cube roots of equation $x^3 + 8 = 0$ are

(A) -2, -3, -1 (B) $-2,1 \pm i\sqrt{2}$

(C) $-2, (1 \pm i\sqrt{3})$ (D) $-2, (1 \pm i\sqrt{4})$

25. Matrix $A = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$, Matrix $B \begin{pmatrix} -1 \\ 7 \end{pmatrix}$ find matrix (X) such that A+2X=B

(A) $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ (B) $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$

(C) $\begin{pmatrix} -3 \\ 5 \end{pmatrix}$ (D) $\begin{pmatrix} 5 \\ -3 \end{pmatrix}$

The values of x which satisfy the equation $5x^2 - 2x - 3 = 0$ are

(A) (1, -3/5)

(B) (-1, -3/5)

(C) (-1, 3/5)

(1, 3/5)

 $\csc(A) + \cot(A) =$ 27.

(A) $\frac{1}{\csc(A) - \sec(A)}$

(B) sec(A) + tan(A)

(C) 1

(D) $\frac{1}{\csc(A) - \cot(A)}$

Cos (C) - Cos (D) is 28.

- $(A) \quad 2\left(\sin\left(\frac{C+D}{2}\right)\right)\left(\cos\left(\frac{C-D}{2}\right)\right) \qquad (B) \quad 2\left(\cos\left(\frac{C+D}{2}\right)\right)\left(\sin\left(\frac{C-D}{2}\right)\right)$
- (C) $2\left(\cos\left(\frac{C+D}{2}\right)\right)\left(\cos\left(\frac{C-D}{2}\right)\right)$ (D) $2\left(\sin s\left(\frac{C+D}{2}\right)\right)\left(\sin\left(\frac{D-C}{2}\right)\right)$

Cos(3x) is 29.

(A) $4(\cos(x))^3 - 3\cos(x)$

(B) $4\cos(x) - 3(\cos(x))^3$

(C) $4(\cos(x))^3 - 4\sin(x)$

(D) $4(\cos(x))^3 - 3\sin(x)$

2Sin(A) Sin(B) is 30.

- (A) $\sin(A+B) + \sin(A-B)$
- (B) $\sin(A+B) \sin(A-B)$
- (C) $\cos(A+B)+\cos(A-B)$
- (D) $\cos(A-B)+\cos(A+B)$

31. $y = \csc(x)$ then $\frac{dy}{dx}$

(A) $-\csc(x)\cot(x)$

(B) $\csc(x) \cot(x)$

(C) $-(\csc(x))^2$.

(D) $\left(\sec(x)^2\right)$

32. $\int \frac{1}{r} dx$ is

 $(A) \quad \frac{1}{r^2}$

(B)

(C) $x \log(x)$

(D) $\log(x)$

- 33. $\int \cos(x) dx$ is
 - (A) $\sin(x)$

(B) $-\sin(x)$

(C) $\csc(x)$

(D) $\sec(x)$

- 34. $\int (\sec(x))^2 dx$ is
 - (A) $\sec(x) \tan(x)$

(B) $-\tan(x)$

(C) $\cot(x)$

- (D) tan(x)
- 35. Two straight lines $y_1 = m_1 x + c_1$, $y_2 = m_2 x + c_2$ then are parallel to each other if
 - $(A) \quad m_1 = m_2$

(B) $m_1m_2=1$

(C) $m_1 m_2 = -1$

- (D) $m_1 m_2 = 0$
- 36. If you have two straight lines $y_1 = m_1x + c_1$, $y_2 = m_2x + c_2$ then the angle between the lines is given by
 - (A) $\frac{m_1 + m_2}{1 + m_1 m_2}$

(B) $\frac{m_1 - m_2}{1 - m_1 m_2}$

(C) $\frac{m_1 + m_2}{1 - m_1 m_2}$

- (D) $\frac{m_1 m_2}{1 + m_1 m_2}$
- 37. Choose the in-correct answer
 - (A) No tangent can be drawn to a circle through a point inside the circle
 - (B) One and only one tangent can be drawn through a point on the circumference of the circle.
 - (C) Only one tangent can be drawn to a circle through a point outside the circle
 - (D) Any number of tangents can be drawn to a circle through a point outside the circle.
- 38. Choose the incorrect answer

If two tangents are drawn to a circle from an exterior point

- (A) The tangent are equal in length
- (B) The tangent subtend equal angles at the centre of the circle
- (C) The tangents are unequally inclined to the line joining the point and centre of the circle
- (D) The tangents are equally inclined to the line joining the point and centre of the circle

- The roots of the equation $x^2 2x + 7 = 0$ are
 - (A) (2,1)

(B) $(1+i\sqrt{6}, 1-i\sqrt{6})$

(C) $(1+i\sqrt{5}, 1-i\sqrt{4})$

- (D) (3, -1)
- **4**0. Some properties of the complex numbers are given below. Choose the incorrect one.
 - (A) If $(x + iy) = (5 + i\sqrt{3})$, then x = 5, $y = \sqrt{3}$
 - (B) If (a+ib) = (c+id), then (a-ib) = (c-id)
 - (C) (a+ib) X (c+id) = (ac-bd) + i(ad+bc)
 - (D) If (a+ib) = (c+id), then $a^2 + b^2 \neq c^2 + d^2$
- Which of the following statement is correct 41.
 - Dielectric constant and permeability are the same
 - Dielectric constant and relative permittivity are the same
 - (C) Permittivity and permeability are the same
 - **(D)** Dielectric constant and susceptibility are the same
- 42. The source of H is
 - (A) Q

(B) M

Ι (C)

В (D)

- Commutation (L^2, L_z) is
 - (A) Lz

 ihL_{\star} **(B)**

(C) ihL_{s}

- **(D)**
- Two wave functions ψ_1 and ψ_2 are orthogonal if 44.
 - (A) $\int \psi_1^* \ \psi_2 \ d\tau = 0$

(B) $\int \psi_1^* \psi_2 d\tau = 1$ (D) $\int |\psi_2|^2 d\tau = 0$

(C) $\int \left| \psi_1^2 \right| \, d\tau = 1$

- **45**. Entropy of the Universe tends to
 - (À) A minimum
 - **(B)** Zero
 - No particular value as it remains constant
 - A maximum (D)

46.	For a gas obeying Vanderwall's equation the critical constants can be related correctly			
	(A)	$\frac{RT}{P_c V_c} = \frac{8}{3}$	(B)	$\frac{P_c V_c}{RT_c} = \frac{8}{3}$
	(C)	$\frac{RT_c}{P_cV_c} = \frac{3}{8}$	(D)	$\frac{P_c V_c}{RT_c} = \frac{3}{8}$
47.	A s	tate of collective oscillati	on of valence electr	rons is
	(A)	Magnons	(B)	Plasmons
	(C)	Polaritons	(D)	Polarons
48.	Mei	ssner effect is observed i	n	
	(A)	Metals	(B)	Insulators
	(C)	Super-conductors	(D)	Semi-metals
49.		magnet is broken into tw		ce possesses two poles. The strength of e original magnet
	(A)	Same	(B)	1/2
	(C)	Double	(D)	1/4
50.	The	minimum number of NA	AND gates required	I to implement $A + A\overline{B} + A\overline{B}C$ is
	(Á)	4	(B)	
	(C)	3	(D)	0
51.	Wh code		n be used to chan	ge data from spatial code to temporal
	(A)	D/A converters	(B)	Counters
	(C)	Shift Registers	(D)	A/D converter
52.	The	mean momentum of a n	ucleon in a nucleus	s with mass number A varies as
	(A)	· A	(B)	A·1/3
	(C)	A^2	(D)	A·2/3
53.		ery long solenoidal with l at a point, which is on i		ength carries a current <i>I</i> . The magnetic face is
		$\frac{1}{2}\mu_0 nI$	(B)	$\mu_0 n I$
	(C)	$\frac{1}{3}\mu_0 nI$	(D)	$\mu_0 n I = rac{3}{2} \mu_0 n I$

- 54. In canonical ensemble,
 - (A) The energy and temperature are constants
 - (B) The entropy and the energy are constants
 - (C) The temperature and the density are constants
 - (D) The density and entropy are constants
- 55. Determine the missing "fission fragment" in the reaction

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{55}^{137}Cs + {}_{2}^{4}X + 3{}_{0}^{1}n$$

(A) 93₈₇Rb

(B) 94₃₇Rb

(C) 95₃₇Rb

- (D) 96₃₇Rb
- 56. An atom $^{219}85$ Y decays by \square decay, followed by γ decay, followed by β decay. What isotope X remains after the decays?
 - (A) $^{219}_{85}X$

(B) ²¹⁵83X

(C) $^{219}80X$

- (D) ²¹⁵84X
- 57. How much phosphorus must be added to 2 grams of silicon to create a doped semiconductor with a charge carrier density $n = 10^{21}/m^3$?
 - (A) 4.4×10^{-8} g

(B) $6.26 \times 10^{-23} \,\mathrm{g}$

(C) 44×10^{-8} g

- (D) 1.6×10⁻¹⁹ g
- 58. The current through the 5 Ω and 2 Ω resistors in the following diagram are, respectively

(A) 2.4 A and 2 A

(B) 2 A and 2.4 A

(C) 2.2 A and 2 A

- (D) 2 A and 2.2 A.
- 59. A thief travels at 80 mph passes a policeman. The policeman, initially at rest, accelerates at 10 mi/h/s. How long will it take the policeman to catch the thief?
 - (A) 10 seconds

(B) 12 seconds

(C) 14 seconds

(D) 16 seconds

60.	A 30 g ice cube at -5°C is placed in 508 g of 23°C water. Find the change in entropy ΔS of the water and ice as the ice melts and the system comes to equilibrium				
	(A)	7.58 J/K	(B)	-43.48 J/K	
	(C)	3.01 J/K	(D)	0 J/K	
61.		constant used in determining tal by apporoximating the ions by		static potential of a single ion in a rges is known as	
	(A)	Pauling	(B)	Schrodinger	
	(C)	Madelung	(D)	Depre	
62.		ss amplitude (S) versus number information about the following p		o the fatigue failure (N) plot provides	
	(A)	Hardness	(B)	Roughness	
	(C)	Creep	(D)	Fatigue	
63.	For	complete wetting of solid surface	the contac	t angle should be	
	(A)	0°	(B)	45°	
	(C)	90°	(D)	180°	
64.	Liqu reac	aid metals such as molten sodiur etor	n is preferr	red as a coolant in case of ——————	
	(A)	Fast breeder	(B)	Homogenous	
	(C)	Enriched uranium fueled	(D)	Uranium fueled	
65.	For	the cutting tools, tool life primar	ily influenc	ed by	
	(A)	Tool dimension	(B)	Lubricant	
	(C)	Cutting speed	(D)	Microstructure of the job	
66.	The forn	mean crystallite size of a nanoc nula	rystalline n	naterial is determined by	
	(A)	Scherrer	(B)	Young	
	(C)	Pilling-Bedworth	(D)	Arrhenius	
67.	Fric	tion factor for fluid flow in pipe o	loes not dej	pend upon the	
	(A)	Pipe roughness			
	(B)	Mass flow rate of the fulid			
	(C)	Length of the pipe			
	(D)	Density and molecular weight	of the fluid		

68.	To understand the oxidation state of the element which one among the following technique useful						
	(A)	Mass spectroscopy	(B)	X-ray spectroscopy			
-	(C)	X-ray photoelectron spectroscopy	(D)	Electron diffraction			
69.		diffraction experiment reflections for tal structure likely to be	rm (11	1),(200),(220),(311) was observed. The			
÷	(A)	Face Centered Cubic	(B)	Body Centered Cubic			
	(C)	Simple Cubic	(D)	Diamond Cubic			
70 -	Bur _i		e and	direction of ——— in a crystal			
	(A)	Lattice parameter	(B)	Dislocation			
•	(C)	Weldment	(D)	Diffusion			
71.	Cera	amics have higher compressive streng	th tha	n tensile strength due to			
	(A)	Dislocation moment	(B)	Ionic bonding			
	(C)	Elasticity	(D)	Oxide layer			
72.		culate the volume of the FCC unit cell resented as 'r' and 'a'	, if ato	mic radius and the unit cell length are			
	(A)	$16r^3\sqrt{2}$	(B)	$2r^3\sqrt{2}$			
	(C)	4r³	(D)	$8r^3$			
73.		equilibrium concentration of vacanci	es for	a given quantity of the material does			
	(A)	Pressure					
	(B)	Temperature					
	(C)	Total number of atomic sites					
	(D)	Energy required for the formation of	f a vac	cancy			
74.	Whi	ch among the following techniques we	ould p	rovide the best resolution?			
	(A)	Scanning Electron Microscope	(B)	Scanning Probe Microscope			
	(C)	Transmission Electron Microscope	(D)	Optical Microscope			

75.		The relation between grain size number (n) and the average number of grains per square inch (N) at 100 X magnification is given by					
	(A)	N=2 ⁿ⁻¹	(B)	<i>N</i> =2 ⁿ			
	(C)	N=2 ⁿ⁺¹	(D)	N=2 ⁿ⁻²			
76.	Elec	tro migration is one of the major issu	ie with				
,	(A)	Super capacitor	(B)	Microelectronics			
	(C)	Magnetics	· (D)	LASER			
77.	Sha	pe memory effect involves					
•	(A)	Phase transformation	(B)	Congruent melting point			
	(C)	Ductile to brittle transformation	(D)	Eutectic transformation			
78.	Sub	stitutional solid solution formation d	oes not	depend on			
	(A)	Atomic radii	(B)	Electronegativity			
	(C)	Lattice parameter	(D)	Crystal structure			
79.	For area	- · ·	one of	the following will have higher surface			
	(A)	Cubic	(B)	Spherical			
	(C)	Tubes	(D)	Thin films			
80.		property of large change in electrical is known as	cal resi	stance in the presence of a magnetic			
	(A)	Nuclear magnetic resonance	(B)	Colossal mangnetoresistance			
,	(C)	Supercapacitors	(D)	Electrostriction			
81.	Prof	toplasm is					
	(A)	Alveolar	(B)	Granular			
	(C)	Crystallo-colloidal	(D)	Fibrillar			
82.	An	acaryotic cell is	•				
	(A)	Single nucleated	(B)	Proacryotic			
	(C)	Denucleated	(D)	Both (B) & (C)			

83.	Plas	smasol or sol part of cyt	osol is known as		
	(A)	Hyalosome	(B)) Hyaloplasm	
	(C)	Endoplast	(D)		
84.	Perc	centage of cell membran	e contained in End	oplasmic reticulum	is
	(A)	10 -20 %	(B)		
	(C)	30 -60 %	(D)	60 -75 %	
85.	Sarc	oplasmic reticulum is E	ndoplasmic recticu	lum of	•
	(A)	Adipose cells	(B)		
	(C)	Nerve cells	(D)	Leucocytes	
86.	Men	brane thickness of End	oplasmic reticulum	ı is	
	(A)	75 Å	(B)	90 Å	
	(C)	30-40 Å	(D)	50-60 Å	,
87.	Sedi	mentation unit of riboso	me is		
	(A)	Micron	(B)	Milli micron	
	(C)	Angstrom	(D)	Svedberg	
88.	Polys	ome is a chain of	•		
	(A)	Oxysomes	(B)	Sphaerosomes	
,	(C)	Ribosomes	(D)	Dicytosomes	
89.	Elem	ent required for bringin	g about union of ril	bosome subunit is	
		Ca ²⁺		Mg ²⁺	
	(C)	Fe ³⁺	(D)	Cu+	
90.	rRNA	present in 60 S subuni	t of ribosome is		
	(A)	5 S	(B)	5.8 S	
	(C)	28 S	(D)	All of these	
91.	Metal	lic stain used by Golgi v	vas —		
	(A) 1	Lead Acetate	(B)	Osmium chloride a	and silver salts
	(C)]	Phosphotungstate	(D)	Palladium	

92.	Spac	Space between adjacent cisternae of Golgi apparatus is					
	(A)	15 Å	(B)	30 Å			
	(C)	80-100 Å	(D)	100-300 Å			
93.	Lyso	somes are absent in animal cells					
	(A)	Erythrocytes	(B)	Plasma cells			
	(C)	Nerve cells	(D)	Muscle cells			
94.	рН с	of lysosome interior is					
	(A)	10 - 12	(B)	8 - 10			
	(C)	4 - 5	(D)	4 -5			
95.	In th	ne inner mitochondrial membrane, p	roton cl	nannel is constituted by			
	(<u>A</u>)	\mathbf{F}_0	(B)	$\mathbf{F_{i}}$			
	(C)	NADH (H+)	(D)	Cytochrome oxidase			
96.	Glyd	coprotein is a					
	(A)	Transmembrane protein	(B)	Peripheral protein			
	(C)	Cytosolic protein	(D)	Triple α-helix			
97.	Spe	ctrin is attached to the membrane th	rough				
	(A)	Phosphodiester bond	(B)	Ankyrin			
	(C)	Hydrogen bond	(D)	Covalent bond			
98.	Mer	nbrane proteins are					
	(A)	Symmetrically placed	(B)	Asymmetrically placed			
	(C)	Aligned diagonally	(D)	Arranged in zig-zag manner			
99.	The	ions traverse through the membran	e faster	through			
	(A)	Channel protein	(B)	Carrier protein			
	(C)	G-protein	(D)	Free lipid bilayer			
100.	The	transport by carrier proteins is					
	(A)	Active	(B)	Passive			
	(C)	Both (A) & (B)	(D)	None of these			