

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Phil. / Ph.D. (PHYSICS)

COURSE CODE: 255/122

Register N	Number:	

Signature of the Invigilator (with date)

COURSE CODE: 255/122

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1. A very powerful tool for spin determination is (A) Raman spectroscopy FT-IR spectroscopy (B) (C) Mössbauer spectroscopy (D) Microwave spectroscopy 2. In partial wave analysis, the effect of scattering results in change in (A) Energy (B) Angular momentum (C) Velocity of partial waves (D) Phase of partial waves 3. If the total energy of an electron is 4 times its rest energy, then the ratio of its speed to the velocity of light is (B) $\frac{3}{4}$ (C) $\sqrt{\frac{3}{2}}$ 4. Parity is not conserved in (A) Nuclear fission (B) Nuclear fusion (C) Strong interaction (D) Electro-weak interactions 5. Schmidt line gives information about Magnetic moment of the nucleus (B) Charge of the nucleus (C) Quadrupole moment of the nucleus (D) Size of the nucleus 6. Which of the following reactions is *forbidden* by energy conservation? (A) $\Sigma^+ \rightarrow \pi^0 + \mu^+ + \nu_{,i}$ (B) $K^- + d \rightarrow \pi^+ + \Sigma^-$ (C) $K^+ \to \pi^0 + e^+ + v$. (D) $\mu^{-} + p \rightarrow A^{0} + v_{,i}$ 7. In Gamow-Teller transition, the interaction involved are about Vector and tensor (B) Tensor and axial vector Scalar and vector Tensor and pseudoscalar (D)

8. If λ is the disintegration constant for α -emission and R is the range of α -particles emitted, the two are related by the equation

(A)
$$\lambda = AR + B$$

(B)
$$\lambda = AR^2 + B$$

(C)
$$\lambda = Ae^R + B$$

(D)
$$\log \lambda = \log R + B$$

9.	The energy E and the thermodynamic potential Ω of a quarks is										
	(A)	$3E - 4\Omega = 0$	(B)	$3E-4\Omega>0$							
	(C)	$3E - 4\Omega < 0$	(D)	$3E - 4\Omega \neq 0$							
10.	The	selection rule for Fermi transition is (I	is the	nuclear spin)							
	(A)	$\Delta I = 0$	(B)	$\Delta I = 1$							
	(C)	$\Delta I = -1$	(D)	$\Delta I \pm 1$							
11.	A di	ode that has a negative resistance char	acteri	stic is the							
	(A)	Schottky diode	(B)	Tunnel diode							
	(C)	Zener diode	(D)	Varactor diode							
12.		open loop gain and the CMRR of									
	resp	ectively. The common-mode gain of this	s Op-A	Amp is							
	(A)	2	(B)	1							
	(C)	0.5	(D)	0.25							
13.	The	logic function $Y = A(B + \overline{C}) + B(A + \overline{C})$	+ C(A	+B) can be simplified as							
	(A)	Y = A(B+C)	(B)	Y = A + BC							
	(C)	Y = AB	(D)	Y = A + B							
14.	The	Fermi level of an <i>n</i> -type semiconductor	r is								
	(A)	close to the valence band	(B)	at the middle of the band gap							
	(C)	inside the conduction band	(D)	close to the conduction band							
15.		ch of the following elements can iconductor?	be ad	lded to silicon to create a p-type							
	(A)	Germanium	(B)	Arsenic							
	(C)	Gallium	(D)	Antimony							
16.	Tho	maximum efficiency of a Class A powe	romn	lifter is							
10.			-								
	(A)	100%	(B)	75%							
-	(C)	50%	(D)	25%							

17. Calculate the value of V_{GS} for the circuit shown in figure

- (A) 4 V
- (B) 2.2 V
- (C) 8 V
- (D) 6.43 V

- 18. A P-N junction diode is a
 - (A) unidirectional and unipolar device
- (B) unidirectional and bipolar device
- (C) bidirectional and unipolar device
- (D) bidirectional and bipolar device
- 19. The phase (Φ) between the input and output voltages of an RC-LOW PASS filter is
 - (A) $-\tan^{-1}(\omega RC)$

(B) $\tan^{-1}(\omega/RC)$

(C) $tan^{-1}(R/\omega C)$

- (D) $-\tan^{-1}(1/\omega RC)$
- 20. The circuit shown in the figure represents a

(A) NOT gate

(B) NAND gate

(C) OR gate

- (D) XOR gate
- 21. The change of nuclear configuration takes place in region of electromagnetic spectrum
 - (A) UV-Visible

(B) Microwave

(C) X-ray

(D) γ-ray

22.	The H_{β} line of Balmer series of hydrogen is 20565 cm ⁻¹ . The separation between this									
	line and the corresponding line of deu	terium is $(R_H = 109710 \text{ cm}^{-1})$ given by								
	(A) 0.6 cm ⁻¹	(B) 15 cm ⁻¹								
	(C) 6 cm ⁻¹	(D) None of the above								
23.		of a Hydrogen like atome is 1.3115×10^{-23} JT 0^{-24} JT ⁻¹ . The value of $1(1+1)$ is given by	-1							
	(A) 2	(B) 1								
	(C) 0	(D) None of the above								
24.	The rotational and centrifugal con 5.3×10^{-4} cm ⁻¹ . Then the vibrational f	stants of HCl molecule are 10.53 cm ⁻¹ an	d							
	(A) 299.5 cm ⁻¹	(B) 2995.2 cm ⁻¹								
	(C) 29.952 cm ⁻¹	(D) None of the above								
25.	The linear N-atomic molecule can have	e fundamental vibrations are								
	(A) 3N-5	(B) 3N								
	(C) 3N+5	(D) None of the above								
26.	The band origin of a transition in C_2	is observed at 19.378 cm ⁻¹ while the rotations	al							
		ional constants in excited and ground states ar rely. Then the band origin is present in	e							
	(A) S-branch	(B) P-branch								
	(C) R-branch	(D) None of the above								
27.		s of a linear molecule are at 4.86 cm ⁻¹ , 8.14 cm ⁻¹ an line. The rotational constant and moment of								
	(A) 8.118 m^{-1} , $3.443 \times 10^{-47} \text{ kgm}^2$	(B) $81.18 \text{ m}^{-1}, 34.43 \times 10^{-47} \text{ kgm}^2$								
	(C) $811.8 \text{ m}^{-1}, 344.3 \times 10^{-47} \text{ kgm}^2$	(D) None of the above								
28.	The nuclear g_N factor of ^{19}F nucleus μ_N is	with I = 1/2 has a magnetic moment of 2.627	3							
	(A) 5254.6 (B) 52.546	(C) 525.46 (D) 5.2546								

29.	If the environment of the emitting and absorbing nuclei are different, the energy of nuclear transition E_0 may differe by a small amount. This energy difference is known as									
	(A)	Isomer shift			(B)	Doppler shift				
	(C)	Raman shift			(D)	None of the abo	ve			
30.	The	electronegativiti	es of a	atomic bonds can	be ob	tained using				
	(A)	Mossbauer spec	trosc	ору						
	(B)	Infrared spectro	oscopy	у						
	(C) Nuclear Quadrupolar resonance spectroscopy									
	(D) None of the above									
31.		sider a one dime ed, the harmonic			lator.	If a perturbation	lines	r in positio	n is	
	(A)	anharmonic osc	illato	r	(B)	displaced harm	onic o	scillator		
	(C)	anisotropic osci	llator		(D)	asymmetric osc	illato	r		
32.	Let	$\hat{A} = x \frac{d}{dx}$ and \hat{B}	$=\frac{d}{dx}$	the commutator	· [Â,	\hat{B} is				
	(A)	$\frac{d}{dx}$	(B)	$x\frac{d}{dx}$	(C)	$-\frac{d}{dx}$	(D)	0		
33.	The degeneracy of second excited state of a three dimensional isotropic harmonic oscillator is									
	(A)	6	(B)	3	(C)	0	(D)	8		
34.	For	which of the follo	wing	systems, can Scl	nrodin	nger equation be	exactl	y solved?		
	(A)	Не	(B)	Li	(C)	Li ⁺⁺	(D)	H_2		
35.	The	eigenvalues of a	matr	ix whose trance i	s –2 a	and determinant	is –3 a	ure		
	(A)	1, -3	(B)	-1, 3	(C)	-1, -3	(D)	1, 3		
36.		$\{ 1\rangle, 2\rangle\}$ be two rator effects the t				level system. W	hich o	of the follow	ving	
	(A)	$ 2\rangle\langle 1 $	(B)	$ 1\rangle\!\langle 1 $	(C)	$ 2\rangle\!\langle 2 $	(D)	$\big 1\big\rangle\!\big\langle 2\big $		

37.	Radial node of a hydrogen atom wavefunction corresponds to wavefunction is being zero for which of the following surface										
	(A)	Plane	(B)	Sphere	(C)	Dumbbell	(D)	Ellipsoid			
38.	Star	k effect is a resu	ılt of a	applying which o	of the f	ollowing to hydro	ogen a	tom?			
	(A)	Magnetic field			(B)	Mechanical str	ess				
	(C)	Electric field			(D)	Pressure					
39.	Rut	Rutherford scattering cross section varies with the scattering angle as									
	(A)	$\sin^4\Theta$	(B)	$\csc^4\Theta$	(C)	$\csc^4 \frac{\Theta}{2}$	(D)	$\cos^4 \frac{\Theta}{2}$			
40.	Whi	ch of the following	ng is r	not true for Dira	c matr	ices?					
	(A)	A) Dirac matrices anticommute									
	(B)	Dirac matrices	are ti	raceless							
	(C)	Eigenvalues of	Dirac	matrices are 1	and -1						
	(D)	Dirac matrices	comn	nute							
41.	Wha	What is the number of degrees of freedom of a rod sliding on an inclined plane?									
	(A)	1	(B)	2	(C)	3	(D)	5			
42.		ch of the following	ng val	ue of θ correspo	ond to	unstable equilibr	rium o	f planar simple			
	(A)	0	(B)	π	(C)	$\pi/2$	(D)	$\pi/3$			
43.	Whi	ch of the followin	ng qua	antity is conserv	ed in a	central force me	otion?				
	(A)	Kinetic energy			(B)	Linear momen	tum				
	(C)	Angular mome	ntum		(D)	All the above					
44.	In a	rotational frame	e, the	force acting on a	a body	by virtue of its v	elocity	v is			
	(A)	centrifugal for	ce		(B)	centripetal for	ee				
	(C)	corriolis force			(D)	frictional force					
45.	Whi	ich of the followi	ng is r	not a type of mot	tion for	and in symmetric	cal top	?			
	(A)	Translation	(B)	Spinning	(C)	Precession	(D)	Nutation			
46.	If a	canonical mome	ntum	is a constant of	motion	, the correspond	ing co	ordinate is			
	(A)	also constat			(B)	zero					
	(C)	cyclic			(D)	periodic in time	e				

47.	Can	onical transforma	tions	preserve				
	(A)	Hamiltonian			(B)	Poisson Bracket	t	
	(C)	Lagrangian			(D)	Phase space der	nsity	
48.	Mon	nent of inertia te	nsor i	is diagonal if the	angu	ılar momentum a	and ar	ngular velocity
	(A)	in same directio	n					
	(B)	in perpendicula	r dire	ctions				
	(C)	in arbitrary dire	ection	s				
	(D)	in arbitrary dire	ection	s, but in the sam	e pla	ne		
49.	Wha	at is the differenti	al cro	oss section of the	scatt	ering of hard sph	eres o	of radius R ?
	(A)	R^2	(B)	$R^2/2$	(C)	$2R^2$	(D)	$R^2/4$
50.	the	pace ship is moving space ship is me se events if measu	asure	ed from the space				
	(A)	2 s	(B)	0.5 s	(C)	1.2 s	(D)	0 s
51.	Orth	norhombic crystal	struc	cture is defined b	у			
	(A)	$a = b = c$, $\alpha = \beta$	= γ =	90°	(B)	$a \neq b = c$, $\alpha = \beta$	$r = \gamma =$	90°
	(C)	$\alpha \neq b \neq c$, $\alpha = \beta$	= γ =	90°	(D)	$\alpha \neq b \neq c$, $\alpha = \beta$	<i>i</i> = <i>γ</i> ≠	90°
52.	The	number of atoms	per u	unit cell of the re	ciproc	cal of bcc structur	e is	
	(A)	1	(B)	2	(C)	3	(D)	4
53.	The	maximum numb	er of s	states for a cryst	al of N	N number of atom	ıs is	
	(A)	N	(B)	2N	(C)	3N	(D)	4N
54.	Whi	ch degeneracy is	not p	ermitted for the	rotati	onal symmetry ir	ı a cry	rstal?
	(A)	2 fold	(B)	3 fold	(C)	4 fold	(D)	5 fold
55.	The	unit of Hall coeff	icient	tis				
	(A)	$Vm^{3}\ A^{-1}\ wb^{-1}$			(B)	$VmAwb^{-1}$		
	(C)	Vm^3Awb^{-1}			(D)	$Vm^2A^{-2}wb$		

56.	Mag	netic suscep	tibility of	a perfe	ct diamag	gnet is				
	(A)	0	(B)	+1		(C)	-1	(D)	infinity	
57.	The	temperature	at the Fe	ermi lev	el (0.15 e	ev) is				
	(A)	739 K	(B)	1739	K	(C)	2739 K	(D)	3739 K	
58.	Curi	e temperatu	re is the t	empera	ture abo	ve whi	ich			
	(A)	a paramag	netic mate	erial be	comes dia	amagn	etic			
	(B)	a ferromag	netic mat	erial be	comes di	amagn	netic			
	(C)	a paramag	netic mate	erial be	comes fer	romag	gnetic			
	(D)	a ferromag	netic mat	erial be	comes pa	ramag	gnetic			
59.	Nun	nber of near	est neighb	ors in a	diamon	l lattic	ce is			
	(A)	1	(B)	2		(C)	4	(D)	8	
60.	One	Bohr magne	eton is equ	ual to						
	(A)	2.27 × 10 ⁻⁵	24 A m ²			(B)	9.27×10	-24 A m ²		
	(C)	9.27×10^{-26}	Am ²			(D)	6.27 ×10	-24 Am ²		
61.	The nitrogen liquid boils at 77 k at atmospheric pressure. Which can be a valid suggestion to keep it in liquid state at higher temperature									
	(A)	increase th	e pressur	e		(B)	increase	the volume		
	(C)	decrease th	ne pressur	re		(D)	maintain	constant v	olume	
62.	When cells in phase space are occupied by particles then they are called									
	(A)	accessible	state			(B)	particle s	state		
	(C)	atomic cell				(D)	represent	tative point		
63.	Tim	e average is	equal to s	space av	verage in	phase	space is th	e basic idea	a of	
	(A)	ergodicity				(B)	non-equilibrium condition			
	(C)	irreversible	e process			(D)	isotherm	al process		
64.		variation o		-				semble wit	h respect	to an
	(A)	A generali	zed force	conjuga	te to exte	rnal p	arameter			
	(B)	Internal er	nergy of ca	anonica	l ensemb	le				
	(C)	Temperatu	re of mic	ro cano	nical ense	emble				
	(D)									
	. /									

255/122

65.	The	occupation num	ber for	some partic	eles id 0, 1	, the particles	are	
	(A)	fermions	(B)	bosons	(C)	magnetons	(D)	photons
66.		super fluidity in nions in	liquid	l ³ He result	s from the	e formation of C	looper p	pairs formed by
	(A)	S = 0 state						
	(B) (C) (D)	S = 1 state Both the single P = 0 state	t and	triplet state				
67.	An	exchange intera	action	is expressi	ion by fo	ollowing expres	ssion I	$H_{exc} = -J s_i \cdot s_j$.
	It re	epresents						
	(A)	Ising model			(B)	Heisenberg m	odel	
	(C)	William's mode	el		(D)	Pauli model		
68.	inter A1	gine that a system A_2 has probracting and in each A2. Under abilities of comp	ability quilib r thes	y $P_s(2)$ of b rium when to se circumsta	eing foun they form	d in a state (s) a composite s	. Let th	nem be weakly A consisting of
	(A)	$P_{rs} = P_r(1) P_s(2)$)		(B)	$P_{rs} = P_r(1) + P$	(2)	
	(C)	$P_{rs} = P_r(1) - P_s$	(2)		(D)	$P_{rs} = P_r(1)/P_s$	(2)	
69.	(<i>df</i> /	equation satisfication ∂t ∂t ∂t contains a containing ∂t ∂t contains a containing ∂t	$+\vec{v}\cdot\nabla$	$f + \vec{a} \cdot \nabla_{\vec{v}} f \nabla_{\vec{v}} f = \nabla_{\vec{v}} f \nabla_{$	where r a	and v are Cart	esian c	
	(A)	Boltzmann tran						
	(B)	Fick's diffusion	equat	ion				
	(C)	Louuville's the	orem e	quation				
	(D)	Fermi's distrib	ution f	unction equa	ation			
70.		g model can sin vs and lattice gas						
	(A)	atoms and vaca	ncies		(B)	ideal gas		
	(C)	boson gas			(D)	fermion gas		
255/	122				10			

71.	The divergence of a curl of a	vector is		
	(A) 1	(B)	-1	
	(C) 0	(D)	none	
72.	The value of $\int_{c}^{c} \frac{dz}{z^2 + a^2}$, when	re 'c' is a unit circle	(anticlockwise) cen	tered at the origin
	in the complex z -plane is	1		
	(A) π for $\alpha = 2$	(B)	zero for $a = 1/2$	
	(C) 4π for $a=2$	(D)	$\pi/2$ for $a=1/2$	
73.	The Fourier transform of t	the function $f(x)$ is	s defined as $g(k) =$	$\int_{-\infty}^{\infty} dx f(x) \exp(ikx) .$
	Then $g(k)$ for $f(x) = \exp(-\alpha x)$			
	(A) $\frac{1}{\sqrt{2\pi\alpha}}\exp(-\alpha k^2)$	(B)	$\frac{\alpha}{\sqrt{2\pi}}\exp(-\alpha k^2/4)$)
	(C) $\sqrt{\frac{\pi}{\alpha}} \exp(-k^2/4\alpha^2)$	(D)	$\exp(-k^2/\alpha)$	
74.	If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ then	A is		
	(A) Hermitian	(B)	Orthogonal	
	(C) Symmetric	(D)	Skew-symmetric	
75.	How many generators will b	e there in an SU(n)	group?	
	(A) $n^2 - 1$ (B)	n^2 (C)	n-1	D) n
76.	If $F(t) = t^{-1/2}$, then Laplace	transform of $F(t)$ is	S	
	(A) $\sqrt{\frac{\pi}{s}}$ (B)	$\frac{\pi}{s^{3/2}}$ (C)	$\sqrt{\frac{s}{\pi}}$	D) none
77.	In the Levi-civita tensor $arepsilon_{\mu u}$	$_{\lambda}$, if μ,ν , and λ are	odd-permuting, the	n $arepsilon_{\mu u\lambda}$ is equal to
	(A) 1 (B)	-1 (C)	0 (D) none
78.	For the Lagendre's different	tial equation, $P_1(x)$		
	(A) 1 (B)	1-x (C)	x (D) $1-x^2$

For the Fourier series which represents $f(x) = x^2$ in the interval $-\pi < x < \pi$, the sum of the series

$$\frac{1}{1^2}\!-\!\frac{1}{2^2}\!+\!\frac{1}{3^2}\!-\!\frac{1}{4^2}\!+\!\cdots$$

- (A) $\frac{\pi}{12}$ (B) $\frac{\pi^2}{4}$
- (C) $\frac{\pi^2}{12}$

- 80. The relation between Beta and Gamma functions is
 - (A) $B(l, m) = \frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m)}$

(B) $B(l, m) = \frac{\Gamma(l)\Gamma(m)}{\Gamma(l-m)}$

(C) $B(l, m) = \frac{\Gamma(l+m)}{\Gamma(l)\Gamma(m)}$

- (D) $B(l, m) = \frac{\Gamma(l-m)}{\Gamma(l)\Gamma(m)}$
- 81. Which of the following states is invalid for an S-R flip-flop?
 - (A) S = 1, R = 0

(B) S = 0, R = 1

(C) S = 0, R = 0

(D) S = 1, R = 1

- 82. A DRAM must be
 - (A) replaced periodically

refreshed periodically (B)

cleaned periodically

- (D) none of the above
- 83. A modulus 12 counter must have
 - (A) 16 flip-flops

(B) 8 flip-flops

(C) 4 flip-flops

- 2 flip-flops (D)
- 84. A J-K flip-flop with J = 1 and K = 1 has a 20 kHz clock input, The Q output is
 - (A) Constantly HIGH

(B) Constantly LOW

A 10 kHz square wave

- (D) J = 1 and K = 1 is not valid
- White light illuminates a single slit of width 'x'. The first minimum for red light 85. $(\lambda = 650 \text{ nm})$ falls at $\theta = 15^{\circ}$. The width 'x' is
 - 430 nm (A)
- (B) 650 nm
- (C) 2510 nm
- (D) 1255 nm

- Unpolarized waves can be polarized by 86.
 - (A) scattering

(B) reflection

(C) polarization

(D) all of the above

87.	The light beam is incomirror. If the mirror				-			
	makes an angle of —		with respe	ct to i	ts original refle	cted po	sition.	
	(A) <i>θ</i>	(B)	2θ	(C)	$\alpha + \theta$	(D)	$\alpha + 2\theta$	
88.	What is the degend	eracy	of nth stations	ary st	ate of a two	dimens	ional isot	ropic
	(A) n	(B)	1	(C)	n+1	(D)	n-1	
89.	What is the ground of natural frequency		energy of a thre	e dime	ensional isotrop	ic harr	nonic osci	llator
	(A) ħω	(B)	$\hbar\omega/2$	(C)	$2\hbar\omega$	· (D)	$3\hbar\omega/2$	
90.	When a long spiral s is stretched by 6 cm,					ergy is	U. If the s	pring
	(A) 4 U	(B)	6 U	(C)	8 U	(D)	9 U	
91.	Which force together symmetrical top?	er wit	h gravitational	force	generates a t	orque	for a spir	nning
	(A) Reaction force			(B)	Air drag			
	(C) Centripetal for	ce		(D)	Frictional force	e		
92.	The intensities of lin	es in t	the rotational Ra	aman (of H ₂ molecule	are in	the ratio	
	(A) 1:1	(B)	1:2	(C)	1:3	(D)	1:4	
93.	The ratio of ground Bohr model, is	state	energy of Hydr	rogen	atom and Heliu	ım atoı	n, accordi	ng to
	(A) 1:2	(B)	2:1	(C)	1:4	(D)	4:1	
94.	The change of ories	ntatio	n takes place i	in —	regio	on of e	electromag	gnetic
	(A) X-ray	(B)	Visible	(C)	γ-ray	(D)	Microwa	ve

95.	A molecule containing N atoms has N-1 bond stretching and 2N-4 bending fundamental vibrations. Then the molecule is								
	(A)	Linear			(B)	Non-linear			
	(C)	We can't say			(D)	None of the ab	ove		
96.	A u	niform current s	heet	with $K = K$	$x_0 j$ is locar	ted $z = b > 2$ an	d anot	her sheet	with
	K =	$-K_0 j$, is locat	ed z	=-b. The	magnetic	flux crossing	the ar	ea define	ed by
	<i>x</i> =	constant, $-2 \le z$	≤ 2 ,	$0 \le y \le L$ is	thus (for f	ree space)			
	(A)	$4\mu_0 K_0 L$	(B)	$2\mu_0 K_0 L$	(C)	$\mu_0 K_0 L$	(D)	$\mu_0 K_0 L/$	2
97.		roton in a magne			es one circ	ular orbit in 2.3	55 micr	o seconds	s. The
	(A)	$0.00279~\mathrm{Tesla}$			(B)	0.279 Tesla			
	(C)	0.479 Tesla			(D)	0.0279 Tesla			
98.	Two parallel cylindrical conductors separated by 1 m have an inductance per unit length of 2.12 micro Henry/meter. The radius of the conductor is								
	(A)	5 mm	(B)	4 mm	(C)	3 mm	(D)	2 mm	
99.	A uniform line charge distribution with linear charge density of 3.30 nano Coulombs per meter is located at $x=3$ meters and $y=4$ meters. The electric field strength at origin is thus								
	100000	-7.13 i - 9.50 j	V/m		(B)	+7.13 <i>I</i> - 9.50 <i>j</i>	i V/m		
	525/4655	+7.13 <i>I</i> +9.50 <i>j</i>				-7.13I + 9.50j			
100.		rgy is absorbed ed conductor de						g an unec	qually
	(A)	Thomson effect		ig upon inc	(B)	Peltier effect	TOTTE		
	(C)	Seeback effect			(D)	None of the ab	ove		