122 PU Ph D Physics

1 of 100

171 PU_2016_122_E

Which of the following is the definition of a Hermitian operator considering two arbitrary functions ψ_m and ψ_n

$$(\psi_m, A\psi_n) = -(\psi_n, A\psi_m)^*$$

$$(\psi_m, A \psi_n) = (A \psi_n, \psi_m)^*$$

$$(\psi_m, A\psi_n) = -(\psi_n, A\psi_m)^*$$

$$(\psi_m, A\psi_n) = (\psi_n, A\psi_m)$$

2 of 100

170 PU_2016_122_E

An electron moving at a speed of 500 m/s measured with an accuracy of 0.004 %. The certainty with which the position of the electron can be located is :-

3 of 100

176 PU 2016 122 E

The possible values total angular momentum resulting from combining three individual angular momenta, $s_1 = 1/2$, $s_2 = 1/2$ and $s_3 = 1/2$ are:-

4 of 100

180 PU 2016 122 E

Wave function of a scattered particle for large distances from the scattering potential is

given by $\psi(\vec{r}) = \exp(i\vec{k}\cdot\vec{r}) + \cos^2\theta \frac{\exp(i\vec{k}r)}{r}$. What is the total cross section?

$$\circ \frac{4\pi}{5}$$

$$\circ \frac{\pi}{4}$$

200 PU_2016_122_E

The average kinetic energy of a Fermi gas is:-

- $0 \quad \frac{3}{2}E_F$
- $\circ \frac{2}{3}E_1$
- $\frac{3}{5}E_{I}$
- $\frac{5}{3}E_{F}$

6 of 100

178 PU_2016_122_E

The Hermitian conjugate of d/dx (partial) is:-

- -i d/dx
- -d/dx
- C d/dx
- i d/dx

7 of 100

174 PU_2016_122_E

For a harmonic oscillator, the probability density at X = 0 is:-

- Decreases exponentially
- Maximum
- Minimum
- Zero

8 of 100

158 PU_2016_122_E

Consider a charged particle moving with a uniform velocity. In a frame which is moving with the same velocity as that of the particle, we have

- Electric field
- Magnetic field
- Both Electric and Magnetic fields
- No Electric or Magnetic fields

9 of 100

An unpolarized light of intensity I_0 passes first through a polarizer and then through an analyzer whose axis of polarization is at angle $\pi/3$ to the axis of the polarizer. The intensity of the light after analyzer is

 $\circ \frac{3I_0}{8}$

 $\circ \frac{I_0}{2}$

 \circ $\pi/2$

 $\frac{I_0}{8}$

10 of 100

183 PU_2016_122_E

An electron-positron pair was created as photons pass through matter. The electron and positron have opposite curvatures in the uniform magnetic field B of 0.2 tesla and each of their radii 'r' is 2.5 x 10-2 m. The energy of the photon is

10 MeV

3.2 MeV

1.6 MeV

6.4 MeV

11 of 100

211 PU_2016_122_E

The number of ways in which N identical bosons can be distributed in two energy levels is:-

 \circ

 $\begin{array}{ccc}
N(N-1) \\
2
\end{array}$

N + 1 N(N -

 $O = \frac{N(N+1)}{2}$

12 of 100

168 PU_2016_122_E

Four sides of a hollow metallic cube are grounded and the two other sides are insulated from the rest and are held at potential V. The potential at the center of the cube is:-

© V/3

 \circ \vee

O V/6

O 0

13 of 100

At equilibrium, the Gibbs free energy of a system in contact with a bath at temperature and pressure is:-

c

C minimum

maximum

infinity

14 of 100

136 PU_2016_122_E

A particle is in motion under central force field defined by $a^2\cos 2\theta = r^2$, where a is constant, r and θ defined coordinates. The force is proportional to:-

1/r⁵

0 1/r³

0 1/r⁷

○ _{1/r}

15 of 100

100 PU_2016_122_E

The solution for the differential equation $\frac{dy}{dx} = \frac{1}{x^4}$ is

 $2x^2 + ax + b$

 $3yx^3 = -b$

 $\int_{0}^{x^2} \frac{x^2}{3} + ax + b$

 $x^2 + ax + b$

16 of 100

153 PU 2016 122 E

Consider a point charge q located at the center of a cube. The flux through one of the faces of the cube is:-

 $\frac{q}{\varepsilon}$

 $O \frac{q}{24\varepsilon_0}$

 $\frac{q}{6\varepsilon_0}$

 $O = \frac{q}{12\varepsilon_0}$

17 of 100

A wave is incident normally on a good conductor. If the frequency of a plane electromagnetic wave increases four times, the skin depth will:-
Decrease by a factor of 4
increase by a factor of 2
Decrease by a factor of 2
Remains same
18 of 100 184 PU_2016_122_E Which of the following wave functions leads to probability density that is oscillatory function of time?
$\Theta(x) = (\psi_1(x) + \psi_2(x))e^{-iEt/\hbar}$
$\bigcirc \Psi(x) = \psi(x)e^{-iEt/\hbar}$
Probability density is always independent of time
19 of 100 179 PU_2016_122_E Which of the following statements is correct for an attractive delta function potential?
There are no bound states
There is only one bound state
There are two bound states
There are infinite bound states
20 of 100 135 PU_2016_122_E For a simple harmonic oscillator with spring constant k , defined by coordinates q,p, the value of Poisson bracket [p, H] is:-
C -kq
р
21 of 100 207 PU_2016_122_E Consider two different systems each with three identical non-interacting particles. Both have single particle states with energies ε_0 , $3\varepsilon_0$, $5\varepsilon_0$, $(\varepsilon_0>0)$. One system is populated by spin 1/2 fermions and the other by bosons. Then the difference between the ground state energies of the fermionic and bosonic systems is $\begin{array}{cccccccccccccccccccccccccccccccccccc$

0	$arepsilon_0$
0	$3arepsilon_0$
185 The for to election	of 100 PU_2016_122_E ionization energies (I.E) of H, He and Li are respectively, 13.6 eV, 24.6 eV and 5.4 eV. The reason the I.E for Li being the least is: Because the Li atom is in excited state most of the time, hence, the electrons of Li form a free ctron sea. Effective nuclear charge increases and as a result, potential energy increases Due to the screening of the nuclear charge by electrons in inner shell and consequently the effective lear charge reduces Due to the screening of the nuclear charge by electrons, the potential energy increases
182	of 100 PU_2016_122_E be operator H is hermitian, which of the following is true for the function f(H) = exp(iH) ? f(H) is anti-unitary f(H) is unitary f(H) is anti-hermitian f(H) is also hermitian.
152 Con	PU_2016_122_E sider the electrostatic energy due to a charged conducting sphere of radius R and charge Q. If the rge is halved and distance is doubled, what happens to electrostatic energy? Decreases by eight times Increases by four times Increases by eight times
160 Two char C C	of 100 PU_2016_122_E o metallic infinite planes are located at x = ± a. A point charge +q located at x=0 is in equilibrium. If the rge is +q displaced slightly from the origin, the motion of the charge:- Remain at the origin Executes simple harmonic motion. Moves right Moves left of 100 PU_2016_122_E

(Total scattering cross section of a charge particle by an atom of diameter 4.1 nm is approximately:- 2 nm 16 nm 13 nm 4 nm
F	27 of 100 203 PU_2016_122_E For a rigid magnetic material, the differential form of first law of thermodynamics is:- $\left(\frac{\partial T}{\partial M}\right)_s = \left(\frac{\partial S}{\partial B_0}\right)_M$
($ \begin{pmatrix} \frac{\partial M}{\partial T} \\ S = \begin{pmatrix} \frac{\partial B_0}{\partial S} \\ S \end{pmatrix}_M $ $ \begin{pmatrix} \frac{\partial T}{\partial M} \\ S = \begin{pmatrix} \frac{\partial B_0}{\partial S} \\ S \end{pmatrix}_M $ $ \begin{pmatrix} \frac{\partial T}{\partial M} \\ S = \begin{pmatrix} \frac{\partial B_0}{\partial S} \\ S \end{pmatrix}_M $
-	28 of 100 150 PU_2016_122_E Two point charges of charge $+Q$ are located at $x=\pm a$. Another point charge $+q$ located at $x=0$ is in equilibrium. If the charge $+q$ is displaced slightly from the origin, it executes simple harmonic motion. The period of oscillation $T \propto a^{\beta}$, where β is $-2/3$ $2/3$ $3/2$ $-3/2$
1 F	29 of 100 186 PU_2016_122_E For a certain atom with atomic number Z = 2, the two electrons be replaced by two spin-1 particles with negative charge. The degeneracy of the ground state is:- Infinite 3 6

Ground state is non-degenerate

214 PU_2016_122_E
The quantum statistics reduces to classical statistics under which of the following condition.

$$O \rho \lambda^3 \ll 1$$

$$\bigcirc \rho \lambda^3 >> 1$$

$$O \rho \lambda^3 \approx 1$$

$$\rho \lambda^3 = 0$$

208 PU_2016_122_E

For a particle in a Maxwell-Boltzmann distribution, its most probable speed is:-

$$\bigcirc \sqrt{2mk_BT}$$

$$\int \frac{2mk_B}{T}$$

$$0 \sqrt{\frac{2mT}{k_B}}$$

$$\int \frac{2k_BT}{m}$$

32 of 100

205 PU 2016 122 E

In low density oxygen gas at low temperature, only the translational and rotational modes of the molecules are excited. The specific heat per molecule of the gas is:-

$$\circ \frac{3}{2}k_{B}$$

$$\circ \frac{5}{2}k_{\rm B}$$

$$\circ k_1$$

$$\frac{1}{2}k_B$$

33 of 100

164 PU_2016_122_E

Magnetic field outside an infinite solenoid :-

varies inversely with distance from the solenoid

is zero

varies inversely with square of the distance from the solenoid

is constant

34 of 100

165 PU_2016_122_E

An electromagnetic field with electric field $\vec{E}=E_0\cos(\omega t-kz)\hat{i}$ is passing through a disc of radius 2 m. What is the average power in Watt crossing the disc per unit time if

$$E_0 = 30V/m$$
?

C 120

© 60

[©] 30

^{C)} 15

35 of 100

212 PU_2016_122_E

If r be the ratio of the probability that the two particles are found in the same state to the probability that two particles belong to different states, then the ratio r_{MB} : r_{RE} : r_{FD} is

1:1: 2

 $0 \frac{1}{2}:1:0$

 $0^{-1}:\frac{1}{2}:0$

[©] 1: 0: 2

36 of 100

181 PU 2016 122 E

For the constant operator O = a + ib, which of the following is true?

 $\bigcirc (a-ib)\langle \varphi | \psi \rangle = (a+ib)\langle \varphi | \psi \rangle$

 $\bigcirc \langle (a-ib)\varphi | \psi \rangle = (a-ib)\langle \varphi | \psi \rangle$

 $\bigcirc (a-ib)\langle \varphi | \psi \rangle = \langle \varphi | (a+ib)\psi \rangle$

 $\bigcirc (a-ib)\langle \varphi | \psi \rangle = -\langle \varphi | (a-ib)\psi \rangle$

37 of 100

188 PU 2016 122 E

If the angular momentum of an electron were an integer, the result of Stern-Gerlach experiment as observed on the screen would have been:-

That the atomic beam would have split into odd number of components

The atomic beam would not have split, but would have been uniformly distributed on the screen

That the atomic beam would have into even number of components

That the atomic beam would have split into exactly three components

38 of 100

175 PU 2016 122 E

The energy needed to turn a magnetic dipole of 1 Bohr magneton from a configuration where it is aligned parallel to the magnetic field of B = 1 tesla, to an anti-parallel configuration with respect to the magnetic field is:-

2.32 X 10⁻⁴ eV

[©] 1.16 X 10⁻⁴ eV

210 PU_2016_122_E

For a system of particles with partition function z, the relation between its average energy and z is:-

$$E = -\frac{\partial z}{\partial \beta}$$

$$E = -\frac{\partial \ln z}{\partial \beta}$$

$$E = \frac{\partial z}{\partial \beta}$$

$$E = \frac{\partial \ln z}{\partial \beta}$$

40 of 100

103 PU_2016_122_E

A general solution of the equation $\frac{d^2y}{dt^2} + \omega^2 y = 0$ is (where ω is not equal to zero)

$$y = A\cos\omega t + B\sin\omega t$$

$$y = A \cos \omega t - B \sin \omega t$$

$$y = A\cos\omega t + B$$

$$y = A + B \sin \omega t$$

41 of 100

201 PU_2016_122_E

The partition function of a system of harmonic oscillators with energies $E_n = n\hbar\omega$, $n = 0, 1, 2, ..., \infty$ is

$$\begin{array}{c}
\frac{1}{\exp\left(\frac{\hbar w}{k_B T}\right) - 1}
\end{array}$$

$$\begin{array}{c}
1 - \exp\left(\frac{\hbar w}{k_B T}\right)
\end{array}$$

$$\begin{array}{cc}
\exp\left(-\frac{\hbar w}{k_B T}\right)
\end{array}$$

$$\bigcirc \exp\left(\frac{\hbar w}{k_B T}\right)$$

42 of 100

In a	PU_2016_122_E n iron cored coil the iron core is removed so that the coil becomes an air cored coil. The inductance of coil will:-
0	Increase
0	Decrease
0	remain same
0	initially increase and then decrease
177 If th	of 100 PU_2016_122_E e ground state energy of the Hydrogen atom is ~ -13.6 eV, ignoring the electron-electron repulsion, ground state energy of Helium atom is:-
~	-3.4 eV
0	-109 eV
0	-54 eV
0	-27.2 eV
161	of 100 PU_2016_122_E at is the equipotential surface corresponding to a line charge of finite length?
0	Cylinder
0	Ellipsoid
0	Cube
0	Sphere
202 At a	of 100 PU_2016_122_E given temperature, the specific heat at constant volume C_{ν} of a van der Waals gas with a fixed aber is particles is:-
0	independent of fixed number of particles
0	dependent on its volume
0	dependent on fixed number of particles
0	independent of its volume
167 A pl Mea	PU_2016_122_E Indee electromagnetic wave incident normally on the surface of a material is partly reflected. It is standing wave in the region in front of the interface show that the ratio of the electric is amplitude at the maxima and minima is 7. The ratio of reflected intensity to the incident intensity is:-
0	9/16

° 4/9

[©] 4/3

47 of 100

172 PU 2016 122 E

The operator $A\psi(x) = d\psi(x)/dx + 2\psi(x)$ is

Linear

Unitary

Anti-linear

C Hermitian

48 of 100

169 PU 2016 122 E

A dielectric sphere of radius R carries a polarization $P=kr^2\hat{r}$, where r is the distance from the center and k is constant. The bound volume charge density inside the sphere at a distance r from the center is

- 4 kR

- 4 kr²

- 4 kr

- 4 kr³

49 of 100

209 PU 2016 122 E

Two classical particles have energy states E = 0, ϵ , 2ϵ with degeneracies 1, 2, 4 respectively. The total number of configurations possible for this system is:-

O 2

[©] 18

O 15

O 24

50 of 100

104 PU 2016 122 E

A general solution for the system of equations: $\frac{dy_1}{dt} = y_2$ and $\frac{dy_2}{dt} = y_1$ is

$$y_1 = C_1 e^{-t} + C_2 e^t_{and} y_2 = -C_1 e^t + C_2 e^t$$

$$y_1 = C_1 e^{-t} + C_2 e^t$$
 and $y_2 = -C_1 e^{-t} + C_2 e^t$

$$y_1 = C_1 e^{-t} + C_2 e^t_{\text{and}} y_2 = C_1 e^{-t} + C_2 e^t$$

$$y_1 = C_1 e^t + C_2 e^t_{\text{and}} y_2 = -C_1 e^{-t} + C_2 e^t$$

213 PU_2016_122_E

For a simple harmonic oscillator, the average energy in three dimensions is:-

- $O k_B T$
- $O = \frac{3}{2} k_B T$
- $O = \frac{2}{3} k_B T$
- $O 3k_BT$

52 of 100

206 PU_2016_122_E

A random walker takes a step of unit length in the positive direction with probability 2/3 and a step of unit length in the negative direction with probability 1/3. The mean displacement of the walker after n steps is:-

- O n/2
- n/3
- 0
- C 2n / 3

53 of 100

162 PU_2016_122_E

Gauss's law cannot be used to obtain the electric field for which of the following sources?

- A point charge
- A conducting sphere
- An infinite line charge
- A finite surface charge

54 of 100

173 PU 2016 122 E

If H is the free-particle Hamiltonian, then the commutator : [x, [x, H]] =

- $\bigcap \frac{\hbar^2}{m}$
- $-\frac{\hbar^2}{2m}$
- $O \frac{\hbar^2}{2m}$
- $-\frac{\hbar^2}{m}$

55 of 100

The solution for the differential equation $\frac{dy}{dx} = \frac{xy}{2}$ is

- \circ Ce^{x^2}
- \circ $Ce^{x^{-2}/4}$
- \circ $Ce^{x^2/2}$
- \circ $Ce^{x^2/4}$

56 of 100

102 PU_2016_122_E

The exact solution for the differential equation $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 is

- $y = \tanh x$
- $y = \cosh x$
- $y = \cos x$
- $y = \tan x$

57 of 100

166 PU_2016_122_E

Consider an infinite metallic plane grounded at z=0. A charge q is placed at (0,0,d), the electric field at (0,0,-d) is

- C Zero
- $\bigcirc \frac{q}{16\pi\varepsilon_0 d^2}$
- Infinity
- $O = \frac{q}{4\pi\epsilon_0 d^2}$

58 of 100

151 PU_2016_122_E

Consider a wedge, where β is the angle of the wedge. If a charge q is placed on the surface of the wedge, for which of the following values of β , the charge density at the corner of the wedge is maximum?

- \circ $\pi/6$
- \circ $\pi/2$
- \circ π
- \bigcirc $3\pi/2$

163 PU 2016 122 E

Which of the following Maxwell's equation signifies the non-existence of magnetic monopole?

$$\nabla . \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

60 of 100

159 PU 2016 122 E

Which of the following is a source of electromagnetic radiation?

- An accelerating charge
- A charge in uniform motion
- A charged sphere
- A charge at rest

61 of 100

254 PU_2016_122_M

In Debye's theory of Specific heat of solids, the frequency of vibrations of the lattice has:-

- A continuous spectrum up to a finite value
- An infinite discrete spectrum
- A discrete spectrum up to a finite value
- An infinite continuous spectrum

62 of 100

238 PU_2016_122_M

The first Brillouin zone of a Body centered cubic crystal lattice is:-

- Body centered cubic
- Simple Cubic
- Rhombic dodecahedron
- Truncated octahedron

63 of 100

252 PU_2016_122_M

At frequencies around 5 * 10¹⁴Hz, the ionic polarization becomes:-

- Ο.
- Zero
- Infinite

\circ	Mogativo
	Negative

232 PU 2016 122 M

A molecule makes a transition between the ground state and excited state. The uncertainty in time of upper state is Δ t, then the width of spectral line is given by:-

- $O = \frac{1}{2\pi \Delta t}$
- $O = \frac{1}{2\pi \imath \Delta t}$
- $\circ \frac{\nu}{2\pi\Delta t}$
- $O = \frac{h}{2\pi \Delta t}$

65 of 100

242 PU_2016_122_M

Which of the following crystallographic symmetry is necessary for the material to show spontaneous polarization (Ferroelectric):-

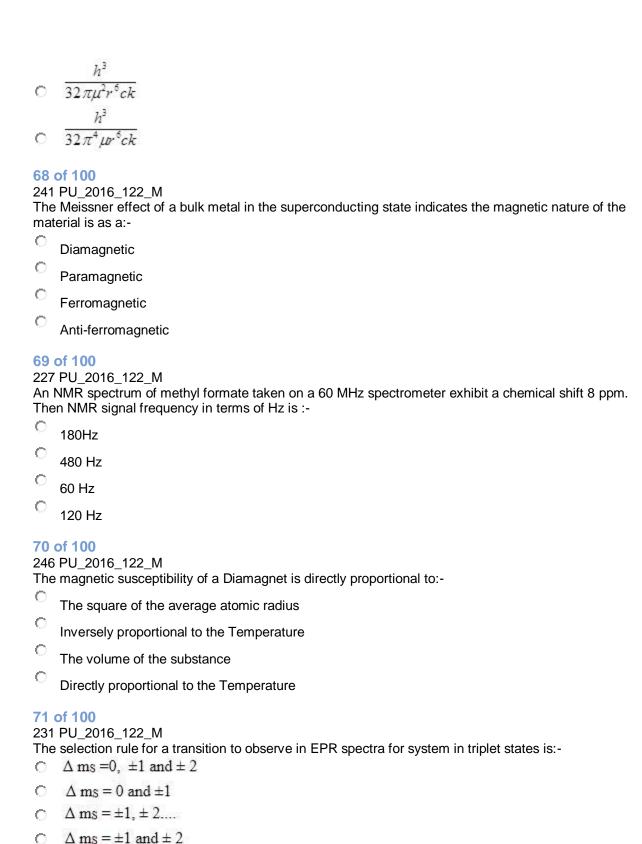
- Centro symmetric
- Non- Centro symmetric
- Space inversion symmetry
- Time reversal symmetry

66 of 100

247 PU_2016_122_M

The Fermi level of an intrinsic semiconductor lies near the middle of the forbidden gap but for an n-type semiconductor it is nearer the :-

- Valance band
- As like intrinsic semiconductor
- Conduction band
- Above the Conduction band


67 of 100

226 PU_2016_122_M

The bond between two atoms are elastic in nature where μ is the reduced mass, r is the bond length and k is the force constant. Then the centrifugal distortion constant can be defined as:-

$$O \frac{h^3}{32\pi^4\mu^2r^6ck}$$

$$0 \frac{n}{32\pi^4\mu^2r^6ck}$$

In X-ray spectra v is the frequency, Z is atomic number and σ is the screening constant, then according to Mosley's law v is defined as:-
$v \propto (Z - \sigma)^2$
$C = \frac{V \propto \frac{1}{(Z - \sigma)}}{}$
$v \propto \sqrt{(Z-\sigma)}$
$\sim v \propto (Z-\sigma)^4$
73 of 100 256 PU_2016_122_M The fact that the binding energy per nucleon is roughly a constant over most of the range of stable nuclei is a consequence of the fact that the nuclear force is :-
C long range
Short range.
weak
Strong.
74 of 100 248 PU_2016_122_M Which is of the following indicates the range of first Brillouin zone:-
© 0 < k < 2π/a
[©] π/a < k < 2π/a
-2π/a < k < 2π/a
-π/a < k < π/a
75 of 100 237 PU_2016_122_M For which of the unit cell, the maximum packing fraction can be obtained:-
Simple cubic
Body centered cubic
Primitive cell
Face centered cubic
76 of 100 236 PU_2016_122_M The Intensity of the X-Ray peaks in X-ray Diffractogram related to:-
The scattering from positive charges
Crystal structure

Form factor of the free atoms

The weight of the substance

244 Wh	of 100 PPU_2016_122_M ich phenomena is responsible for experimentally achieving the low-temperatures up to milli Kelvin in amagnetic substances? Adiabatic Magnetization Adiabatic Demagnetization Using Liquid Helium bath Closed Cycle Refrigeration
251	of 100 PU_2016_122_M nt defects in a crystal constitutes of :- Vacancies Interstitial atoms Impurity atoms Vacancies, Impurity atoms & Interstitials
257	of 100 'PU_2016_122_M article moves in such a way that its kinetic energy just = its rest energy. The velocity of this particle is:- c/4 c 0.866c 0.707c
224 The	of 100 PU_2016_122_M recoil velocity of free Mossbauer nucleus is 36.98 ms ⁻¹ while emitting a γ -ray of wavelength of 0.1 Then the Doppler shift observed is:- 39.68 x 10 ⁻¹⁰ hertz 3.968 x 10 ⁻¹⁰ hertz 3.968 x 10 ⁻¹⁰ hertz 39.68X 10 ⁻¹⁰ Hertz
290	of 100 PU_2016_122_D ener diode can be used as:- a.c. voltage regulator only Circuit breaker d.c. voltage regulator only

	of 100
	5 PU_2016_122_D
	e approximate energy gap between valence band and conduction band of an <u>insulator a</u> nd a <u>metal</u> are pectively
0	15.0 eV & 5.0 eV
0	5.0 eV & 0.0 eV
0	1.1 eV & 15.0 eV
0	15.0 eV & 1.1 eV
83	of 100
289	PU_2016_122_D
In T O	V transmission, sound signal is:-
	Phase modulated
0	Frequency modulated
0	Amplitude modulated
0	Phase modulated and Amplitude modulated
84	of 100
	BPU_2016_122_D
A tr	ransistor with β =50 and base current I_B = 20m μ A; the emitter current I_E = to
0	1.02 mA
	0.02 mA
0	102 mA
0	10.2 mA
	of 100
271 The	PU_2016_122_D e energy released by the nuclear bomb that destroyed Hiroshima was equivalent to 12.4 kilotons of
TN	e energy released by the nuclear bomb that destroyed Hiroshima was equivalent to 12.4 kilotons of T. This is equivalent to 9.0 10 ²⁶ MeV. The mass that was converted into energy in this explosion was:
	1 C ka
	1.6 kg
	1.6 10 ⁻³ kg
0	-
0 0	1.6 10 ⁻³ kg
0000	1.6 10 ⁻³ kg 1.4 10 ¹⁴ kg
0 0 0 86 293	1.6 10 ⁻³ kg 1.4 10 ¹⁴ kg 1.1 10 ¹⁰ kg

0	A+A=A
0	A.1 = A
	of 100 PU_2016_122_D
_	ht emitting diode (LED) producing GREEN light, is made of:-
0	Gallium Arsenide
0	Gallium Phosphide
0	Pure Silicon
0	Pure Germanium
88	of 100
	PU_2016_122_D s the four known types of forces in nature in order of their decreasing strength?
\circ	strong nuclear, gravitational, weak nuclear, electromagnetic.
\circ	electromagnetic, strong nuclear, weak nuclear, gravitational.
\circ	strong nuclear, weak nuclear, electromagnetic, gravitational
\circ	strong nuclear, electromagnetic, weak nuclear, gravitational.
276 A re	of 100 PU_2016_122_D sistor in connected in series with Zener diode in the circuit to to protect the load
~	to protect Zener
0	increase current
0	decrease current
279 A tra reve	PU_2016_122_D ansistor is connected such that base-emitter junction is forward biased and base-collector junction is ersed biased. Which of the following statement is correct?
0	This type of connection is not valid for any transistor
0	The transistor is an n-p-n transistor
0	The transistor is an p-n-p transistor
0	This type of connection is valid for all transistor
263	of 100 PU_2016_122_D conservation law violated by the reaction p \rightarrow π^0 + e ⁺ is the conservation of:-
	linear momentum.

0	lepton number and baryon number.
0	energy.
	charge.
265	of 100 5 PU_2016_122_D cording to Hubble's law, the age of the universe is :- approximately 6000 years less than 6000 years. between 10 and 15 billion years. roughly 1 billion years.
260	of 100 PU_2016_122_D interaction that describes the forces among nucleons that hold nuclei together is:- the leptonic interaction. the gravitational interaction. the hadronic interaction the electronic interaction.
273	of 100 3 PU_2016_122_D quantum electrodynamics (QED), electromagnetic forces are mediated by :- exchange of virtual photons. hadrons. Z bosons Gluons.
274	of 100 PU_2016_122_D ximum power is transferred from a source with internal resistance r to a load with resistance R when
0000	r = 4R $r = R/2$ $r = 2R$ $r = R$
	of 100 PU_2016_122_D

$^{3}\text{He}_{2} + ^{4}\text{He}_{2} \rightarrow ^{7}\text{Be}_{4}$
The masses of the nuclei are 3 He = 3.016 049 a.m.u; 4 He = 4.002 604 a.m.u; 7 Be = 7.016 930 a.m.u. The energy released or absorbed by the reaction is
1.6 MeV, absorbed 1.6 MeV, released
920 MeV, absorbed
920 MeV, released
97 of 100 292 PU_2016_122_D An UJT has
No junctions
Three pn junction
Two pn junctions
One pn junction
98 of 100 280 PU_2016_122_D A carrier wave of 500W is subjected to 100% amplitude modulation, the total power of modulated wave is:-
C 100 W
© 500 W
° 250 W
° 750 W
99 of 100 291 PU_2016_122_D If reverse bias on the gate of JEFET is increased, then the width of conducting channel
It increases near the drain and decreases near the source
Increased
C Is decreased
Remains constant
100 of 100 264 PU_2016_122_D The reaction $\mu^- \rightarrow e^-$ + anti v_e + v_μ conserves:-
muon lepton number but not electron lepton number.
both muon and electron lepton numbers.

The following fusion reaction occurs in the sun:

()		_				_
	electron le	pton numbe	r but not	muon le	pton nu	ımber.

electron lepton number but not muon lepton number neither muon lepton nor electron lepton number.