Exam Date: 18-Sep-2020 Batch: 12:30-14:30

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
bject	ive Question			
	1	In a ³¹ P NMR experiment on an unknown compound, a single resonance with a septet pattern (1:6:15:20:15:6:1) is observed. Which of the following structures would be consistent with this observation?	4.0	1.00
		A1 _{PF3} :		
		A2 _{PH3} :		
		A3 PMe ₃ :		
		A4 PF6 ⁻		
bject	ive Question			
	2	Which of the following transitions between rotational energy levels is not allowed?	4.0	1.00
		$ \stackrel{\text{A1}}{:} \text{ J=1} \longrightarrow \text{ J=0} $		
		A2 J=0 ← J=1		
		A3 J=1 ← J=3		
		A4 J=1 ← J=2		
bject	ive Question			
	3	Which is the correct sequence of wavenumbers associated with the stretching vibration of the following bonds?	4.0	1.00
		$^{A1}_{:}$ C-I < C-Cl < C=0 < C=N		
		$ \stackrel{A2}{:} C-I > C-CI > C=O < C = N $		
		$A_{3} C-I > C-C_{1} > C=O > C=N$		
		$^{A4}_{:}$ C-I > C-C1 < C=O < C=N		
bject	ive Question			
Ī	4	EPR spectroscopy is often used to investigate copper (II) complexes but not copper (I) complexes. This is because	4.0	1.00
		$\stackrel{A1}{:}$ Cu^{2+} has an s^2d^7 configuration but Cu^+ is d^{10}		

II	II.		II	11 11
		A2 Cu ²⁺ has a d ⁹ configuration but Cu ⁺ is s ¹ d ⁹		
		A3 : Cu ²⁺ has a d ⁹ configuration but Cu ⁺ is d ¹⁰		
		$^{ m A4}_{:}$ ${ m Cu}^{2^+}$ has an ${ m s}^1{ m d}^8$ configuration but ${ m Cu}^+$ is ${ m d}^{10}$		
Obje	ctive Question			
5	5	The change in the rotational constant B when hydrogen is replaced by deuterium in the hydrogen molecule is	4.0	1.00
		A1 2B		
		A2 4B		
		A3 3B/2		
		A4 B/2		
	ctive Question		7	1
6	6	Calculate the resonance (ESR) frequency when a free electron is placed in a magnetic field of strength 1.3 T. (Given g=2.0023, μ_B = 9.274 x10 ⁻²⁴ JT ⁻¹))	4.0	1.00
		A1 7.286 GHz		
		A2 36.43x10 ¹⁰ Hz		
		A3 1.825 GHz		
		A4 36.43 GHz		
Obje	ctive Question			
7	7	A block of mass m is dropped from a height h on to the pan of a spring balance. The masses of the pan and the spring are negligible. The spring constant of the spring is h . Having stuck to the pan the body starts performing harmonic oscillations in the vertical direction. What is the amplitude of the oscillation?	4.0	1.00
		h		
		mmmmm		
		$\stackrel{\text{A1}}{:} \frac{mg}{k} \sqrt{1 + \frac{2kh}{mg}}$		
		A2 :		

	$\stackrel{\text{A3}}{:} \frac{mg}{k} \sqrt{1 + \frac{mg}{2kh}}$		
	$\frac{A4}{k} \frac{mg}{k} \sqrt{1 + \frac{kh}{mg}}$		
Objective Question	n		
8 8	A reference frame attached to an object in a Cartesian coordinate system and the unit vectors along the axes are \hat{i} , \hat{j} and \hat{k} If the object undergoes rotation about a fixed axis, then with respect to a fixed or inertial frame the rate of change $d\hat{k}/dt$ of the unit vector \hat{k} in general may be denoted by	4.0	1.00
	$\begin{array}{cc} A1 & \alpha \hat{k} + \beta \hat{j} \\ \vdots & \end{array}$		
	$\stackrel{A2}{:} \alpha \hat{k} + \beta i$		
	$\begin{array}{c} A3 \\ \vdots \\ \alpha \hat{i} + \beta \hat{j} \end{array}$		
	$\stackrel{\text{A4}}{=} \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$		
Objective Question	n		
9	Two masses m_1 and m_2 are connected by an inextensible string which passes through a pulley and the pulley is hung by a spring from a fixed support as shown in the figure. The mass, radius and the moment of inertia of the pulley are denoted by M , R and I . What is the kinetic energy of the system if the oscillation due to the spring is only vertical? Ignore the masses of the string and the spring.	4.0	1.00
	$ \begin{array}{c c} & & & \\ \hline M_1 & & & \\ \hline M_2 \\ M_2 \\ M_2 \\ \hline M_2 \\ M_2 \\ \hline M_2 \\ M_2 \\$		
	A2 1		
	$\stackrel{\text{A2}}{:} \frac{1}{2} \left(m_1 (\dot{y}^2 + \dot{y}_1^2) + m_2 (\dot{y}_1^2 - \dot{y}_2^2) + M \dot{y}^2 + (I/R^2) \dot{y}_1^2 \right)$		
	$ \begin{array}{l} \overset{\text{A2}}{:} & \frac{1}{2} \left(m_1 (\dot{y}^2 + \dot{y}_1^2) + m_2 (\dot{y}_1^2 - \dot{y}_2^2) + M \dot{y}^2 + (I/R^2) \dot{y}_1^2 \right) \\ \\ \overset{\text{A3}}{:} & \frac{1}{2} \left(m_1 (\dot{y}^2 + \dot{y}_1^2) + m_2 (\dot{y}^2 - \dot{y}_1^2) + M \dot{y}^2 + (I/R^2) \dot{y}^2 \right) \end{array} $		

		Six masses m_1 , m_2 , m_3 , m_4 , m_5 and m_6 are connected using springs and inextensible strings through three pulleys as shown in the figure. The pulleys have moments of inertia I_1 , I_2 and I_3 . A and B are fixed supports. Assuming that the springs and strings are massless and that there are only vertical oscillations of the masses, how many degrees of freedom does this system have? All 8 All 8 All 6 All 9 All 9	4.0	
		·		
Object	ctive Question	JI		
		In a central force problem, the radial and the angular coordinates of the object from the centre of force are related to each other by the relation $re^{\theta}=1$. What is the nature of the central force $f(r)$?		
		$f(r) \propto r$		
		$ \stackrel{\text{A2}}{:} f(r) \propto \frac{1}{r^3} $		
		$ \begin{array}{c} A2 \\ \vdots \\ f(r) \propto \frac{1}{r^3} \\ \\ A3 \\ \vdots \\ f(r) \propto e^{-r} \end{array} $		
Object	ctive Question	$\stackrel{\text{A3}}{:} f(r) \propto e^{-r}$		
Object	etive Question	$\begin{array}{c} A^3 \\ \vdots \\ f(r) \propto e^{-r} \\ \end{array}$ Under a coordinate transformation, two quantities A_1 and A_2 transform as $A_1 \longrightarrow A_1' = \alpha A_1 - \alpha \beta A_2$ and $A_2 \longrightarrow A_2' = \alpha A_2 - \alpha \beta A_1$ where $\alpha^2(1-\beta^2) = 1$. Then which of the following is an invariant quantity under the transformation?	4.0	1.00
		$\begin{array}{c} A3 \\ \vdots \\ f(r) \propto e^{-r} \\ \\ \vdots \\ A^4 \\ f(r) \propto \frac{e^{-r}}{r} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	4.0	1.00

		A3 A_1/A_2		
		$ \begin{array}{c} A3 \\ A_1/A_2 \\ A4 \\ (A_1)^2 - (A_2)^2 \end{array} $		
bjec	ctive Question			
13	13	A particle is confined to move on the inner surface of an inverted cone with its tip at the origin and its axis being the z-axis. The half angle of the cone is α . In the cylindrical polar coordinates (ρ, φ) , the Lagrangian for the motion of the particle is given by $\mathscr{L} = \frac{1}{2}m\left(\frac{\dot{\rho}^2}{\sin^2\alpha} + \rho^2\dot{\varphi}^2\right) - \frac{mg\rho}{\tan\alpha}.$ Which of the following statements is true for this system?	4.0	1.00
		$^{ m AI}$ The momentum conjugate to $ ho$ is conserved.		
		$^{ m A2}$ The momentum conjugate to $oldsymbol{arphi}$ is zero.		
		$^{ m A3}$ The momentum conjugate to $oldsymbol{arphi}$ is conserved.		
		$^{ m A4}$ The momenta conjugate to both $ ho$ and ϕ are conserved.		
Objec	ctive Question			
4	14	Consider a parallel plate capacitor with a 2000 V across the electrodes, which are separated by 0.5 cm. What would be the final velocity of the electron at positive side if the electron starts at rest on the negative side?	4.0	1.00
		A1 80x10 ⁶ m/sec		
		A2 80x10 ⁵ m/sec		
		$^{A3}_{:}$ 50x10 ² m/sec		
		A4 40x10 ⁴ m/sec		
Objec	ctive Question			
15	15	Determine the electron (n) and hole (p) concentrations in an n-Si at 300 °K, if the conductivity is 2.08 (Ω -cm)-1 (mobility of electrons in n-Si is 1300 cm ² /V-s).	4.0	1.00
		A1 $n = 10^{16}$ and $p = 10^4$		
		$^{A2}_{:}$ n = 10 ¹⁵ and p = 10 ⁵		

bjective Question		4.0	1.00
	A4 100 Ω		
	A3 _{450 Ω}		
	A2 150 Ω:		
	A1 300 Ω		
	Vi = 30 V VZ = 10 V PZ max = 400mW		
17	Determine the minimum value of R _L of the circuit to keep the diode in the ON state. 300 ohm	4.0	1.00
bjective Question	A4 3.64 V		
	A3 2.04 V		
	A2 2.64 V		
	A1 1.04 V		
bjective Question 6 16	Calculate the Hall voltage V_H in n-Si bar with $N_D = 10^{16}$ cm ⁻³ . Assume $B_Z = 2Wb/m^2$, thickness (d = 4 mm) and width (w = 3 mm) and $E_X = 10$ V/cm	4.0	1.00
	$A4$: $n = 10^{13}$ and $p = 10^7$		
	$\begin{array}{c} A3 \\ \vdots \\ n = 10^{14} \text{ and } p = 10^6 \end{array}$		

21	21	Two equal negative charges $-q$ are fixed at points $(0, +a)$ and $(0, -a)$ on the Y-axis. A positive charge $+qis$ released from rest at the point $(2a, 0)$ on the X-axis. Then the charge $+q$ will	4.0	1.00
		A1 execute simple harmonic motion about origin		
		A2 execute oscillatory but not simple harmonic motion		
		A3 move to the origin and remained at rest:		
		A4 move to infinity:		
01.				
Објес 22	22	A sphere of radius R has a concentric cavity of radius a . Let σ be the relative density of the material of the sphere. It just floats when placed in a tank full of water. Then the ratio (R/a) is	4.0	1.00
		$\begin{bmatrix} A1 \\ \vdots \end{bmatrix} [(\sigma+1)/\sigma]^{1/3}$		
		$^{\text{A2}}_{:} [(\sigma - 1)/\sigma]^{1/3}$		
		$^{A3}_{:} [\sigma/(\sigma+1)]^{1/3}$		
		$^{\rm A4}_{:} \ [\sigma/(\sigma-1)]^{1/3}$		
Objec 23	etive Question	The description of the second	4.0	1.00
23		The electric field intensity at the surface of charge conductor is	1.0	1.00
		A1 zero		
		A2 tangential to the surface:		
		A3 : at an angle of 45° to the surface		
		A4 perpendicular to the surface		
OI:	ativa Octobri			
Објес 24	24	A point charge q is placed at the centre of a hollow conducting spherical shell of inner radius r and outer radius R . A net	4.0	1.00
		charge Q isplaced on the conducting shell. The magnitude of the electric potential at a distance d, where $r < d < R$ will be (Assume that the electric potential is zero at infinity)		
		$^{\mathrm{A1}}_{:}$ (q+Q) / (4 $\pi\epsilon_0 r$)		
		A2 (q) / (4πε ₀ R)		
		·		

		A4 zero		
Objec	ctive Question			
	25	A motor contains a coil with a total resistance of 10 ohm and issupplied by a voltage of 120 volts. When the motor is running at its maximum speed, the back emf is 70 volts. The current (in amperes) in the coil at the instant the motor is turned on and when the motor has reached maximum speed will be	4.0	1.00
		A1 1.2, 0.5		
		A2 1.2, 5		
		A3 12, 5		
		A4 12, 0.5		
	ctive Question			
	26	The following series: $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)}$ is:	4.0	1.00
		$\begin{bmatrix} A1 \\ \vdots \end{bmatrix} tan(x)$		
		$ \stackrel{A2}{:} \cos(x) $		
		$\begin{array}{c} A3 \\ : \end{array} \sin(x)$		
		A4 sec(x)		
	ctive Question			
27	27	$\exp(-\ln(\sec(x)))$ is equal to	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ 1 + \cos(x) \end{array} $		
		$ \stackrel{A2}{:} \cos(x) $		
		$\begin{bmatrix} A3 \\ -\cos(x) \end{bmatrix}$		
		$\begin{array}{c} A4 \\ 1 - \cos(x) \end{array}$		
	ctive Question			
28	28	Solving the second order differential equation : $100y'' + 20y' - 99y = 0$ gives the solution :	4.0	1.00
1		A1		

		$y = C_1 \exp(-0.9x) + C_2 \exp(-1.1x)$		
		A2 $y=C_1\exp(0.9x)+C_2\exp(-1.1x)$		
		A3 $y=C_1\exp(0.9x)+C_2\exp(1.1x)$		
		A4 $y=C_1\exp(-0.9x)+C_2\exp(1.1x)$		
N-: antiv	ve Question			
29 29		Solving the second order differential equation : $x^2y'' - 6y = 0$ gives the solution :	4.0	1.00
		$ \begin{array}{c} A1 \\ y = C_1 x^3 + C_2 x^2 \\ \vdots \end{array} $		
		$ \begin{array}{c} A2 \\ y = C_1 x^{-3} + C_2 x^{-2} \\ \vdots \end{array} $		
		$ \begin{array}{c} A3 \\ y = C_1 x^3 + C_2 x^{-2} \\ \vdots \end{array} $		
		$ \stackrel{\text{A4}}{:} y = C_1 x^{-3} + C_2 x^2 $		
Objectiv	ve Question			
30 30		Consider the following system:	4.0	1.00
		$\frac{dy}{dx} = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} y$		
		$\frac{dx}{dx} = \frac{1}{1} - \frac{1}{1}$ The solution of this system has a spiral point located at		
		A1 $(x,y) = (1,0)$		
		A2 (x,y) = (1,1)		
		A3 $(x,y) = (0,1)$		
Objective	Occasion			
31 31	ve Question	Legendre polynomials are denoted as $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$,The difference between $P_2(x)$ and $P_3(x)$ is equal to 50, when x is equal to :	4.0	1.00
		A1 2 :		
		A2 3 :		
		A3 ₄		

		A4 5 :		
01:				
<u>З</u> 2	32	Consider the following Sturm – Liouville problem : $y'' + \lambda y = 0$, with the boundary conditions : $y(0) = y(5) = 0$. The eigenvalues and eigenfunctions are :	4.0	1.00
		$ \overset{\text{A1}}{:} \lambda_m = \left(\frac{m\pi}{5}\right), m = 1, 2, \dots \text{ and } y_m = \sin\left(\frac{m\pi x}{5}\right) $		
		$\stackrel{\text{A2}}{:} \lambda_m = \left(\frac{m\pi}{5}\right)^2, m = 1, 2, \dots \text{ and } y_m = \sin^2\left(\frac{m\pi x}{5}\right)$		
		A3 $\lambda_m = \left(\frac{m\pi}{5}\right), m = 1, 2, \dots \text{ and } y_m = \sin^2\left(\frac{m\pi x}{5}\right)$		
		$\lambda_m = \left(\frac{m\pi}{5}\right)^2, m = 1, 2, \dots \text{ and } y_m = \sin\left(\frac{m\pi x}{5}\right)$		
Object	tive Question			
33	33	The convolution of exp(kt) and exp(-kt) is :	4.0	1.00
		$ \begin{array}{c} \text{A1} \\ \vdots \\ \frac{1}{2k} \left(e^{2kt} - e^{-2kt} \right) \end{array} $		
		$\stackrel{A2}{:} \frac{1}{2k} \left(e^{-2kt} - e^{2kt} \right)$		
		$\begin{array}{c} A3 \\ \vdots \\ 2k \\ \end{array} \left(e^{-kt} - e^{kt} \right)$		
		$\stackrel{\text{A4}}{:} \frac{1}{2k} \left(e^{kt} - e^{-kt} \right)$		
	tive Question			
4	34	How many linearly independent vectors are there in the following set : $\{(1,1,0,1),(-1,-1,0,-1),(1,0,1,1),(-1,0,-1,-1)\}$	4.0	1.00
		A1 1 :		
		A2 ₂ :		
		A3 3 :		
		A4 ₄		
)bjec1	tive Question	JL		
5	35	Given are $x_1 = 1 + i$, $x_2 = 2 + i$, $y_1 = 3 + i$ and $y_2 = 4 + i$ If the Cauchy – Schwartz inequality is being verified, then one the	4.0	1.00

	following will arise:		
	A1 185 < 189		
	A2 105 < 109		
	A3 85 < 89		
	A4 15 < 19		
Objective Question			
36 36	Diagonalisation of the matrix $A = \begin{pmatrix} 1 & 1+i \\ 1-i & 2 \end{pmatrix}$ gives :	4.0	1.00
	$ \begin{array}{ccc} A1 & 3 & 0 \\ 0 & 0 \end{array} $		
	$\begin{array}{c} A2 \\ \vdots \\ \begin{pmatrix} 3i & 0 \\ 0 & 0 \end{pmatrix} \end{array}$		
	$\begin{array}{ccc} A3 & \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix} \end{array}$		
	$: \begin{pmatrix} A4 & 0 & 0 \\ 0 & 3i \end{pmatrix}$		
Objective Question			
37	The principal value argument of the complex variable Z = $7 \pm 7i$ is	4.0	1.00
	A1 ±3π/4		
	A2 ±2π/4		
	A3 ±π/4		
	A4 Zero		
Objective Question			
38 38	The Fourier Transform of the following function: $f(x) = \begin{cases} -1; -1 < x < 0 \\ 1; 0 < x < 1 \text{ is : } \\ 0; otherwise \end{cases}$	4.0	1.00
	$\stackrel{\text{A1}}{:} \sqrt{2\pi} \left(\frac{i}{\omega} \right) (\cos \omega - 1)$		

		11	
	$\stackrel{A2}{:} \sqrt{2\pi} \left(\frac{i}{\omega} \right) (\cos \omega + 1)$		
	$\stackrel{A3}{:} \sqrt{2\pi} \left(\frac{i}{\omega} \right) (\sin \omega - 1)$		
	$\stackrel{A4}{:} \sqrt{2\pi} \left(\frac{i}{\omega} \right) (\sin \omega + 1)$		
bjective Que	stion	14.0	1.00
9 39	There are four complex functions being considered.	4.0	1.00
	(a) $f(z) = \text{Re}(z)$, (b) $f(z) = \frac{\exp(z^2)}{2}$, (c) $f(z) = \tan(z^2)$ and (d)		
	$f(z) = \frac{1}{2 z ^3}$. You are trying to integrate these functions counter-clockwise		
	around an unit circle. The Cauchy's Integral Theorem is applicable to the		
	functions indicated in options:		
	A1 a, b, c, d		
	A2 a, b, c		
	A3 b, c		
	A4 a, d		
biective Oue	stion		
Objective Que		4.0	1.00
	Evaluating the following complex integral using Cauchy Integral Formula:	4.0	1.00
		4.0	1.00
	Evaluating the following complex integral using Cauchy Integral Formula:	4.0	1.00
	Evaluating the following complex integral using Cauchy Integral Formula : $\oint \frac{\sinh \pi z}{z^2 - 3z} dz \text{ , given } C : z = 1 \text{ will give the result :}$ A1 2 :	4.0	1.00
	Evaluating the following complex integral using Cauchy Integral Formula : $\oint \frac{\sinh \pi z}{z^2 - 3z} dz$, given $C: z = 1$ will give the result :	4.0	1.00
	Evaluating the following complex integral using Cauchy Integral Formula : $\oint \frac{\sinh \pi z}{z^2 - 3z} dz \text{ , given } C : z = 1 \text{ will give the result :}$ A1 2 :		1.00
	Evaluating the following complex integral using Cauchy Integral Formula : $\oint \frac{\sinh \pi z}{z^2 - 3z} dz \text{ , given } C : z = 1 \text{ will give the result :}$		1.00
40	Evaluating the following complex integral using Cauchy Integral Formula: $\oint \frac{\sinh \pi z}{z^2 - 3z} dz \text{ , given } C : z = 1 \text{ will give the result :}$ $\begin{bmatrix} A1 & 2 & \\ & $		1.00
bjective Que	Evaluating the following complex integral using Cauchy Integral Formula:		
bjective Que	Evaluating the following complex integral using Cauchy Integral Formula: $\int \frac{\sinh \pi z}{z^2 - 3z} dz \text{, given } C : z = 1 \text{ will give the result}:$ $\begin{bmatrix} A1 & 2 & & \\ & 2 & & \\ & & 1 & \\ & & A3 & 0 \\ & & & \\ & & & 1 & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	4.0	1.00
bjective Que	Evaluating the following complex integral using Cauchy Integral Formula:		

		A2 magnetic dipole moment and the angular momentum vectors of the nucleus		
		A3 electric and magnetic field vectors associated with the nucleus :		
		A4 the electric dipole vector and the magnetic field vector		
1-iec	ctive Question			
Objec 12	42	A proton decay is not observed in nature because	4.0	1.00
		A1 a proton decay violates uncertainity principle		
		A2 a proton decay violates mass-energy conservation		
		A3 : it cannot decay without violating baryon number as there is no baryon less massive than the proton		
		A4 a proton decay is a weak interaction :		
Objec	ctive Question			
13	43	Which of the following is the isospin for the combined system of particles : π $^{\circ}$ + p ?	4.0	1.00
		A1 1/2, 3/2		
		A2 5/2, 7/2		
		A3 7/2, 9/2		
		A4 1, 0, -1		
Ohiec	ctive Question			
14	44	Which of the following particles have opposite values of the strangeness quantum number?	4.0	1.00
		$^{ m A1}$ $^{ m K}$ and $^{ m A0}$		
		$^{ m A2}_{:}~{ m K}^{+}~{ m and}~{ m \Lambda}^{0}$		
		A3 - + : Σ and Σ		
		A4 proton and neutron		
Objec	ctive Question			
Oujec	45	0 +	4.0	1.00

	A1 violates lepton number and baryon number conservation and hence does not occur		
	A2 conserves energy, mass and linear momentum and hence occurs:		
	A3 violates charge conservation and hence does not occur		
	A4 conserves lepton, baryon numbers, charge, energy, mass and linear momentum and hence occurs.		
Objective Question 46 46		4.0	1.00
40 40	Einstein's A and B coefficient relates	4.0	1.00
	A1 Stimulated emission and spontaneous emission		
	A2 Different free energies		
	A3 Entropy and enthalpy		
	A4 Fresnel and Fraunhofer diffraction		
Objective Question			
47 47	Which statement is incorrect regarding lasers?	4.0	1.00
	which statement is incorrect regarding fasers.		
	A1 Stimulated photon emits in the same direction as that of incident photon		
	A2 Four level atomic systems are more favourable for lasing action as compared to two level systems		
	A3 We prefer three- and four- level atomic systems, since itemit more energetic photons:		
	A4 Coherency in the lasing output is due to simultaneous emission of photon between same two levels		
Objective Question	<u> </u>		
48 48	Which of the phenomenon is incorrect when the active lasing medium is introduced in the cavity between two highly reflecting mirrors	4.0	1.00
	A1 It ensures that lasing action is due to four level system		
	A2 It reduces the number of oscillating modes which can be sustained by the cavity :		
	A3 It reduces the divergence of the emerging beam:		
	A4 It provides large effective length to extract sufficient energy to overcome losses and then amplify		

Objec	tive Question			
49	49	Identify the incorrect option: Line-width of laser emission depends	4.0	1.00
		A1 Nature of pumping mechanism		
		A2 Reflectivity of the cavity mirror		
		A3 Nature of the medium e.g. gas, solid, liquid:		
		A4 Pulse-width of the emitted light		
Objec	ctive Question			
50	50	If the screen is kept at a distance of 2m with light source emitting at 500nm wavelength, illuminates the circular aperture of 10 micron radius, we observe diffraction due to the object on the screen	4.0	1.00
		A1 Fresnel		
		A2 Fraunhoffer		
		A3 Near-field		
		A4 No		
01.	etive Question			
51	51	At thermal equilibrium, with temperature T, population levels in the two levels 1 and 2 is N1 and N2 with corresponding energy levels of E1 and E2 (E2>E1) respectively. The temperature is such that energy difference between the two levels is equal to energy of the thermal bath. The ratio of population N1/N2 would be	4.0	1.00
		A1 1.0		
		A2 2.718		
		A3 1/2.718		
		A4 7.389		
Objec	etive Question			
52	52	The divergence due to diffraction limited He-Ne laser (λ_0 = 0.6328 µm) having an Gaussian output of ω_0 = 5µm is given as	4.0	1.00
		A1 2.3°		
		A2 23°		
		A3 4.6°		

	\parallel :		
	A4 46°		
Objective Question			
53 53	Which of the following is responsible for the stability of a nucleus?	4.0	1.00
	Al p		
	Al Proton		
	Δ2		
	A2 Electron		
	A 3		
	A3 Neutron		
	A4 Gamma rays		
Objective Question 54 54	Y rays are electromagnetic radiations. They can therefore he deflected by	4.0	1.00
	X-rays are electromagnetic radiations. They can, therefore, be deflected by		
	A1 Electric and magnetic fields together		
	A2 Electric fields only		
	A3 Magnetic fields only		
	: Magnetic fields only		
	A4 Neither electric nor magnetic fields		
	Netther electric nor magnetic fields		
Objective Question			
55 55	At the time of solar eclipse, the spectrum of solar radiation would be	4.0	1.00
	Al A large number of dark Fraunhofer lines		
	A2 No lines at all		
	A3 A smaller number of dark Fraunhofer lines		
	A4 All Fraunhofer lines changed into bright colours		
Objective Question			
56 56	Apparent weight of a body in a lift will be double of its real weight when	4.0	1.00
	A1 Lift comes down with acceleration g		
	Al Lift comes down with acceleration g		
	A2		
	A2 Lift goes up with velocity of 9.8m/sec		

		A3 Lift goes up with acceleration g		
		A4 Lift goes down with velocity of 9.8 m/sec		
Obje	ective Question			
57	57	The orbital speed of Jupiter is	4.0	1.00
		Al Greater than the orbital speed of earth		
		A2 Less than the orbital speed of earth:		
		A3 Equal to the orbital speed of earth		
		A4 Zero		
Obje	ective Question			
58	58	Two cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 . Their speeds are such that they complete one revolution in the same time. The ratio of their angular speeds is	4.0	1.00
		A1 m ₁ :m ₂		
		A2 _{r₁:r₂:}		
		A3 1:1		
		$\begin{array}{c} A4 \\ m_1 r_1 \text{ and } m_2 r_2 \\ \vdots \end{array}$		
Obje	ective Question			
59	59	A proton is moving round in a circular path with a constant speed. From this one can infer that these must be an uniform	4.0	1.00
		A1 Electric field normal to the plane of the orbit		
		A2 Electric field along the plane of the orbit		
		A3 Magnetic field normal to the plane of the orbit		
		A4 Magnetic field along the plane of the orbit		
Obje	ective Question			
60	60	A vessel contains oil (density = 0.8 gm/cm ³) over mercury (density = 13.6 gm/cm ³). A homogeneous sphere floats with half its volume immersed in mercury and the other half in oil. The density of the material of the sphere in gm/cm ³ is	4.0	1.00

		A1 3.3 :		
		A2 6.4 :		
		A3 7.2		
		A4 12.8		
Objec	tive Question			
61	61	An electron and a proton are situated in a uniform electric field. The ratio of their acceleration will be equal to	4.0	1.00
		Al Zero		
		A2 Unity:		
		A3 Ratio of the masses of proton and electron		
		A4 Ratio of the masses of electron and proton		
Objec	tive Question			
62	62	A uniform chain of length l and mass m is lying on a smooth table such that one-third of its length is hanging vertically down over the edge of the table. If g is the acceleration due to gravity then the work required to pull the hanging part on the table is	4.0	1.00
		A1 mgl		
		A2 mgl/3		
		A3 mg1/9		
		A4 m _f l/18		
Objec	tive Question			
63	63	The maximum current which can flow through a 20k ohms resistor, rated 2W is	4.0	1.00
		A1 10 mA		
		A2 1 mA		
		A2 1 mA : 1 mA A3 40 mA		

	ive Question		4.0	1.00
54	64	The particle is moving towards east with a velocity of 5 m/sec. In 10 seconds the velocity changes to 5 m/sec towards north. Average acceleration in this time is	4.0	1.00
		Al Zero		
		$ \begin{array}{c} A2 \frac{1}{\sqrt{2}} \text{ m/sec}^2 \text{ towards north-west} \\ \vdots \end{array} $		
		A3 $\frac{1}{\sqrt{2}}$ m/sec ² towards north-east		
		A4 ½ m/sec² towards north-west		
Ob:	iva Overti			
	ive Question 65	A spring has force constant k and a mass is suspended from it. The spring is cut in half and the same mass is suspended from one of the halves. If the frequency of oscillation in the first case is α , then the frequency in the second case will be	4.0	1.00
		A1 2α :		
		A2 α :		
		A3 α/2 :		
		$A4 \alpha\sqrt{2}$		
Object	ive Question			
	66	In a JFET the change in drain current is due to the applied	4.0	1.00
		A1 Electric field between S and D		
		A2 Electric field between G and S		
		A3 Magnetic field between S and D		
		A4 Magnetic field between G and S		
Object	ive Question			
	67	If the degree of freedom of a gas is n , then the ratio of C_p and C_v is	4.0	1.00
		$ \begin{array}{c c} A1 \\ \vdots \\ 1+\frac{2}{n} \end{array} $		
		$\begin{array}{c} A2 \\ \vdots \\ 1+\frac{1}{n} \end{array}$		

	A4 2		
	$\frac{2}{2n+1}$		
Objective Question			
68	The path followed by a particle in sliding from one point to another in absence of friction in the shortest time is a?	4.0	1.00
	Al Sphere		
	A2 Sigmoid		
	A3 Cycloid :		
	A4 Catenary of revolution		
Objective Question			
69	For repulsive inverse square forces, the shape of orbit will be	4.0	1.00
	A1 Elliptic		
	A2 Parabolic		
	A3 Hyperbolic		
	A4 Circular		
Objective Question			
70 70	The motion of simple pendulum undergoing large oscillation can be described as	4.0	1.00
	A1 Harmonic and conservative		
	A2 Harmonic and non-conservative		
	A3 Unharmonic and conservative		
	A4 Unharmonic and non-conservative		
Objective Question			
71 71	The rest mass of the electron is m_0 when it moves with a velocity $v = 0.6$ c, then its rest mass is	4.0	1.00

	\parallel A2 5/4 m ₀ :		
	$^{A3}_{\cdot}$ 4/5 $^{\circ}$ $^{\circ}$		
	A4 2 m ₀		
Objective	Question		
72 7	A particle describes a circular orbit gives by $r = 2a \cos\theta$ under the influence of an attractive central force directed towards a point on the circle. The force inversely proportional to	4.0	1.00
	$\begin{bmatrix} A1 \\ \vdots \end{bmatrix}$ r^2		
	A2 r ³		
	A3 r ⁴		
	A4 r ⁵		
Objective	Question		
3 7.	$ abla^2 = -4\pi ho { m represents}$	4.0	1.00
	A1 Maxwell's equation		
	A2 Laplace's equation		
	A3 Poisson's equation		
	A4 Lagrangian's equation		
hiactiv	Question		
4 7	For good conductor's skin depth varies inversely withpower of frequency	4.0	1.00
	Al One		
	A2 Two		
	A3 Three:		
	A4 Half		
hiectiv	Question		

Objective Question 78 78	In the Born approximation, the effective cross-section of scattering depends on	4.0	1.00
	A4 Uncertainty principle		
	A3 Matter waves		
	A2 Special theory of relativity		
	A1 Pauli exclusion principle		
Objective Question	The existence of zero point energy for a linear harmonic oscillator is a consequence of	4.0	1.00
	A4 ₁ :		
	A3 -2		
	A2 0		
	A1 2 :		
76 76	The value of p for which the vector field $\vec{V} = (2x + y)\hat{\imath} + (3x - 2z)\hat{\jmath} + (x + pz)\hat{k}$ is solenoid is	4.0	1.00
Objective Question	A4 Linear quantity:		
	A3 Vector quantity		
	A2 Tensor quantity		
	A1 Scalar quantity:		

Obje	ctive Question			
79	79	Let us consider the transmission of particle through a potential barrier of width L. If p is the linear momentum of the particle inside the barrier then for a perfect transmission the minimum value of $\frac{pL}{h}$ is A1 0 A2 1 A3 π A4 ∞	4.0	1.00
Obje	ctive Question			
80	80	A spherically symmetric potential leads to the atomic states which are	4.0	1.00
		A1 Degenerate or non-degenerate depending on the principal quantum number:		
		A2 All non-degenerate in general		
		A3 Degenerate with degeneracy (2l+1), where l is the angular momentum:		
		A4 Non-degenerate except for the ground state :		
Objec	ctive Question			
81	81	In the quantum mechanical operators of two observables of a system do not commutate, then	4.0	1.00
		A1 Total energy of the system must be negative		
		A2 Parity of the wave function will be odd		
		A3 It is impossible to know the exact values of observables simultaneously		
		A4 Observables must be time dependent:		
Objec	ctive Question			
82	82	Eigen value of the particle exchange operator is/are	4.0	1.00
		A1 1		
		A2 ih		
		$^{A3}_{:}\pm i\hbar$		
	II			

		^{A4} ±1		
Objec	ective Question			
	83	A signal frequency of 10 kHz is being digitized by an A/D converter. A possible sampling time which can be used is	4.0	1.00
		A1 _{150 µs} :		
		A2 5µs:		
		A3 100 µs		
		A4 50 μs		
Objec	ective Question			
84	84	A simple instruction to clear the lower 4 bits of the accumulator in 8085 assembly language	4.0	1.00
		A1 XRI OHF		
		A2 ANI FOH		
		A3 XRI FOH:		
		A4 ANI OFH		
Objec	ective Question			
	85	The electrostatic potential $V(x,y)$ in free space in a region where the charge density ρ is zero is given by $V(x,y)=4e^{2x}+f(x)-3y^2$. Given that the x-component of the electric field Ex and V are zero at the origin, $f(x)$ is	4.0	1.00
		$\begin{array}{c} A2 \\ \vdots \\ 3x^2 - 4e^{2x} + 16x \end{array}$		
		$A3_{:} 4e^{2x}-8x$		
		$\overset{\text{A4}}{:} 3x^2 - 4e^{2x}$		
Objec	ective Question			
	86	If the electric and magnetic fields are unchanged when the potential \vec{A} changes (in suitable units) according to $\vec{A} \to \vec{A} + \hat{r}$, where $\vec{r} = r(t)\hat{r}$, then the scalar potential Φ must simultaneously changes to	4.0	1.00
		A1 Ф-r		

	A2		
	$ \begin{array}{c} A3 \\ \vdots \\ $		
	$ \stackrel{A4}{:} \Phi + \frac{\partial r}{\partial t} $		
bjective Questi	on		
7 87	According to Dirac equation, Dirac Hamiltonian (\overline{H}) is	4.0	1.00
	$\begin{array}{c} A1 \\ \vdots \\ C\bar{\alpha}.\bar{p} - \beta mC^2 \end{array}$		
	$\begin{array}{c} A2 \\ : \end{array} C\bar{\alpha}.\bar{p} + \beta mC^2 \\ \vdots \end{array}$		
	$\stackrel{\text{A3}}{:} C\bar{\alpha}.\bar{p} - i\hbar\beta mC^2$		
	$\begin{array}{c} A4 \\ \vdots \\ -C\bar{\alpha}.\bar{p} - \beta mC^2 \end{array}$		
bjective Questi			
8 88	According to equipartition theorem, for a nonrelativistic particle moving in a one dimensional potential, $V(x)=kx^{\delta}$, what is the average potential energy at temperature T?	4.0	1.00
	$\stackrel{A1}{:} k_B T$		
	$ \stackrel{A2}{:}{}^{k_{\mathrm{B}}T/2}$		
	$\stackrel{A3}{:}$ $k_{\mathrm{B}}\mathrm{T/6}$		
	$\begin{array}{c} A4 \\ 3k_BT/2 \\ \vdots \end{array}$		
bjective Questi	on		
9 89	Molar specific heat of an ideal gas of diatomic molecules in terms of gas constant R, at temperature where vibrational degrees of freedom are frozen is given by	4.0	1.00
	A1 7R/2		
	A2 3R/2		
	A3 3R		
	A4 5R/2		

90 90	Consider a system particles in d dimension, with energy of the particles as $\varepsilon \propto p^{\varepsilon}$, where p is the momentum of the particle. What is the value of PV/U, where P is the pressure, V is the volume and U is the internal energy of the system.	4.0	1.00
	A1 s/d		
	A2 2/d		
	A3 s/3		
	A4 d/s :		
Objective Question			
91 91	The entropy of black body radiation varies with temperature as	4.0	1.00
	$\stackrel{\text{A1}}{:}$ T^2		
	A2 T ³		
	A3 T		
	A4 T ^{3/2}		
Objective Question			
92 92	The total energy per particles of a collection of fermions is 6.0 eV. The Fermi energy of the system is	4.0	1.00
	A1 5.0 eV		
	A2 15.0 eV		
	A3 10.0 eV		
	A4 9.0 eV		
Objective Question			
93 93	Pressure of an ideal Fermi gas at T = 0 K relates to number density (n) of Fermions as	4.0	1.00
	A1 n ^{2/3}		
	A2 n ^{3/2}		
	A3 n3/5		

		$\begin{vmatrix} A4 & n^{5/3} \\ \vdots & n^{5/3} \end{vmatrix}$		
	tive Question		1	1
94	94	Which of the following probability distribution functions (ρ) qualify to be equilibrium probability distribution function for any given Hamiltonian H?	4.0	1.00
		A1 : ρ depends only on coordinate variables		
		$\frac{A2}{100}$ p depends only on momentum variables		
		$\stackrel{A3}{:}$ ρ depends on coordinate and momentum variables through the Hamiltonian		
		$\stackrel{A4}{:}$ ρ can be an arbitrary function of coordinate and momentum variables.		
Object	tive Question			
95	95	The temperature at the Fermi level of energy 0.25 ev is approximately	4.0	1.00
		A1 812 K		
		A2 1212 K		
		A3 1812 K		
		A4 2212 K		
01:				
Object 96	tive Question		4.0	1.00
		$C_{ m V}/T$ vs. T^2 plot of a crystal solid according to Debye theory is		
		Al Circular curve		
		A2 Parabola :		
		A3 Straight line		
		A4 Hyperbola :		
Object	tive Question			
97	97	The spin contribution to magnetic moment for Co ²⁺ (3d ⁷) ion	4.0	1.00
		The spin controlled to imagnote moment for co (54) for		
		$\stackrel{A1}{:}$ 2 μB		
		A2 3 μB		

		A3 5 μB		
		A4 8 μB		
Objec	tive Question			
98	98	A good example of van der Waals bond soild is	4.0	1.00
		Al NaCl		
		A2 Na :		
		A3 Ge :		
		A4 Ar :		
	tive Question			
99	99	Reciprocal lattice structure of hcp structure is	4.0	1.00
		A1 SC structure		
		A2 Bcc structure		
		A3 Fcc structure		
		A4 hcp structure		
Objec	tive Question			
100	100	$Ge_{1-x}Ga_x$ is an example	4.0	1.00
		A1 intrinsic semiconductor		
		A2 n type semiconductor		
		A3 p type semiconductor		
		A4 insulator		