ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011.

M.Phil./Ph.D. (PHYSICS)

COURSE CODE: 255/122

register	Number	:			
			Transfer of the second		
					Signature of the Invigilator (with date)

COURSE CODE: 255/122

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

- If $\sqrt{a+ib} = x+iy$, then a possible value of $\sqrt{a-ib}$ is 1.

 - (A) $x^2 + y^2$ (B) $\sqrt{x^2 + y^2}$ (C) x + iy
- (D) x iy

- The rank of the matrix $\begin{pmatrix} 7 & -1 \\ 2 & 1 \end{pmatrix}$ is 2.
 - (A) 9

- (B) 2
- (C) 1

(D)

- If u = f(x, y) then with usual notations, $u_{xy} = u_{yx}$ if 3.
 - (A) u is continuous

(B) u_x is continuous

(C) uy is continuous

- (D) u,ux,uy are continuous
- The order and degree of the differential equation are $\frac{d^2y}{dx^2} = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{3/4}$ 4.
 - (A) 2, 1
- (B) 1,2
- (C) 2, 4 (D) 4, 2
- The set of positive even numbers, with usual multiplication forms 5.
 - (A) a finite group

(B) only a semi group

(C) only a monoid

(D) an infinite group

- If $\begin{vmatrix} \alpha & -\beta & 0 \\ 0 & \alpha & \beta \\ \beta & 0 & \alpha \end{vmatrix} = 0$, then
 - (A) $\frac{\alpha}{\beta}$ is one of the cube roots of unity
- (B) α is one of the cube roots of unity
- β is one of the cube roots of unity
- (D) None of these
- The differential equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary 7. constant is of
 - (A) First order and second degree
- First order and first degree (B)
- Second order and first degree
- (D) Second order and second degree

- If $y = \sec^{-1} \frac{x+1}{x-1} \sin^{-1} \frac{x-1}{x+1}$, then $\frac{dy}{dx}$ is

 - (A) 1 (B) $\frac{x-1}{x+1}$
- (C) $\frac{x+1}{x-1}$
- (D) 0
- 9. Which of the following matrices does not have an inverse?
- (A) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$
- (D) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

- The relation between Beta and Gamma functions is 10.
 - (A) $B(l,m) = \frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m)}$

(B) $B(l,m) = \frac{\Gamma(l)\Gamma(m)}{\Gamma(l-m)}$

(C) $B(l,m) = \frac{\Gamma(l+m)}{\Gamma(l)\Gamma(m)}$

- (D) $B(l,m) = \frac{\Gamma(l-m)}{\Gamma(l)\Gamma(m)}$
- If $F(t)=t^{-1/2}$, then Laplace transform of F(t) is

 - (A) $\sqrt{\frac{\pi}{s}}$ (B) $\frac{\pi}{s^{3/2}}$
- (C) $\sqrt{\frac{s}{s}}$
- (D) None
- What is the angle between x-axis and a force represented by $\hat{F} = 2\hat{i} + 3\hat{j} + 4\hat{k}$? 12.

- (A) $\cos^{-1}\frac{3}{\sqrt{29}}$ (B) $\cos^{-1}\frac{4}{\sqrt{29}}$ (C) $\cos^{-1}\frac{5}{\sqrt{29}}$ (D) $\cos^{-1}\frac{2}{\sqrt{29}}$
- 13. The directionality of the laser beam is due to
 - Stimulated emission

(B) Cavity design of the laser

Both (A) and (B) (C)

- None of the above (D)
- 14. He-Cd laser also decays radiatively via the lasing transition at 325.0 nm (with transition probability = 7.8×10^5 s⁻¹) and also at 313 nm with transition probability = 1.6×10^5 s⁻¹). The lifetime of the associated upper energy level would be
- $1.06 \times 10^{-6} s$ (B) $6.2 \times 10^{-6} s$ (C) $1.2 \times 10^{-6} s$ (D) $1.6 \times 10^{-6} s$

15.	Emission of light waves from moving atoms leads to										
	(A)	Natural broadening	(B)	Doppler broadening							
	(C)	Crystal broadening	(D)	No broadening							
16.	Lasi	ing transition at 632.8 nm wavelength	in He	-Ne gas laser is due to							
	(A)	He transition	(B)	Ne transition							
	(C)	From the cavity mirror of the laser	(D)	None of the above							
17.	Nd:	YAG laser is an example of									
	(A)	2-level system	(B)	3-level system							
	(C)	6-level system	(D)	4-level system							
18.	The	minimum emission linewidth of an ele	ctroni	c transition is given by							
	(A)	Natural broadening	(B)	Doppler broadening							
	(C)	Inhomogeneous broadening	(D)	Isotope broadening							
19.	Dop	pler broadening of the emission line-wi	dth in	a laser results in							
	(A)	Gaussian lineshape	(B)	Lorentzian lineshape							
	(C).	Sigmoidal lineshape	(D)	All of the above							
20.		rate of spontaneous transition (per ull E ₁ is proportional to	nit vo	olume) from upper level E2 to lower							
	(A)	Einstein A ₂₁ coefficient									
	(B)	Einstein B ₂₁ coefficient									
	(C)	Einstein B_{21} Coefficient and N_2 (numb	er de	nsity of atoms in level 2)							
	(D)	Einstein A_{21} Coefficient and N_2 (numb	er de	nsity of atoms in level 2)							
21.	whos	ouble slit interference experiment one se refractive index is 1.58. Separation b the screen is 50 cm. Because of mica	etwe	en two slit is 0.1 cm and the distance							
	The	thickness of mica sheet is									
	(A)	6.7×10^{-4} cm	(B)	$1.6 \times 10^5 \text{ m}^{-1}$							
	(C)	1.6×10 ⁵ m	(D)	$6.7 \times 10^{-4} \mathrm{cm}^{-1}$							

22.	A 3MW laser beam ($\lambda_0 = 6 \times 10^{-5} \mathrm{m}$ and beam width $2a = 1 \mathrm{cm}$) is incident on the lens
	of focal length of $5\ cm$, then, the intensity at focal plane of the lens is approximately
	(A) $3.33 \times 10^{-16} \text{ m}^2/\text{W}$ (B) $3 \times 10^{16} \text{ W/m}^2$
	(C) $10^{-10} \mathrm{m^2/W}$ (D) $10^{10} \mathrm{W/m^2}$
23.	The divergence due to diffraction limited He-Ne laser (λ_0 = 0.6328 μm) having an
	Gaussian output of $\omega_0 = 5$ μ m is given as
	(A) 2.3° (B) 3.3° (C) 1.3° (D) 4.6°
24.	Which of the following is correct statement?
	(A) Probability of stimulated emission is identical to the probability of spontaneous emission
	(B) Probability of stimulated emission is identical to the probability of spontaneous absorption
	(C) Probability of stimulated absorption is identical to the probability of spontaneous emission
	(D) None of the above
25.	The virtual work done in any dynamical system is
	(A) > 0 (B) <0 (C) 0 (D) infinity
26.	The Hamiltonian of a SHO is
	(A) $(1/2)$ mv _x + $(1/2)$ kx (B) $(1/2)$ mv _x ² + $(1/2)$ kx ²
	(C) $(1/2)\text{mv}_x^2 - (1/2)\text{kx}^2$ (D) $\text{mv}_x^2 - \text{kx}^2$
27.	In Hamilton's principle the action is defined as
	(A) $\int \delta L dt$ (B) $\delta \left(\int L dt \right)$ (C) $\int L dt$ (D) $\delta L dt$
28.	In a central field, the minimum energy path cannot be one of the following
	(A) ellipse (B) parabola (C) circle (D) straight line

					-					
29.		particle of mass responding to ϕ		moving on a	a spheric	al surface. The	angu	lar momentun	n	
	(A)	$mr^2 \theta$	(B)	$mr^2 \theta \phi$	(C)	$mr^2 \sin^2 \theta \phi$	(D)	$mr^2 \sin^2 \theta \theta$		
30.	If a	real velocity (1/	$2r^2\theta$) is constant,	the Lagra	ngian is L =				
	(A)	$(\frac{1}{2})m(r^2+r^2)$	9^{2})		(B)	$(\frac{1}{2})m(r^2 + r\theta^2)$)			
	(C)	$(\frac{1}{2})m(r^2-r^2)$	θ^{2} $-V$	(r)	(D)	$\left(\frac{1}{2}\right)m\left(r^{2}\theta^{2}\right)$				
31.	Har	nilton-Jacobi eq	uation	is						
	(A)	$q + \partial H/\partial p = 0$			(B)	$p + \partial H/\partial q = 0$				
	(C)	$S + \partial H/\partial t = 0$			(D)	$H + \partial S/\partial t = 0$				
32.	The F_1 =	conjugate m $= (\frac{1}{2})q^2 \cot Q \text{ is}$	nomen	tum p con	rrespondi	ng to the g	genera	ating function	1	
	(A)	$q \sin Q$	(B)	$q \tan Q$	(C)	$q \cot Q$	(D)	$q^2 \operatorname{cosec} Q$		
33.	In N	Vewtonian mech	anics t	he speed of a	particle i	S				
	(A)	less than c	(B)	equal to c	(C)	more than c	(D)	any value		
34.	Two electrons are ejected in opposite direction from a radioactive source at rest in laboratory and speed of each electron is 0.67c. The speed of one electron seen by other in relativistic mechanics is									
	(A)	0	(B)	1.34c	(C)	0.92c	(D)	0.67c		
35.	The Doppler shift in the wavelengths of H_{α} (6561 Å) line from a Star which is moving away from the Earth with a velocity 300 km/s is approximately									
	(A)	-6.561 Å	(B)	+6.561 Å	(C)	$-3.453 \; {\rm \AA}$	(D)	+3.453 Å		
36.		relativistic mass rence of 2 MV is		electron (rest	t mass 0.5	5 MeV) accelerat	ed thi	rough potential		
	(A)	$2.5~{ m MeV}$	(B)	$1.5\;\mathrm{MeV}$	(C)	1 MeV	(D)	$0.5~{ m MeV}$		
37.	The	order parameter	rofas	uperconducto	r is					
	(A)	critical field			(B)	critical tempera	ature			
	(C)	energy gap			(D)	coherent length				
255/	122				6					

38.	The condition for Polarization catastrophe (symbol with conventional meaning) is									
	(A)	$\sum (n_i \; \alpha_i)/\; \mu_0 =$	-1		(B)	$(\sum n_i \alpha_i)/\mu_0 =$	= 0			
	(C)	$(\sum n_i \ \alpha_i)/\mu_0 =$	infinity	7	(D)	$(\sum n_i \ \alpha_i)/\mu_0 =$	+1			
39.		effective mass					E, K ar	nd h represent		
	(A)	$h\partialE/\partialK$			(B)	$\partial K/\partial E$				
	(C)	$h^2 \left(\partial^2 K/\partial^2 E\right)$	$/4\pi^2$		(D)	$h^2 \left(\partial^2 E/\partial^2 K\right)$	$\sqrt{4\pi^2}$			
40.		rmal conductivi electric field (E			ed to Lo	orentz number	(L), cur	rent density (J		
	(A)	K = L JE	(B)	K = LJ/E	(C)	K = LE/J	(D)	K = JE/L		
41.	The	Debye's freque	ncy of a	metal with D	ebye ter	nperature 450	K is			
	(A)	$10^3\mathrm{Hz}$	(B)	$10^{10}\mathrm{Hz}$	(C)	$10^{13}\mathrm{Hz}$	(D)	$10^{15}\mathrm{Hz}$		
42.	The	slope of the plo	t lnp vs	. l/T of an intr	insic se	miconductor is				
	(A)	$-E_g/2$ k _B	(B)	$-E_g/k_B$	(C)	$+E_g/k_B$	(D)	$+E_{\rm g}/2k_{\rm B}$		
43.	In the Brillouin function $B_J(x)$ of a ferromagnet, the $x \to 0$ corresponds to									
	(A) ferromagnetic phase					paramagnetic phase				
	(C)	Curie tempera	iture		(D)	maximum mo	ment			
44.	The electronic specific heat of Al (E_{F} = 11.7 eV) at room temperature is									
	(A)	0.009 J/K	(B)	0.09 J/K	(C)	0.9 J/K	(D)	9.0 J/K		
45.	For 1	Ni ²⁺ (3d ⁸) ion th	e effect	ive magnetic n	noment	is				
	(A)	$2.49\mu_{B}$	(B)	$4.59\mu_{B}$	(C)	$5.59\mu_{\rm B}$	(D)	$6.49\mu_{B}$		
46.		carrier concent	ration o	of intrinsic Ge	(Eg = 0.	67 eV, m _e * = 0.	12 me, 1	$m_h^\circ = 0.28 m_e$		
	(A)	$5\times10^{17}\!/m^3$	(B)	$5\times10^{18}/m^3$	(C)	$5\times10^{19}\text{/m}^3$	(D)	$5 \times 10^{-19} / \text{m}^3$		

47.	The	ground state of	config	uration of Mn³+	(3d4) io	on is				
	(A)	$^{2}\mathrm{D}_{3/2}$	(B)	$5D_4$	(C)	$^5\mathrm{D}_0$		(D)	4F _{3/2}	
48.	A s	uperconductor (T	c = 10	OK, critical mag	gnetic i	field at 0K	is 0.0	8 Tes	sla) follows the	
	rela	ation $H_{C}(T)=H_{0}$	[1-(T	$\left \left\langle T_{C} \right\rangle^{2} \right $. The crit	tical fie	ld at 5 K is				
	(A)	0 Tesla	(B)	0.02 Tesla	(C)	0.03 Tesla	a	(D)	0.06 Tesla	
49.		ational and cer $ imes 10^{-4}~ m cm^{-1}$. The $ imes$						10.8	593 cm ⁻¹ and	
	(A)	$299.52~\rm{cm}^{-1}$	(B)	$2995.2~{\rm cm^{-1}}$	(C)	29.95 cm	1 1	(D)	None	
50.	The	bending vibratio	ns of	N- atomic non-l	inear n	nolecule is	given l	ру		
	(A)	2N-5	(B)	2N-4	(C)	3N-5		(D)	None	
51.	In F	T-IR spectra wh	ich of	the following m	olecule	s has a low	er freq	luenc	у	
	(A)	СН	(B)	CCl	(C)	We can't s	say	(D)	CBr	
52.	chai	electronic transi								
	(A)	Franck-Condon	princ	iple	(B)) Paschen-Back effect				
	(C)	Born-Oppnehei	mer a	pproximation	(D)	None				
53.		molecular motion s through their ed							frequency and	
	(A)	Orbital angular	mom	entum	(B)	Normal m	odes			
	(C)	Larmor frequer	ıcy		(D)	None				
54.		olecule has a cer vice versa. This		symmetry then	n Rama	in active m	odes a	re ini	frared inactive	
	(A)	Stoke's law			(B)	Pauli excl	usion p	orinci	ple	
	(C)	Mutual Exclusi	on Pri	nciple	(D)	None				

55.	In X-ray absorption spectra if transition from L- shell (n=2) to O-shell (n=5) takes
	place, the transition in x-ray notation is then
	(A) L_{γ} (B) L_{α} (C) L_{β} (D) None
56.	In nuclear quadrupole resonance the set of nuclear energy levels are
	(A) Magnetic nature (B) Electromagnetic nature
	(C) None (D) Electric nature
57.	In any system having an odd number of unpaired electrons, the zero field ground state is at least two fold degenerate. This statement is
	(A) Jahn-Teller theorem (B) Kramer's theorem
	(C) Larmor's theorem (D) None
58.	If B is the rotational constant of a given molecule, the first three lines in rotational Raman spectra are at
	(A) 4B, 8B, 12B (B) 6B, 10B, 14B (C) 2B, 4B, 6B (D) None
59.	The mass spectrograph directly yields a value for
	(A) mass of a photon (B) mass of a neutron
	(C) masses of isotopes of elements (D) mass to charge ratio of ions
60.	An electron and a proton are moving at the same speed in circular paths in the same uniform magnetic field. The radius of the path of the proton is
	(A) the same as that of the electron
	(B) about 2000 times larger than that of the electron
	(C) a little larger than that of the electron
	(D) smaller than that of the electron
61.	What name is given to the class of subatomic particles which include the proton, the neutron, and several heavier particles, such as the lambda, the sigma and the omega.
	(A) photons (B) lentons (C) mesons (D) harvons

62.	If the half-life of a radioisotope is 2 days, after how many days is the quantity reduced
	to 12.5% of its original amount?
	(A) 4 days (B) 6 days (C) 8 days (D) 10 days
63.	A gluon is the carrier of which one of the following forces of nature?
	(A) Strong force (B) Weak force
	(C) Both strong and weak forces (D) Electromagnetic force
64.	The ground state energy of positronium is most nearly equal to
	(A) -27.2 eV (B) 13.6 eV (C) -6.8 eV (D) -3.4 eV
65.	When the beta decay of Co-60 nuclei is observed at low temperatures in a magnetic field that aligns the spins of the nuclei, it is found that the electrons are emitted preferentially in a direction opposite to the Co-60 spin direction. Which of the following invariance is violated by this decay?
	(A) Gauge invariance (B) Time invariance
	(C) Translation invariance (D) Reflection invariance
66.	According to the Standard Model of elementary particles, which of the following is NOT a composite object?
10	(A) Muon (B) Pi-meson (C) Neutron (D) Deuteron
67.	The half-life of a π^+ meson at rest is 2.5×10^{-8} second. A beam of π^+ mesons is generated at a point 15 metres from a detector. Only half of the π^+ mesons live to reach the detector. The speed of the π^+ mesons is (c is the speed of light)
	(A) $(\frac{1}{2})c$ (B) $[\sqrt{(2/5)}]c$ (C) $[2/\sqrt{(5)}]c$ (D) $2c$
68.	What is the quark content of a neurton?
	(A) UD (B) DU (C) UUD (D) DDU
69.	In the theory of angular momentum, which of the following operators is a Casimir operator?
	(A) J_x (B) J_+ (C) J^2 (D) J_z

70.		ate energy eigenfunc $\alpha^2 x^2$), where N is	tion of one	dimensi	onal h	armonic os	cillator is
	_	(B) $\sqrt{\frac{\alpha}{\sqrt{\pi}}}$	(C)	$\frac{\alpha}{\pi}$		(D) $\frac{\alpha}{\sqrt{\pi}}$	

71. The ratio of the de Broglie wave lengths of the electron in the first and the third orbits in the hydrogen atom is

72. The ground state energy of hydrogen atom is -13.6 eV. What is the energy of the electron in its first excited state?

73. If one dimensional harmonic oscillator is perturbed by a time dependent perturbation given by $V = ax^2 \cos(\omega t)$. What are the selection rules with respect to transitions among the energy eigenstates?

(A)
$$\Delta n = 0$$
 (B) $\Delta n = 0, \pm 2$ (C) $\Delta n = \pm 2$ (D) $\Delta n = 0, \pm 1$

74. Consider a two level system with states $|0\rangle$ and $|1\rangle$. If an operator A is such that $A|0\rangle = |1\rangle$ and $A|1\rangle = |0\rangle$. What is the corresponding matrix of A?

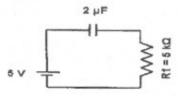
75. Given σ is the total cross section and f(θ) is the scattering amplitude and θ being the angle of scattering, for quantum mechanical elastic scattering by a spherically symmetric potential, then which of the following is true? Note that k is the magnitude of wave vector along the z-direction.

(A)
$$\sigma = |f(\theta)|^2$$
 (B) $\sigma = \frac{4\pi}{k} |f(\theta = 0)|^2$

(C)
$$\sigma = \frac{4\pi}{k} \times \text{Im} \left| f(\theta = 0) \right|$$
 (D) $\sigma = \frac{4\pi}{x} \left| f(\theta) \right|^2$

76. What is the degeneracy of nth excited state of three dimensional isotropic harmonic oscillator?

77. A particle in one dimensional box of length L, is subjected to a perturbation given by $V = a \delta(x - L/2)$. What is the first order correction to the energy of n = 2 state?

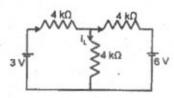

11

78.	Wha	at is the exchange degenera	acy of three i	denti	cal fermions?						
	(A)	2 (B) 3		(C)	5 (D) 6						
79.	The	isotherms of Andrew's exp	eriment exp	lain tl	hat						
	(A)	Carbon dioxide is a perfe		(B)	A gas can be liquefied						
	(C)	There is continuity of sta	te	(D)	Purity of gas						
80.		ole of carbon dioxide is 44 s of one mole of gas is (in F		voga	dro number is 6.023×10^{23} per mole.						
	(A)	7.31×10^{-26}		(B)	264×10^{-20}						
	(C)	7.31×10^{-19}		(D)	220×10^{-25}						
81.	Afte	r 10000 cycles the sink	f heat is rel	eased	to the sink at the end of each cycle.						
	(A) (B)	expands is compressed									
	(C)	remains at same tempera	ture as it ha	e infi	nite heat conscitu						
	(D)	becomes hotter	ture as it ha	5 11111.	inte heat capacity						
82.	The thermometer in which 'the colour of the source of heat is used to estimate the temperature' is										
	(A)	bolometer		(B)	copper constantan thermometer						
	(C)	calorimeter		(D)	pyrometer						
83.	An exchange interaction is expressed by following expression $H_{\text{exc}} = -\ J\ s_{i.}s_{j.}$ It represents										
	(A)	Ising model		(B)	Heisenberg model						
	(C)	William's model		(D)	Pauli model						
84.	The order parameter of a ferromagnetic phase transition is										
	(A)	Curie temperature		(B)	Magnetic susceptibility						
	(C)	Coercive field		(D)	Magnetic field						
85.	Time	e average is equal to space	average in p	hase	space is the basic idea of						
	(A)	ergodicity		(B)	non-equilibrium condition						
	(C)	irreversible process		(D)	isothermal process						
86.	Whi	ch of the following logic gat	es can be us	ed as	a programmable NOT gate?						
	(A)	NOT (B) NA	ND	(C)	EX-OR (D) OR						

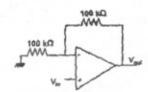
12

255/122

- 87. A decoded-ROM uses an 8 bit internal decoder and the size of each register is one byte (or 1 b). The memory capacity of this ROM is
 - (A) 256 b
- (B) 64 b
- (C) 2 kb
- (D) 1 Gb
- 88. The circuit shown in figure is under study state. The voltage across the capacitor (Vc) and the resistance (V_R) are



(A) $V_c = 0V$ and $V_R = 0V$


(B) $V_c = 0V$ and $V_R = 5V$

(C) $V_c = 5V$ and $V_R = 0V$

- (D) $V_c = 5V$ and $V_R = 5V$
- 89. Once it is conducting an SCR can be turned off only by
 - (A) Reducing the gate current to zero
- (B) Reducing the anode current to zero
- (C) Applying reverse voltage on gate
- (D) It cannot be turned off at all.
- 90. The current I_L in the circuit shown in figure is

- (A) 0.25 mA
- (B) 0.5 mA
- (C) 0.75 mA
- (D) 1 mA
- 91. A transistor (BJT) is connected in emitter bias configuration. Then the collector current is supposed to be
 - (A) independent of current gain and the base current
 - (B) independent of current gain but it depends on base current
 - (C) independent of base current but it depends on current gain
 - (D) a function of both the current gain and the base current
- 92. The open loop gain of Op-Amp shown in figure is 100000 and $V_{\rm in}$ is 10 mV. Then $V_{\rm out}$ is

- (A) 1 kV
- (B) 1 MV
- (C) 10 mV
- (D) 20 mV

93.	$\nabla^2 V$	$7 = -4 \pi p \text{ represen}$	nts								
	(A)	Maxwell's equa	tion		(B)	Laplace's equat	tion				
	(C)	Poisson's equat	ion		(D)	None of these					
94.	In th	ne case of reflecti	ion an	d refraction of li	ight at	the dielectric in	terface				
	(A)	Tangential com	ponen	its of D and B ar	re cont	tinuous					
	(B)	Tangential com	ponen	its of D and nor	mal co	mponent of B are	e continuous				
	(C)	Normal compor	nent of	f D and tangent	ial con	ponent of B are	continuous				
	(D)	Normal compor	nents	of D and B are c	ontinu	ious					
95.	The potentials which depend on the velocity of the particle is known as										
	(A)	Scalar potentia	1		(B)	Vector potentia	als				
	(C)	Retarded poten	tials		(D)	Lienard-Wiech	ert potentials				
96.	Give	en the field $\vec{E}=$	$\left(\frac{k}{r}\right)\hat{a}_r$	in cylindrical co	oordin	ates then the wo	ork needed to move	a			
	poin	t charge Q from	any ra	adial distance r	to a po	int at twice that	radial distance is				
	(A)	$-kQ\ln 2$	(B)	$-kr \ln 2$	(C)	$-2k \ln Q$	(D) $-kQ \ln r$				
97.	Net	outflow of flux th	nrough	a closed surfac	e encl	osing a charge q	is				
	(A)	$q/arepsilon_0$	(B)	l/q	(C)	q	(D) $q/4\pi\varepsilon_0$				
98.	diele	ectric of permitt	ivity	ε . When a vol	tage V		ance d, and contain lied to its plate, the rrent Jc are				
	(A)	$J_D > J_C$	(B)	$J_D < J_C$	(C)	$\boldsymbol{J}_D = \boldsymbol{J}_C$	(D) $J_D = 0$				
99.		well's electroma is they are not a	_		valid	under all condit	tions except one and	1			
	(A)	non-isotropic m	edia		(B)	non-homogeneo	ous media				
	(C)	non-linear med	ia		(D)	one of the above	е				
100.	Whe	en a charged par			rm ele	ectric field, the	force acting on it i	S			
	(A)	perpendicular t	0		(B)	along					
	(C)	opposite to			(D)	None					