ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011.

Ph.D. (STATISTICS)

COURSE CODE: 149

Register Number :		
		Signature of the Invigilator (with date)

COURSE CODE: 149

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The size of a most powerful level α randomized test is less than α implies (A) The test is not a level α test (B) The power of the test is unity	
	(C) The power of the test is less than 1 (D) The test is not a size α test	
2.	If W_1 and W_2 are the most powerful critical regions of size α_1 and α_2 then $\alpha_1 < \alpha_2$ implies	
	(A) $W_1 \supset W_2$	
	(B) $W_1 \subset W_2$	
	(C) $W_1 \cap W_2 = \phi$	
	(D) No comparison of W_1 and W_2 is possible	
3.	If a statistical test is consistent then	
	(A) the test is unbiased	
	(B) the test is uniformly most powerful	
	(C) power of the test $\rightarrow 1$ as sample size $\rightarrow \infty$	
	(D) the test is a similar test	
4.	For which one of the following test problem UMP test exist	
	(A) H: $\mu = \mu_0 \text{ vs } K: \mu \neq \mu_0$ in the case of N (μ ,1)	
	(B) $H: \theta = \theta_0 \text{ vs } K: \theta \neq \theta_0 \text{ in the case Cauchy } (\theta, 1)$	
	(C) H: $\theta = \theta_0$ vs $K: \theta \neq \theta_0$ in the case Poisson with parameter θ	
	(D) H: $\theta = \theta_0$ vs $K: \theta \neq \theta_0$ in the case U (0, θ)	
5.	Which one of the following is a false statement?	
	(A) A minimal sufficient statistic need not be unique.	
	(B) A complete sufficient statistic is minimal.	
	(C) A minimal sufficient statistic is a function of all the sufficient statistics.	
	(D) A minimal sufficient statistic is complete	
3.	If T is an estimator of θ then the condition $E(T_n) \to \theta$ and $Var(T_n) \to 0$ as $n \to \infty$ is	
	a sufficient condition for	
	(i) T weakly consistent for θ .	
	(ii) T mean square consistent for θ .	
	(A) (i) and (ii) are true (B) only (ii) is true	
	(C) only (i) is true (D) both (i) and (ii) are false	

7.	Wh	ich one of the following is a true statement if g is any continuous function?
	(A)	If T is consistent for θ then $g(T)$ is consistent for θ .
	(B)	If T is unbiased for θ then $g(T)$ is unbiased for θ .
	.(C)	If T is sufficient for θ then $g(T)$ is sufficient for θ .
	(D)	'All the above three options one false.
8.	An e	estimator T of θ is UMVUE of a θ if T is unbiased for θ and
	(A)	$\operatorname{Var}(T) = \operatorname{Cramer-Rao}$ bound for the variance of unbiased estimators of θ .
	(B)	$Var(T) \leq variance of all other unbiased estimators of \theta \forall \theta$.
	(C)	$Var(T) = Chapman-Robin$ bound for unbiased estimators of θ .
	(D)	$Var(T)$ = Bhattacharya bound for unbiased estimators of θ .
9.		ch one of the following distribution does not belong to the one parameter mential family?
	(A)	$N(0, \sigma^2)$ (B) $N(\mu, 1)$
	(C)	Exponential with mean $1/\theta$ (D) Cauchy $(\theta,1)$
10.		ch one of following is a false statement regarding the minimum chi-square nate?
	(A)	It is consistent
	(B)	Asymptotically normally distributed
	(C)	Asymptotically UMVUE
	(D)	It is sufficient
11.	If $\hat{\theta}$	is the MLE of θ , which one of the following is false?
	(A)	$\hat{ heta}$ is consistent for $ heta$ and asymptotically unbiased.
	(B)	If g is differentiable function of θ then MLE of $g(\theta)$ is $g(\hat{\theta})$.
	, (C)	Asymptotically $\hat{\theta}$ is the UMVUE of θ .
	(D)	$\hat{\theta}$ is sufficient for θ .
12.		shortest expected width confidence interval for θ based on a random sample of servations from U (0, θ) is
	(A)	Right sided (B) Left sided
	(C)	Two sided (D) depends on the value of α
		3 149

- Which one of the following is not true regarding the properties of the LSE $\hat{\theta}$ of θ in 13. the linear model $Y = X\theta + e$, $e \sim N(0, \sigma^2 I_n)$, $\theta = (\theta_1, ..., \theta_k)'$?
 - $\hat{\theta}_i$ is unbiased for $\theta_i \ \forall i$
 - $\hat{\theta}_{i}$ has the smallest variance among all linear unbiased estimators of θ_{i} . (B)
 - $\hat{ heta}$ has the smallest generalized variance among all linear unbiased estimators of (C)
 - $\hat{\theta}$ is UMVUE of θ
- Jordan Hahn decomposition theorem says that any distribution function can be 14. decomposed as
 - (A) infinitely many distributions
 - infinitely many discrete distributions
 - a discrete and a continuous distribution (C)
 - finitely many discrete distributions
- The distribution function $F(x) = \begin{cases} \frac{1}{4}, & 0 \le x < \frac{1}{2} \\ (x \cdot \frac{1}{4}), & \frac{1}{2} \le x < 1 \end{cases}$ is
 - continuous (A)

neither discrete nor continuous

discrete (C)

- not a distribution function
- Let $\{X_n\}$ be a sequence of independent random variables such that $P[X_n = 1] = \frac{1}{n}$; $P[X_n = 0] = 1 - \frac{1}{n}$, n = 1,2,... Which of the following statements is
- X_n converges to zero in r^{th} mean (B) X_n converges to zero almost surely
 - (C) Both (A) and (B)

- (D) Neither (A) nor (B)
- If the probability generating function of a random variable is $\phi(s)$, then its variance 17. is
 - (A) $\phi''(0) \phi'(0)$

(B) $\phi''(1) + \phi'(1) - [\phi'(1)]^2$

(C) $\phi''(1) - [\dot{\phi}'(1)]^2$

(D) $\phi''(1) - \phi''(0)$

18.	Let X be a posit	ive intege	er valued rando	m varia	able. Then its e	xpected value is give
	(A) $\sum_{k=1}^{\infty} P[X > k]$	(B)	$\sum_{k=1}^{\infty} P[X \ge k]$	(C)	$\sum_{k=1}^{\infty} P[X \le k]$	(D) $\sum_{k=1}^{\infty} P[X=k]$
19.	Consider the follo	wing bive	ariate probabili	ty distr	ibution.	
				Y		
				-1	1	
		X	-1	1/2	0	
			1	0	1/2	
	The characteristic	function	of (X,Y) is			
	11.	-i(t, +t-)]		(D)	1	
	(A) $\frac{1}{2} \left[e^{i(t_1 + t_2)} + e^{-i(t_1 + t_2)} \right]$ (C) $2e^{-i(t_1 + t_2)}$	1(1,112)		(B)	$\frac{\overline{2}}{2e^{i(t_1+t_2)}}$	

(A) Weak convergence

- (B) . Almost sure convergence
- (C) Convergence in probability
- (D) Convergence in rth mean

21. Cauchy - Schwartz inequality is a particular case of

(A) Jensen's inequality

(B) Minkowski inequality

(C) Holder's inequality

(D) Cr inequality

22. Let
$$\{A_n\}$$
 be independent events with $P\{A_n\} = \frac{1}{2} \ \forall \ n \ge 1$. Then $P\{A_n \text{ occuring infinitely often}\}$ is

(A) 0

(B) 0.5

(C) 1

(D) Cannot be determined

23. The density function of a random variable X is given by

$$f(x) = \begin{cases} kx^2, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$
. Then P[X>3/4 | X>1/2] is

- (A) 3/5
- (B) 37/56
- (C) 25/50
- (D) 1/3

24.	The	variance o	f a degener	ate rando	m variable is	3		
	(A)	Infinity			(B)	Zero		
	(C)	One			(D)	Undetermin	able	
25.	The	transition	probability	matrix of	a Markov C	hain is a stoch	nastic matrix, l	oecause
	(A)	it is a squ	are matrix		(B)	having non-	negative eleme	ents
	(C)	its row su	m is unity		(D)	satisfying al	l (A), (B) and (C)
26.		pose X(t) re stochastic p	7			ture at a parti	cular place in	(0,t) then
	(A)	discrete ti	me continu	ious state	space			
	(B)	continuou	s time disc	rete state	space			
	(C)	discrete ti	me discret	e state spa	ice			
	(D)	continuou	s time cont	tinuous sta	ite space			
27.	If	$\{X(t); t \in \mathcal{I}\}$	Γ} is a ε	stochastic	process su	ch that for	t ₁ < t ₂ <	. <tn <="" t<="" td=""></tn>
	P[a		*				$X(t)$ b / $X(t_n)=$	
	(A)	Poisson			(B)	Yule process		
	(C)	Markov			(D)	Birth and De	eath process	
28.	Let	$\{X_n; n \ge 0\}$	be a Ma		in with thre	ee states 0, 1,	2 and with t	ransition
	proba	ability mat	rix 1/4 1/3	4 with	h initial dis	tribution P[X	0 = i] = 1/3 i = 1/3	= 0, 1, 2.
				1/4				
	Then							
	$\mathrm{P}[\mathrm{X}_2$	$= 2, X_1 = 1$	$(X_0 = 2)$ is	equal to				
	(A)	3/15			(B)	3/16		
	(C)	3/17			(D)	3/19		
29.	The t	A	ansition p 5/16 1/	The property of the second second	matrix of a	Markov Cha	in with states	0,1,2 is
	given				the initial	distribution 1	$P[X_0 = 0] = 1/$	3. Then
		3/16	9/16 1/	4)				
	$P[X_2 =$	$= 1, X_0 = 0$	is equal to					
	(A)	5/48	(B)	5/47	(C)	5/46	(D) 5/41	
149					6			

	(A)	d) $d_i = Min\{m/P_{ii}^{(m)} > 0\}$ (B)	$d_i = Max \left\{ m / P_{ii}^{(m)} > 0 \right\}$
	(C)	(D) $d_i = GCD\{m/P_{ii}^{(m)} > 0\}$	$d_{\rm i} = LCM\left\{m/P_{ii}^{(m)}>0\right\}$
31.		et F_{jk} denote the probability that starting with ate k. A state j is said to be persistent if	th state j, the system will ever reach
	(A)	(C) $F_{ij} = 1$ (B) $F_{ij} < 1$	$F_{ij} > 1 (D) F_{ij} = 0$
32.	The	ne Chapman-Kolmogorov equation is useful for	computing
	(A)	Periodicity of a Markov Chain (B)	Order of a Markov Chain
	(C)) Return state probability (D)	Higher order transition probability
33.	Whi	hich one of the following is not the property of	a Poisson process?
	(A)	Poisson Process is a Markov Process such constant	that the conditional probabilities are
	(B)	It is a stationary process.	
	(C)	The sum of two independent Poisson proces	ss is also a Poisson process.
	(D)	Poisson process has independent as well as	stationary increments.
34.	proc	ppose that customer arrives at a service co ocess with mean rate of 2 per minute. The prob ocessive arrivals is more than 1 minute is	
	(A)	e^{-1} (B) e^{-2} (C)	e ⁻³ (D) e ⁻⁴
35.	If {/	$\{N(t)\}$ is a Poisson process and s < t, then P[N	N(s) = k / N(t) = n] is
	(A)	Binomial distribution with p = s/t and q =	1 - s/t
	(B)	Binomial distribution with p = 1-s/t and	q = s/t
	(C)	Poisson distribution with parameter λ t	
	(D)	Poisson distribution with parameter λ s	

The period d(i) of a return state i is

30.

(A) $\left(\frac{t+s}{t}\right)^{1/2}$ (B) $\left(\frac{t}{t+s}\right)^{1/2}$ (C) $\left(\frac{s}{t}\right)^{1/2}$ (D) $\left(1+\frac{t}{s}\right)^{1/2}$

36. If $\{N(t)\}$ is a Poisson process then the auto correlation between N(t) and N(t+s) is

37:		ne probabilistic then the proce			proces	ss is in	variant ı	ınder t	ransla	ation of t	he time	
	(A)	Gaussian pro	cess			(B)	Poisson	proces	SS			
	(C)	Birth and De	ath pr	ocess		(D)	Station	ary pro	cess			
38.		ch one of the ,X(t)] of a stoch					of covar	riance	functi	on C(s,t)) = cov[
	(A)	It is symmetr	ic									
	(B)	It is non-nega	tive de	efinite								
	(C)	The sum and	produ	ct of two co	variar	nt func	tions are	again a	a cova	riant fu	nction	
	(D)	The reciproca	l of cov	variance fur	nction	is aga	in a cova	riance	functi	on.		
39.		RBD the treat					atio with	df (4, 2	20). T	he total 1	number	
	(A)	24	(B)	80		(C)	30		(D)	32		
10.	It is	sider a complet found that the nean square er	total s									
	(A)	20	(B)	30		(C)	40		(D)	50		
1.		Latin square d of square is 120						es it is	found	d that th	e error	
	(A)	10	(B)	12		(C)	15		(D)	8		
2.		searcher conduct h. The number						erimen	nt in 1	6 blocks	of size	
	(A)	8	(B)	7		(C)	15		(D)	16		
3.	-	Balanced Incom given below i			esign	with p	arameter	's (v, b,	r, k, λ), which	of the	
	(A)	6,10,5,3,2	(B)	7,7,3,3,1		(C)	8,14,7,4,	2	(D)	7,7,4,4,	2	
4.		ck design with n matrix C is e			block	ks is sa	aid to be	connect	ted if	the rank	of the	
	(A)	b-1	(B)	b		(C)	v-1		(D)	v .		

45.	tha	opulation consi n the average iance of the pop	of the	marks obtain	ed by t	he remaining			
	(A)	$\sigma^2 \ge 10$	(B)	$\sigma^2 = 10$	(C)	$\sigma^2 \le 10$	(D)	$\sigma^2 \ge 9$	
46.	Wit	h usual notation	n finite	population con	rection	is			
	(A)	(N-1)/n	(B)	(N-n)/N	(C)	(N-n)/n	(D)	1 - (1/n)	
47.	Ins	amples of mode	rate siz	ze the distribu	tion of tl	ne ratio estima	te show	s a tendency	to
	(A)	symmetry				negative skev			
	(C)	non-normal			(D)	positive skew	ness		
48.	Vär	iance of the regi	ression	estimate is sn	aller th	an that of the	nean pe	er unit if	
	(A)	$\rho = 0$	(B)	$\rho \neq 0$	(C)	$S_y^2 = 1$	(D)	$S_x^2 = 1$	
49.	Syst	tematic samplin	g mear	ıs					
	(A)	selection of n	contigu	ous units					
	(B)	selection of n	units si	tuated at equa	ıl distan	ces			
	(C)	selection of n l	argest	units					
	(D)	selection of n	niddle	units in a seq	uence.				
50.		X be a r.v. deno tant if and only			compon	ent. Failure ra	te of th	e component	is
	(A)	Exponential			(B)	Negative bino	mial		
	(C)	Weibull			(D)	Normal			
51.		hazard rate						and it h	as
	(A)	$\beta > (<)1$	(B)	$\beta < (>)1$	(C)	$\beta > (=)1$	(D)	$\beta = (<)1$	
52.		vo component s bility function f				constant failu	ire rate	e. What is t	he
	(A)	R(t)= 1- [exp(-)	l 1 t) +	$\exp(-\lambda_2 t)$]					
	-(B)	$R(t) = \exp(-\lambda_1 t)$) + exp	$(-\lambda_1 t) + \exp(-t)$	$(\lambda_1 + \lambda_1)$	2)t)			
	(C)	$R(t) = (1 - \exp(-\lambda t))$	l 1t))(1	-exp(-λ ₂ t))					
	(D)	R(t) = 1 + (1 - exp	o(-λ ₁ t)	$(1-\exp(-\lambda_2 t))$					

53.	The 715	ty items were placed on test and the term of a failure time (in hours) were recorded 5, 820 and 914. Assume that the fail that ameter λ . The estimated reliability at	as fol ure t	llows: 85, 151, 280, 376, 492, 520, 623, time distribution is exponential with
	(A)	0.94 (B) 0.88	(C)	0.75 (D) 0.66
54.		der censoring scheme, a batch of transi eriment and the test is terminated at a led		
	(A)	Type-I censoring	(B)	Type-II censoring
	(C)	Random censoring	(D)	Progressive censoring
55.		a maximization type linear programinated when all values of	mmin	ng problem, the simplex method is
	(A)	$z_j - c_j \ge 0 (B) z_j - c_j \le 0$	(C)	$z_j - c_j = 0 (D) z_j - c_j \neq 0$
56.	The	feasible solution to a Linear Programm	ning F	Problem
	(A)	must satisfy all of the problem's const	raint	ts simultaneously
	(B)	need not satisfy all of the constraints,	only	some of them
	(C)	must be a corner point of the feasible	region	n
	(D)	must optimize the value of the objecti	ve fur	nction
57.	If th	ne constraints of the primal problem ar	e all	equations then the dual variable will
	(A)	Positive	(B)	Negative
	(C)	Unrestricted in sign	(D)	Equal to zero
58.		initial solution of a transportation p wn method. However, the only conditio		
	(A)	the solution is optimal	(B)	the rim conditions are satisfied
	(C)	the solution should not be degenerate	(D)	all the above
59.	Dua	l Simplex method is used to solve a LPI	e whe	en
	(A)	The solution is non-optimum and infe	asible	
	(B)	The solution is optimum and infeasibl	е	
	(C)	The solution is non-optimum and feas	ible	
	(D)	The solution is optimum and degenera	ite	

60.	In n	ost-optimality analysis of LPP, the feasibility condition is affected due to	
00.	m b	ose-optimately analysis of Li I, the leasibility condition is affected due to	
	(A)	Changes in the cost vector	
	(B)	Changes in the requirement vector	
	(C)	Addition and deletion of linear constraints	

(D)

Both (B) and (C)

61. When there are more than one server, customer behaviour in which he moves from one queue to another is

(A) Balking(B) Jockeying(C) Reneging(D) Alternating62. For a two-person zero-sum game with A and B and payoff matrix for player A, the

optimum strategies are

(A) Minimax for A and Maximin for B

(B) Maximax for A and Minimax for B

(D)

Maximin for A and Minimax for B

63. The expected number of customers in the system in (M/M/1) : (∞/FCFS) queuing model is

(A) $\frac{\lambda}{\mu}$ (B) $\frac{\lambda}{\mu^2}$ (C) $\frac{\lambda}{(\mu - \lambda)}$ (D) $\frac{\mu}{(\lambda - \mu)}$

where λ and μ are mean arrival rate and mean service rate respectively.

64. If $X_1, X_2, ..., X_N$ is a random ... ple from $N_p(\mu, \Sigma)$ then the maximum likelihood estimators of mean vector μ and variance-covariance matrix Σ are

(A) $\overline{X}, \frac{A}{N}$ (B) $\overline{X}, \frac{A}{N-1}$ (C) $\overline{X}, \frac{S}{N}$ (D) $\overline{X}, \frac{S}{N-1}$

where A is Sum of squares and cross product matrix and S is sample covariance matrix.

65. If $X_1, X_2, ..., X_{N1}$ is a random sample from $N_p(\mu^{(1)}, \sum_1)$ and $X_1, X_2, ..., X_{N2}$ is a random sample from $N_p(\mu^{(2)}, \sum_2)$ then the test statistic for testing the hypothesis H: $\mu^{(1)} = \mu^{(2)}$ against K: $\mu^{(1)} \neq \mu^{(2)}$ where $\sum_1 = \sum_2 = \sum_1 (\text{unknown})$ is

$$({\rm A}) \quad T^2 = \frac{N_1 N_2}{N_1 + N_2 - 2} (\overline{X}^{(1)} - \overline{X}^{(2)})^T S^{-1} (\overline{X}^{(1)} - \overline{X}^{(2)})$$

(B) $T^2 = N_1 N_2 (\overline{X}^{(1)} - \overline{X}^{(2)})^T S^{-1} (\overline{X}^{(1)} - \overline{X}^{(2)})$

Minimin for A and Maximin for B

(C)
$$T^2 = \frac{N_1 N_2}{N_1 + N_2} (\overline{X}^{(1)} - \overline{X}^{(2)})^T S^{-1} (\overline{X}^{(1)} - \overline{X}^{(2)})$$

 $\text{(D)} \quad T^2 = \frac{N_1 + N_2}{N_1 N_2} (\overline{X}^{(1)} - \overline{X}^{(2)})^T S^{-1} (\overline{X}^{(1)} - \overline{X}^{(2)})$

where S is the pooled sample variance-covariance matrix.

66.	If ∑ univ	= 1 = I and p = 1 in Wishart distrib ariate distribution?	ution t	hen this distribution reduces to which
	(A)	χ^2 distribution	(B)	Student's t distribution
	(C)	Snedecor's F distribution	(D)	Normal distribution
67.	If the	p-component vector Y is distribute $Y\Sigma^{-1}Y$ is distributed according to	d accor	ding to N $(0,\Sigma)$ and Σ is non-singular
	(A)	χ^2 distribution with p degrees of free	edom	
	(B)	χ^2 distribution with (p-1) degrees of	freedo	om
	(C)	$N_p(0, Y\Sigma Y)$		
	(D)	$N_p(0, Y\Sigma^{-1}Y)$		
68.	The r	elation between Hotelling T^2 statis ity of two mean vectors of normal po	tic and pulatio	Mahalanobis D^2 statistic for testing on is
	(A)	$T^{2} = \left(\frac{N_{1} + N_{2}}{N_{1}N_{2}}\right)D^{2}$	(B)	$T^2 = \left(\frac{N_1 N_2}{N_1 + N_2}\right) D^2$
	(C)	$T^2 = \left(\frac{N_1 + N_2 - 2}{N_1 N_2}\right) D^2$	(D)	$T^2 = \left(\frac{N_1 N_2}{N_1 + N_2 - 2}\right) D^2$
69.		der the multiple regression model Y $\varepsilon \sim N(0, \sigma^2 I)$. The m.l.e of β , $\hat{\beta}$ = ($+ \varepsilon$ where Y_{nx1} , $X_{nx(p+1)}$, $\beta_{(p+1)x1}$ and XY is distributed according to
		$N(\beta, \sigma^2 I)$		$N(\beta, I)$
	(C)	$N(\beta, \sigma^2(XX)^{-1})$	(D)	$N(\beta, \sigma^2(XX))$
0.	Chara	cteristic function of Binomial distrib	ution v	vith parameters n and p is
		$q+pe^{it})^n$ (B) $(p+qe^{it})^n$	(C)	$(1+pe^{it})^n$ (D) $(p+e^{it})^n$
1.	If the		B $(3,\frac{1}{3})$	and $Y \sim B(5, \frac{1}{3})$, then $P[X+Y \ge 1]$ is
	(A) ((C)	$1 + \left(\frac{2}{3}\right)^8 \tag{D} 1$
2.	If X is	a poisson variate such that P(X=2)=	9P(X=4)+90P(X=6) then the mean of X is
	(A) 1	(B) 2	(C)	3 (D) 4

73.	then X_1 given $(X_1 + X_2) = n$ follows	na X2 I	have the same geometric distribution
	(A) Uniform distribution	(B)	Poisson distribution
	(C) Gamma distribution	(D)	Hypergeometric distribution
74.	If X has uniform distribution in [0,1], then	pdf of	f Y=-2log X is given by
	(A) $\frac{e^{-\frac{y}{2}}}{2}$ (B) $e^{-\frac{y}{2}}$	(C)	$-\frac{y}{2}$ (D) $\frac{y}{2}$
75.	The difference of two Poisson variates is		
	(A) Binomial variate	(B)	Poisson variate
	(C) Gamma variate	(D)	None of the above
76.	If $X \sim \beta_2(\mu, \nu)$ then $Y = \frac{1}{1+X}$ follows		
	(A) $\beta_1(\mu,\nu)$ (B) $\beta_2(\mu,\nu)$	(C)	$\beta_1(0,\nu)$ (D) $\beta_2(\mu,0)$
77.	Ratio of two independent standard normal	varia	tes is
	(A) Binomial variate	(B)	Poisson variate
	(C) Normal variate	(D)	Standard Cauchy variate
78.	If $X \sim \chi_n^2$, then X/2 follows Gamma distribu	tion w	ith parameter
	(A) $\frac{n}{2}$ (B) $\frac{1}{2}$	(C)	1 (D) 2
79.	Standard error of sample variance is		
	(A) $\sigma^2 \sqrt{\frac{2}{n}}$ (B) $\sigma^2 \sqrt{\frac{4}{n}}$	(C)	$\sqrt{\frac{2}{n}}$ (D) σ^2
80.	The cumulative distribution function of the	smal	lest order statistic is
	(A) $1 - [1 - F(x)]^n$ (B) $[1 - F(x)]^n$	(C)	$1 \cdot [1 \cdot F(x)]$ (D) $1 \cdot F(x)$
81.	If $X \sim B(n,p)$, then $Cov(\frac{X}{n}, \frac{n-X}{n})$ is		
	(A) $\frac{-pq}{}$ (B) $\frac{pq}{}$	(C)	$\frac{-p}{}$ (D) $\frac{-q}{}$

- 82. If X and Y have the same distribution, it does not imply that they are

 (A) identical (B) different (C) independent (D) similar

 83. Given that we have collected pairs of observations on two variables X and X, we
- 83. Given that we have collected pairs of observations on two variables X and Y, we would consider fitting a straight line with X as an explanatory variable if
 - (A) the change in Y is an additive constant.
 - (B) the change in Y is a constant for each unit change in X
 - (C) the change in Y is a fixed percent of Y
 - (D) the change in Y is exponential
- 84. The least squares regression line is the line
 - (A) which is determined by use of a function of the distance between the observed Y 's and the regression line.
 - (B) which has the smallest sum of the squared residuals of any line through the data values.
 - (C) for which the sum of the residuals about the line is zero.
 - (D) which has all of the above properties
- 85. A botanist investigates the relationship between Y, the heights of seedlings (in inches), and X, the number of weeks after planting. The summary data are: n=6, $\overline{X}=4.67$, $\overline{Y}=9.467$, $\sum X^2=154$, $\sum Y^2=696.54$, $\sum XY=325.9$ The fitted regression line for seedling height on the number of weeks after planting is:
 - (A) $\overline{Y} = -2.8 + 2.62X$

(B) $\overline{Y} = 2.8 + 2.62X$

(C) $\overline{Y} = 2.62 + 2.8X$

- (D) $\overline{Y} = 9.5 + 2.62X$
- 86. If you determine a point is an outlier, you would
 - (A) ignore it
 - (B) always delete it and then recalculate the line of best fit
 - (C) examine it carefully and try to determine what is causing it to be an outlier
 - (D) use it in the calculation of the Sum of Squared Errors
- 87. Neyman Pearson Lemma helps to obtain the most powerful test for testing
 - (A) a simple hypothesis against a simple alternative
 - (B) a simple hypothesis against a composite alternative
 - (C) a composite hypothesis against a composite alternative
 - (D) a composite hypothesis against a simple hypothesis.

00.	If the points lit the regression line well							
	(A)	(A) the confidence interval of the slope of the regression line will be narrow						
	(B)	the confidence interval of the intercept will be narrow						
	(C)	c) the correlation coefficient will be numerically high						
	(D)	all of these ar	e true.					
89.	Compared with parametric equivalents, nonparametric tests are							
	(A)	(A) Less powerful						
	(B)	Less likely to reject the null hypothesis						
	(C)	More conservative						
	(D)	All of these						
90.	What could have undue influence on the value of the correlation and regression coefficients estimated in fitting a model to the data set?							
	(A)	Normality	(B)	Outliers	(C)	Regressors	(D)	Error term
91.	For what type of data, we use Mc Nemar's test							
	(A)	Ordinal	(B)	Interval	(C)	Ratio	(D)	Nominal
92.	In Kruskal – Wallis ANOVA, if significance is observed then what is the suitable post-hoc test to be used							
	(A)	A) Duncan's multiple range test						
	(B)	(B) Adjusted significance level with Bonferonni test						
	(C)	Least significance test						
	(D)	Scheffe's test						
93.		e connection between almost sure (a.s) convergence, convergence in probability (p) d in mean (m) is						
	(A)	$a.s \Rightarrow m \Rightarrow p$			(B)	$a.s \Rightarrow p; p \Rightarrow $	m	
	(C)	$a.s \Rightarrow p; m \Rightarrow $	p		(D)	$m \!\Rightarrow\! a.s \Rightarrow p$		
94.	X_1, X_2, X_3 are independent observations from a normal population with mean θ and variance unity.							
	Two statistics T_1 and T_2 are defined as $T_1 = \frac{X_1 + X_2 + 2X_3}{4}$ and $T_2 = \frac{X_1 + X_2 + X_3}{3}$.							
	The efficiency of T ₁ relative to T ₂ is given by							
	(A)	8 9	(B)	$\frac{3}{4}$	(C)	9 8	(D)	$\frac{4}{3}$

- The slope of the regression line 95.
 - (A) may be positive or negative
 - is the same as the correlation coefficient
 - is indeterminate (C)
 - (D) all of these
- For a degenerate random variable at $a \in R$ 96.
- (A) P(X = a) = 0 (B) $P(X = a) = \infty$ (C) $P(X = a) = -\infty$ (D) P(X = a) = 1
- Hypergeometric distribution tends to Binomial distribution as $N \rightarrow \infty$ and 97.

 - (A) $\frac{M}{N} \to q$ (B) $\frac{M}{N} \to p$ (C) $\frac{M}{N} \to 0$ (D) $\frac{M}{N} \to 1$

- Variance is always less than mean in the 98.
 - Poisson distribution (A)

Negative Binomial distribution (B)

(C) Binomial distribution

- Chi-square distribution (D)
- If X2 and Y2 are independent then 99.
 - X and Y are independent
- X and Y need not be independent (B)

 $E(X^2) = E(Y^2)$

- (D) E(XY) = 0
- 100. In a stratified random sampling scheme the population characteristics can be more efficiently estimated from a stratified sample than from overall simple random sample if
 - Strata means differ widely, and within strata variation is high. (A)
 - Strata means do not differ widely, and within strata variation is high. (B)
 - Strata means differ widely, and within strata variation is low. (C)
 - Strata means do not differ widely, and within strata variation is low. (D)