Sr No.	PhD Statistics
1	In the series 357,363,369, What will be the 10th term?
Alt1	405
Alt2	411
Alt3	413
Alt4	417
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears:
	Moon: Satellite :: Earth : ?
Alt1	Sun
Alt2	Planet
Alt3	Solar System
Alt4	Asteroid
3	Door is related to Bang in the same way as Chain is related to?
Alt1	Thunder
Alt2	Clinch
Alt3	Tinkle
Alt4	Clank
4	Select the lettered pair that has the same relationship as the original pair of words:
	Emollient: Soothe
Alt1	Dynamo: Generate
Alt2	Elevation: Level
Alt3	Hurricane: Track
Alt4	Precipitation: Fall
5	Which of the following is the same as Count, List, Weight?
Alt1	Compare
Alt2	Sequence
Alt3	Number
Alt4	Measure
	Spot the defective segment from the following:
Alt1	The downtrodden
Alt2	needs
Alt3	to be uplifted
Alt4	on a war footing
7	Choose the meaning of the idiom/phrase from among the options given:
	A close shave
Alt1	a nice glance
Alt2	a narrow escape
Alt3	an intimate
Alt4	a triviality

_	
	Lightning in the same place twice.
Alt1	doesn't hit
Alt2	never strikes
Alt3	never attacks
Alt4	never falls
•	
9	Choose the option closest in meaning to the given word:
	FLIPPANT
Alt1	serious
Alt2	unsteady
	irreverent
Alt4	caustic
10	Choose the antonymous option you consider the best:
	OBSOLETE
Λ l+1	obscure
	hackneyed
	current
Alt4	grasp
11	Akash scored 73 marks in subject A. He scored 56% marks in subject B and X marks in subject C. Maximum
	marks in each subject were 150. The overall percentage marks obtained by Akash in sall te three subjects were
	54%. How many marks did he score in subject C?
Alt1	
Alt2	86
Alt3	79
Alt4	73
12	A person starts from his house and travels 6 Km towards the West, he then travelled 4 Km towards his left
	and then travels 8 Km towards west and 3 Km towards South. Finally he turns right and travels 5 Km. What is the
	horizontal distance he has travelled from his house ?
Alt1	7 Km
Alt2	15 Km
Alt3	23 Km
	19 Km
13	If 1st Jan 2012 is a Tuesday then on which day of the week will 1st Jan 2013 fall ?
	Wednesday
	Thursday
	Friday
	Saturday
AIL4	Jalul uay
1.1	One marning after currice. Poets and Kavita were talking to each other face to face at University. If Kavita'
14	
	shadow was exactly to the right of Reeta, which direction was Kavita facing?
	North
	South
Alt3	East

Alt4	West
15	In an exam every candidate took History (or)Geography(or)both. 74.8%took History and 50.2% took Geography.
	If the Total number of candidates is 1500, how many took History and Geography both?
Alt1	400
Alt2	350
Alt3	750
Alt4	375
16	Which word includes the larger % of Vowels?
	GOOGLE
Alt2	AMAZON
Alt3	FACE BOOK
Alt4	DOE
17	A= Least prime >24;
	B=Greatest prime <28; Then
Alt1	
Alt2	A <b< td=""></b<>
Alt3	A=B
	None
18	CL X VIII refers
Alt1	
Alt2	701
Alt3	168
Alt4	107
19	Which of the following is larger than 3/5 ?
Alt1	
	39/50
	7/25
	59/100
20	Mr. Babu travelled 1200 km by air which formed 2/5 of his trip. One third of the whole trip, he travelled by car
	and the rest of the journey was by train. What was the distance travelled by train?
Alt1	600km
	700 km
	800 km
	900 km

21	If we have a sample of size n from a population of N units, the finite population correction is
	(a) $\frac{N-1}{N}$ (b) $\frac{n-1}{N}$ (c) $\frac{N-n}{N}$
	(b) $\frac{n-1}{N}$
	(°) N
	(d) $\frac{N-n}{n}$
Alt1	A
Alt2	В
Alt3	С
Alt4	D

22	Charles VAN Service	
	Under the pr	oportional allocation, the size of the sample from each stratum is inversely proportional to
	A:	total sample size
	B:	size of the stratum
	C:	population size
	D:	population mean
Alt1	Α	
Alt2	В	
Alt3	С	
Alt4	D	

Which of the	following basis distinguishes cluster sampling from stratified sampling?
(i)	Clusters are preferably heterogeneous whereas strata are taken as homogeneous as possible
(ii)	A sample is always drawn from each stratum whereas no sample of elementary units is drawn from clusters
(iii)	Small size clusters are better whereas there is no such restriction for stratum size
	A: (i) & (ii) are True, but (iii) is False
	B: (i) & (iii) are True, but (ii) is False
	C: (i) is True, but (ii) & (iii) is False
	D: (i), (ii) & (iii) are True

41.4	
Alt1	
Alt2	
Alt3	
Alt4	D
24	Classification is applicable in case of
	SOCIAL STATE OF THE STATE OF TH
	(i) Quantitative characters
	(ii) Qualitative characters
	A: Both (i) & (ii) are True
	B. Both (i) 8 (ii) are Folso
	B: Both (i) & (ii) are False
	C: (i) is True, (ii) is False
	D: (i) is False, (ii) is True
Alt1	A
Alt2	В
Alt3	С
Alt4	D
Alt1	(a) a straight line at angle of 45° (b) a convex upward curve (c) a concave upward curve (d) a convex downward curve
Alt2	
Alt3	
Alt4	
26	The estimate of β in the regression equation $Y = \alpha + \beta X + e$ by the method of least squares is (a) biased (b) unbiased
	(c) consistent
	(d) efficient

Alt1	A
Alt2	В
Alt3	C
Alt4	D

Given $r_{12} = 0.6$, $r_{13} = 0.5$ and $r_{23} = 0.8$, the value of $r_{12.3}$ is

(a) 0.4

- (b) 0.72
- (c) 0.38
- (d) 0.47

Alt1 A

Alt2 B

Alt3 C

Alt4 D

Let the equations of the regression lines be expressed as 2X - 3Y = 0 and 4Y - 5X = 8. Then the correlation between X and Y is

- (a) $\sqrt{\frac{15}{8}}$
- (b) $\sqrt{\frac{8}{15}}$
- (c) $\sqrt{\frac{6}{15}}$
- (d) $\sqrt{\frac{1}{15}}$

Alt1 A

Alt2 B

Alt3 C

The test statistic for testing $H_0: \rho = \rho_0$ with usual notations is

(a)
$$Z = \frac{Z_r - Z_{\rho_0}}{1/(n-3)}$$

(b)
$$Z = \frac{Z_r - Z_0}{1/(n-3)}$$

(a)
$$Z = \frac{Z_r - Z_{\rho_0}}{1/(n-3)}$$

(b) $Z = \frac{Z_r - Z_0}{1/(n-3)}$
(c) $Z = \frac{Z_r - Z_{\rho_0}}{1/\sqrt{(n-3)}}$

(d) none of the above

Alt1 A

Alt2 B

Alt3 C

Alt4 D

If there are k groups and each group consists on n observations, the limits of intraclass correlation are

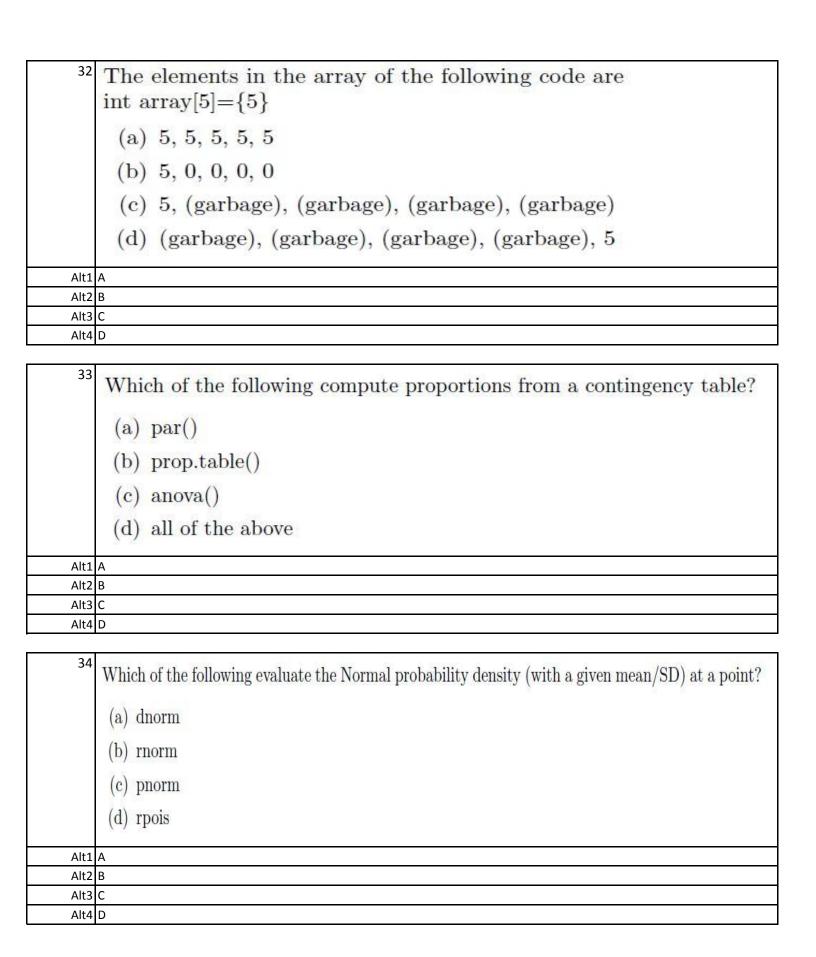
- (d) -1 to 1

Alt1 A

Alt2 B

Alt3 C

Alt4 D


Comment on an Array of void data type

- (a) it can store any data type
- (b) it only stores element of similar data type to first element
- (c) it acquires the data type with the highest precision in it
- (d) you cannot have an array of void data type

Alt1 A

Alt2 B

Alt3 C

Consider the problem of testing $H_0: \theta = 0$ against $H_1: \theta = \frac{1}{2}$ based on a single observation X from $U(\theta, \theta + 1)$ population. The power of the test "Reject H_0 if $X > \frac{2}{3}$ " is

(a) $\frac{1}{6}$ (b) $\frac{5}{6}$ (c) $\frac{1}{3}$

Alt1 A Alt2 B

Alt3 C

Alt4 D

Let $X_1, X_2, ... X_n$ be a random sample from a $Gamma(\alpha, \beta)$ population, where $\beta > 0$ is a known constant. The rejection region of the most powerful test for $H_0: \alpha = 1$ against $H_1: \alpha = 2$ is of the form

(a)
$$\prod_{i=1}^{n} X_i > K$$

(b)
$$\sum_{i=1}^{n} X_i > K$$

(c)
$$\prod_{i=1}^{n} X_i < K$$

(d)
$$\sum_{i=1}^{n} X_i < K$$

Alt1 A

Alt2 B

Alt3 C

Suppose person A and person B draw random sample of sizes 15 and 20 respectively from $N(\mu, \sigma^2)$ for testing $H_0: \mu = 2$ against $H_1: \mu > 2$. In both the cases the observed sample mean and sample variances are same with the values $\overline{x_1} = \overline{x_2} = 1.8$, $s_1 = s_2 = s$. Both of them use usual t-test and state the p-values as p_A and p_B . Then which of the following is correct?

- (a) $p_A > p_B$

- (d) can not infer anything

Alt1	Å
41.0	

Alt2 B

Alt3 C

Alt4 D

Let X be a single observation from a population having an exponential distribution with mean $\frac{1}{2}$. Consider the problem of testing $H_0: \lambda = 2$ against $H_1: \lambda = 4$. For the test with rejection region $X \geq 3$, let α and β denote the probabilities of Type-I and Type-II error respectively. Then

- (a) $\alpha = e^{-6}$ and $\beta = 1 e^{-12}$
- (b) $\alpha = e^{-12}$ and $\beta = 1 e^{-6}$ (c) $\alpha = 1 e^{-12}$ and $\beta = e^{-6}$
- (d) $\alpha = e^{-6}$ and $\beta = e^{-12}$

Alt1

Alt2 B

Alt3 C

Alt4 D

39

The standard chi-squared test for a 2 by 2 contingency table is valid only if

- all the expected frequencies are greater than five A:
- B: both variables are continuous
- at least one variable is from a Normal distribution C:
- D: all the frequencies total will be less than five

Alt1	A
Alt2	В
Alt3	C
Alt4	D

If n_1 and n_2 are large in Mann-Whitney test, the variable U is distributed with variance equal to

(a)
$$\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}$$

(b)
$$\frac{n_1 n_2 (n_1 + n_2 - 1)}{12}$$
(c)
$$\frac{n_1 n_2 (n_1 + n_2)}{12}$$

(c)
$$\frac{n_1 n_2 (n_1 + n_2)}{12}$$

(d)
$$\frac{n_1 n_2 (n_1 n_2 + 1)}{12}$$

Alt1 A

Alt2

Alt3

Alt4

Let X be a discrete random variable with moment generating function $M_X(t) = e^{0.5(e^t - 1)}, t \in \Re$. Then $P(X \leq 1)$ equals

Alt2

Alt3

42	Let E and F be two independent events with $P(E \mid F) + P(F \mid E) = 1, P(E \cap F) = \frac{2}{9}$ and $P(F) < P(E)$. Then $P(E)$ equals (a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$
	(d) $\frac{3}{4}$
Alt1	A
Alt2	
Alt3	
Alt4	
43	X and Y be two independent random variables with $X \sim U(0,2)$ and $Y \sim U(1,3)$. Then $P(X < Y)$ equals $ (a) \ \frac{1}{2} $ $ (b) \ \frac{3}{4} $ $ (c) \ \frac{7}{8} $ $ (d) \ 1 $
Alt1	
Alt2	
Alt3	
Alt4	D

The probability mass function of a random variable X is given by $P(X = x) = k \binom{n}{x}, x = 0, 1, \dots, n$, where k is a constant. The moment generating function $M_X(t)$ is
(a) $\frac{(1+e^t)^n}{2^n}$ (b) $\frac{2^n}{(1+e^t)^n}$ (c) $\frac{1}{2^n(1+e^t)^n}$ (d) $2^n(1+e^t)^n$
Alt1 A
Alt2 B
Alt3 C
Alt4 D

Let the probability density function of a random variable X be given by $f(x) = \alpha e^{-x^2}$	$-\beta x$, $-\infty$ <
$x < \infty$. If $E(X) = -\frac{1}{2}$, then	

$$x < \infty$$
. If $E(X) = -\frac{1}{2}$, then $(a) \quad \alpha = \frac{1}{\sqrt{\pi}} e^{-\frac{1}{4}}; \beta = 1$
(b) $\alpha = \frac{1}{\sqrt{\pi}} e^{-\frac{1}{4}}; \beta = -1$
(c) $\alpha = \sqrt{\pi} e^{-\frac{1}{4}}; \beta = 1$
(d) $\alpha = \sqrt{\pi} e^{-\frac{1}{4}}; \beta = -1$

(b)
$$\alpha = \frac{1}{\sqrt{\pi}}e^{-\frac{1}{4}}; \beta = -1$$

(c)
$$\alpha = \sqrt{\pi}e^{-\frac{1}{4}}; \beta = 1$$

(d)
$$\alpha = \sqrt{\pi}e^{-\frac{1}{4}}; \beta = -1$$

Alt2 B Alt3 C Alt4 D

46

Let $X_1, X_2, \ldots X_n$ be a random sample from a population with the probability density function $f_{\theta}(x) = 4e^{-4(x-\theta)}, x > \theta, \theta \in \Re$. If $T_n = \min(X_1, X_2, \ldots X_n)$, then

- (a) T_n is unbiased and consistent estimator of θ
- (b) T_n is biased and consistent estimator of θ
- (c) T_n is biased but not consistent estimator of θ
- (d) T_n is neither unbiased nor consistent estimator of θ .

Alt1

Alt2

Alt3 C

Alt4 D

47

Let $X_1, X_2, ..., X_n (n > 1)$ be a random sample from a Poisson (θ) population, $\theta > 0$ and $T = \sum_{i=1}^{n} X_i$. Then the UMVUE of θ^2 is

- (a) $\frac{T(T-1)}{n^2}$
- (b) $\frac{T(T-1)}{n(n-1)}$
- (c) $\frac{T(T-1)}{n(n+1)}$
- (d) $\frac{T^2}{n^2}$

Alt1

Alt2 B

Alt3

48	Let $\underline{X} = (X_1, X_2)$ have a bivariate normal distribution with $E(X_1) = E(X_2) = 0$; $E(X_1^2) = E(X_2^2) = 1$ and $E(X_1 X_2) = \frac{1}{2}$. Then $P(X_1 + 2X_2 > \sqrt{7})$ equals
	(a) 0.1587
	(b) 0.5
	(c) 0.7612
	(d) 0.8413
Alt1	A
Alt2	В
Alt3	C
Alt4	D

49	The pdf of a random variable X is given by $f(x)=\alpha x^{\alpha-1}, 0< x<1, \alpha>0$. Then the distribution of the random variable $Y=\ln X^{-2\alpha}$ is $ \begin{array}{c} \text{(a)} \ \chi_2^2\\ \text{(b)} \ \frac{1}{2}\chi_2^2\\ \text{(c)} \ 2\chi_2^2\\ \text{(d)} \ \chi_1^2 \end{array} $
Alt1	A
Alt2	В
Alt3	С
Alt4	D

From the data on marks it is observed that only 25% students got marks less than or equal to 35, 50% students got marks upto 50, but only 25% got marks above 75. Then the marks distribution should be

(a) symmetric
(b) negatively skewed
(c) positively skewed
(d) information is insufficient.

Alt3	C
Alt4	D
51	If the two regression lines between the variables X and Y are perpendicular to each other, then their correlation coefficient is (a) -1 (b) i (c) 0
	(d) 1
Alt1	A
Alt2	
Alt3	
Alt4	D
52	If the regression line of Y on X is $Y=23-2X$ and the coefficient of determination is 0.49, then the correlation coefficient is $ \begin{array}{c} \text{(a)} \ -0.7 \\ \text{(b)} \ -0.49 \\ \text{(c)} \ 0.49 \\ \text{(d)} \ 0.7 \end{array} $
Alt1	
Alt2	
Alt3	
Alt4	D

Let X be a random variable whose probability mass functions $f_0(x)$ (under the null hypothesis H_0) and $f_1(x)$ (under the alternative hypothesis) are given by

X = x	0	1	2	3
$f_0(x)$	0.4	0.3	0.2	0.1
$f_1(x)$	0.1	0.2	0.3	0.4

For testing the null hypothesis $H_0: X \sim f_0$ against the alternative $H_1: X \sim f_1$, consider the test given by: Reject H_0 if $X > \frac{3}{2}$. If $\alpha =$ size of the test and $\beta =$ power of the test, then

(a)
$$\alpha = 0.3; \beta = 0.3$$

(b)
$$\alpha = 0.3; \beta = 0.7$$

(c)
$$\alpha = 0.7; \beta = 0.3$$

(a)
$$\alpha = 0.3; \beta = 0.3$$

(b) $\alpha = 0.3; \beta = 0.7$
(c) $\alpha = 0.7; \beta = 0.3$
(d) $\alpha = 0.7; \beta = 0.7$

Alt1	A
Alt2	В
Alt3	С
Λ l+ <i>1</i>	

54

Let $X \sim N(0, 1)$, then the distribution of X^2 is

Cauchy A:

Normal B:

C:

D: Chi-Square

Alt1 A

Alt2 B

Alt3 C

Suppose that $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ has normal with $(\mu_{2\times 1}, \Sigma_{2\times 2})$ distribution where $\Sigma_{2\times 2}$ is nonsingular. Let $X_3 = -2X_2$. Then which of the following has a singular normal distribution.

(a)
$$\begin{pmatrix} X_1 - 2X_2 \\ X_2 - 2X_3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} X_1 - X_2 - X_3 \\ 2X_1 + 2X_2 \end{pmatrix}$$

(c)
$$\begin{pmatrix} X_1 + X_2 \\ 2X_1 + 2X_3 \end{pmatrix}$$

(c)
$$\begin{pmatrix} X_1 + X_2 \\ 2X_1 + 2X_3 \end{pmatrix}$$

(d) $\begin{pmatrix} X_1 + X_2 + X_3 \\ X_1 + X_2 \end{pmatrix}$

Alt1

Alt2 B

Alt3

Alt4 D

Let \overline{X} and S be the sample mean vector and sample variance covariance matrix for a random sample of size N drwan from $N_p(\mu, \Sigma), \Sigma > 0$. Then a Hotelling T^2 statistic may be constructed

(a)
$$(N-1)(\overline{X}-\mu)'S^{-1}(\overline{X}-\mu)$$

(b)
$$N(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$$

(a)
$$(N-1)(\overline{X}-\mu)'S^{-1}(\overline{X}-\mu)$$

(b) $N(\overline{X}-\mu)'S^{-1}(\overline{X}-\mu)$
(c) $\frac{1}{N-1}(\overline{X}-\mu)'S^{-1}(\overline{X}-\mu)$

(d)
$$\frac{1}{N}(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu)$$

Alt1 A

Alt2 B

Alt3 C

57	$\mathbf{A} \sim Wishart_p(n, I_p)$ and \mathbf{Y} is a p-component random velctor. Then $\frac{\mathbf{Y'Y}}{\mathbf{Y'A^{-1}Y}}$ follows
	(a) $\chi^2(n-p+1)$
	(b) $\frac{p}{n-p+1}F_{p,n-p+1}$
	(c) $Beta\left(\frac{n-p+1}{2}, \frac{p}{2}\right)$
	(d) None of the above
Alt1	A
Alt2	В
Alt3	
Alt4	D
	Principal Component Analysis aims at deriving a new set of linearly combined measurements possessing the following properties. Detect which one does not hold. (a) Their loading vectors are normalized each. (b) Their loading vectors are orthogonal to each other. (c) Their variances are in a nondecreasing order. (d) Their covariances are negative.
Alt1	
Alt2	
Alt3	
AIT4	سا
59	If X and Y are two random variables, then
	E{(XY)2} = E(X2) E(Y2)
	$E\{(XY)2\} = E(X2Y2)$

Alt4	$E\{(XY)2\} \le E(X2) E(Y2)$
60	If X^b (n, p) then $Y = (n-X)$ is
Alt1	b (2n, p)
Alt2	b (n, 1-p)
Alt3	b (n, p)
Alt4	b (2n, 1-p)

Alt3 $E\{(XY)2\} \ge E(X2) E(Y2)$

61 In SRSWOR, the probability that a specified unit is selected at the second draw from a population of size N is

Alt1	$\frac{1}{N}$
Alt2	$\frac{1}{N}$
Alt3	$\frac{1}{N-2}$
Alt4	$\frac{1}{\{N(N-1)\}}$

	T1 and T2 are two most efficient estimators with the same variance S2 and the correlation between them is ρ , the variance of (T1 + T2)/2 is equal to
Alt1	S2
Alt2	ρ S2
Alt3	$(1+\rho)$ S2/4
Alt4	(1+ρ)S2/2

For the distribution $f(x;\theta)=1/\theta$; $0 \le x \le \theta$. A sufficient estimator for θ , based on a sample X1, X2, ..., Xn is $\frac{\sum_{i=1}^{n} X_{i}}{n}$ Alt2 $\frac{\sum_{i=1}^{n} X_{i}}{n}$ Alt3 Max (X1, X2, ..., Xn)
Alt4 Min (X1, X2, ..., Xn)

64	If the sample size is large in Wilcoxon's Signed rank test, the statistic T* is distributed with variance
Alt1	n(n-1)(2n-1)/24
Alt2	n(n+1)(2n+1)/24
Alt3	n(2n+1)/12
Alt4	n(n-1)(2n+1)/12

65	In a (23, 22) experiment with 3 replications, the interaction ABC is confounded. The error degrees of freedom in
	the analysis of variance will be
Alt1	16
Alt2	14

Alt3	12
Alt4	10
66	The total number of Latin squares that can be obtained of order are
Alt1	16
Alt2	12

Alt3 9

Alt4 3

67	Let S [~] Wp (K, Σ), be a p-variate Wishart distribution. For p=1, W1(K, σ 2) follows
Alt1	χ_k^2 distribution
Alt2	[σ^2 χ]_k^2 distribution
Alt3	Snedecor's F-distribution with 1, p degrees of freedom
Alt4	Non-central χ_k^2 distribution

68	The regression line of Y on X is Y = $0.95X + 7.25$ and $\overline{Y} = 13.14$, the value of \overline{X} is
Alt1	5.9
Alt2	6.2
Alt3	12.5
Alt4	21.5

69	On the basis of one observation drawn from a distribution with probability density function as $f(x; \theta) = \theta \exp(-\theta x)$, if $0 \le x \le \infty$. The critical region defined by $x \ge 1$ for testing H0: $\theta = 1$ against H1: $\theta = 2$. The probability of type II error, β , is given by
Alt	r c c c c c c c c c c c c c c c c c c c
Altz	$\int_{1}^{\infty} 2 \exp(-2x) dx$
Alta	$\int_{0}^{1} \exp(-x) dx$
Alta	$\int_{0}^{1} 2 \exp(-2x) dx$

+ Y is
4
6
8
9
A random sample of five observations (3.5, 0.6, 2.7, 0.9, 1.8) drawn from a population with probability densi function as $f(x)=1/(b-a)$, $a< x< b$. Then the maximum likelihood estimates of a and b are
(0.6, 3.5)
(0.6, 0.9)
(1.9, 3.5)
(2.7, 3.5)
Suppose that u [~] Np (μ , Σ), where μ and Σ are unknown. For testing the null hypothesis H0: μ = μ 0 (specified) against H1: $\mu \neq \mu$ 0, the test statistic used is
Student's t
Hotelling T2
Mahalanobis D
x ²
. Let S1 $^{\sim}$ Wp (k1, Σ) and S2 $^{\sim}$ Wp (k2, Σ) be independent, where Wp denotes a wishart distribution. Then the
distribution of S1 + S2 is
Wp (K1+K2, Σ)
Wp (K1+K2, 2Σ)
W2p (K1+K2, Σ)
The distribution cannot be defined
Let X~N3 (μ , Σ) with μ' = [-3, 1, 4] and Σ = [\blacksquare (1&-2&0@-2&5&0@0&0&2)] which of the following random variables are independent?
X1 and X2
(X1, X2) and X3
(X2, X3) and X1
X2 and X3
If in a Latin square design with "t" treatments, such that row degrees of freedom = column degrees of freed = treatment degrees of freedom = error degrees of freedom, then t is equal to
3
8
9
16

Alt1 3

Alt2	10
Alt3	13
Alt4	26
	If a stratified random sample of size 45 is to be selected by Neyman allocation from a population with N1=150, N2=350, S_1^2=4,S_2^2=9, then the number of units to be selected from the first stratum is
Alt1	10
Alt2	20
Alt3	25
Alt4	35
78	In simple random sampling, the bias of the ratio estimator $\mathbb{R} = \overline{Y}/\overline{X}$ is given by
	$\operatorname{cor}\left(\mathbf{Y},\mathbf{X}\right)$
Alt1	E(X)
Alt2	$\frac{\operatorname{cor}(\widehat{\mathbf{R}}, \overline{\mathbf{X}})}{\operatorname{E}(\overline{\mathbf{X}})}$
Alt3	$\operatorname{cor}(\widehat{\mathbf{R}}, \widehat{\mathbf{Y}})$ $\operatorname{E}(\widehat{\mathbf{X}})$
Alt4	Cor(Y,X) E(X)
70	The family of parametric distribution which has mean always less than variance
	Beta distribution
	Log normal distribution
	Weibull distribution
	Negative binomial distribution
Altq	Negative billomal distribution
	Kruskal wallis test with the k treatment and n blocks, which is approximated to chi-square with degrees of freedom equal to
Alt1	n-1
Alt2	n-k
Alt3	k-1
Alt4	(n-1) (k-1)
	Let X be a random variable with mean μ and variance σ2, the lower bound to P[X- μ ≤4σ] is
Alt1	0.0625
Alt2	0.9375
Alt3	1

	If (4.5, 7, 2.3, 3, 8, 7.4, 2, 5) is a random sample of size 8 from a population with probability density function as
	$f(x,\theta)=1/2 e^{(- X-\theta)}; -\infty < X < \infty$, then the maximum likelihood estimate of θ is
Alt1	4.50
Alt2	4.75
Alt3	8.00
Alt4	4.90
	Let X1, X2,, Xn be independently and identically distributed random variables with common Uniform
	distribution U(0,1). Then the distribution of $-2\sum_{i=1}^{n} \log[X_i]$ is
Alt1	$\chi^2_{(2n)}$
Alt2	$\chi^2_{(n)}$
Alt3	t2n-1
Alt4	
7	· · · · · ·
	Let x1, x2,, x25 be a random sample of size n from N(μ , σ 2) and n is large. The relative efficiency of the samp
	median as compared to sample mean is
Alt1	$3/\pi$
Alt2	$2/\pi^2$
Alt3	1/π
Alt4	2/π
L	
85	If all frequencies of classes are same, the value of χ^2 is
	1
Alt2	Zero
Alt3	& ·
	None of the above
AIL4	Notice of the above
96	The probability mass function of a random variable X is
80	·
	p(x): $k = 2k$.
	The value of k is
Alt1	1/10
Alt2	
Alt3	·
Alt4	
, 110-7	
	While performing analysis of variance, if 10 is added to each of the observation, then the various sum of square
87	
87 Alt1	
	Increased by 10 Decreased by 10

Alt4	Multiplied by 10
88	In a spit plot design, more precision is attained for
Alt1	Main plot treatments
Alt2	Sub plot treatments
Alt3	Block differences
Alt4	All of the above
89	In simple random sampling with replacement, the same sample sampling unit may be included in the sample
Alt1	Only once
Alt2	Only twice
	More than once
Alt4	None of the above
7	
90	Let X and Y are two independent random variables and follow the Poisson distribution with means $\lambda 1$ and $\lambda 2$ respectively, where $\lambda 1 \neq \lambda 2$. Then the conditional distribution of [X/X+Y] is
Alt1	Binomial
Alt2	Poisson
Alt3	Discrete Uniform
Alt4	Negative Binomial
91	Let p be the probability that a coin will fall head in a single toss in order to test the hypothesis H0: $p = \frac{1}{2}$ against H1: $p = \frac{3}{4}$. The coin is tossed five times and H0; is rejected if more than three heads are obtained. The probability of type I error is
Alt1	3/16
Alt2	47/128
Alt3	81/128
	13/16
92	From a population of size 5, the total number of possible sample of size 3 using simple random sample with replacement is
Alt1	15
Alt2	60
Alt3	250
Alt4	125
93	The difference in the mortality experiences of two communities can be done by comparing the values of
Alt1	Crude death rate
Alt2	Age specific death rate
Alt3	Standardised death rate
Alt4	Infant mortality rate
7.11.6-1	
94	If $Y = 3.2X + 58$ and $X = 0.2Y - 8$ are the lines of regression of Y on X and X on Y respectively, then the value of correlation coefficient between X and Y is
Alt1	0.6
7 111.1	

Alt2	0.7
Alt3	0.8
Alt4	0.9
95	In 1993, the sex ratio at birth was 105 males to 100 females in India. Total fertility rate was 3.54. The value of
	Gross reproduction rate is approximately
Alt1	1.73
Alt2	1.81
Alt3	3.37
Alt4	3.85
96	Homogeneity of several variances can be tested by
Alt1	
Alt2	Fisher's exact test
Alt3	
	t test
97	Generally the estimators obtained by the method of moments as compared to ML estimators are
Alt1	
Alt2	
	Equally efficient
	None of the above
7.11.	Troine of the above
98	In 2n factorial experiment conducted in RBD with r replications the error degrees of freedom would be
Alt1	(2n-1) (r-1)
Alt2	2n (r-1)
Alt3	(2n-1 -1) (r-1)
Alt4	(2n-1) (2n-2)
99	The additivity of analysis of variance model is tested by
	Wilk's λ criterion
Alt2	Tukey's test
	Fisher's test
	Duncanr's test
100	In a 25 factorial experiment the number of 3 factor interactions are
Alt1	10
Alt2	
Alt3	
Alt4	