Examination: Ph.D. Statistics	
Section 1 - Section 1	
Question No.1	4.00
Let {Xn} be a strictly decreasing sequence of positive random variables, and suppose that Xn converges to zero in probability. Whi following are also true: C Xn converges to some positive quantity	Bookmark
C Xn converges almost surely	
• Xn converges everywhere	
Question No.2	4.00 Bookmark I
Let N(t) be a Poisson process with constant intensity function on R. What is the covariance of N(s) and N(t)? ^O λ (s-t), if (t <s)< td=""><td>Dookinark</td></s)<>	Dookinark
$^{\circ}$ λ s, if s <t< td=""><td></td></t<>	
$^{\circ} \lambda(t-s)$, if s <t< td=""><td></td></t<>	
$\circ \lambda(s+t)$	
Question No.3	4.00
The trend equation correspond to 1081 as the origin is $V = 148.8 \pm 7.2 \text{ Y}$. The monthly trend equation if Y unit = 1 year and V = annu	Bookmark 🔽
\circ Y = 148.8 + 0.6X	
○ Y = 148.8 + 0.05X	
○ Y = 12.4 + 0.05X	
© Y = 12.4 + 0.6X	
Question No.4	4.00
The following statements given in respect of Maximum Likelihood Estimation (MLE):	Bookmark 🕅
I. MLE's are always unique.	
II. MLE's are not necessarily unbiased. III. MLE's satisfies invariance property, provided the transformation is one-to-one.	
Which of the above are correct?	
○ Only I and III are correct	
C Only I and II are correct	
Question No.5	4 00
	Bookmark
If the percent of trend for a year in a time series is greater than 100%, it indicates that C. The actual time series value lies above the trend line and the relative cyclical residual is positive.	
C The actual time series value lies above the trend line and the relative cyclical residual is negative	
C The actual time series value lies below the trend line and the relative cyclical residual is positive	
© The actual time series value lies below the trend line and the relative cyclical residual is negative	
Question No.6	4.00
Regression modelling is a statistical framework for developing a mathematical equation that describes how	Bookmark 🗸
C One response and one or more explanatory variables are related	
C One explanatory and one or more response variables are related	
 Several explanatory and several response variables response are related All of these are correct 	
Question No 7	4.00
Quoduon non	Bookmark
Chance the heet support of the italicized word	

טווטטפר עוב אבפג פאווטוואווו טו עוב וגמווטוצבע אטוע. Dr. Elango is in the habit of using obsolete words.

- O simple
- O difficult
- C wrong
- outdated

Question No.8

Bookmark

4.00

4.00

4.00

Bookmark 🔽

Bookmark

Let θ be an unknown parameter and T_1 be an unbiased estimator of θ . If $V(T_1) \leq V(T_2)$, where T_2 to beany other unbiased estimator, then T1 is known as:

- Minimum variance unbiased estimator C
- Unbiased, consistent and minimum variance estimator 0
- Consistent and efficient estimator O
- Unbiased and efficient estimator C

Question No.9

Cpk value of 1.67 means

- © process is not capable and needs improvement
- O process is capable and repeatable
- C process is capable but may not be repeatable
- O none of the above

Question No.10

Study the following information carefully and answer the question below it

Lakshman passes through seven lanes to reach his school. He finds that 'Truth lane' is between his house and 'Lie lane'. The third lane from his school is 'Karma lane'. 'Dharma lane' is immediately before the 'Yog lane'. He passes 'Salvation lane' at the end, 'Lie lane' is between 'Truth lane' and 'Dharma lane', the sixth lane from his house is 'Devotion lane'.

If Lakshman's house, each lane and his school are equidistant and he takes 2 minutes to pass one lane, then how long will he take to reach school from his house?

- C 13 minutes
- C 14 minutes
- C 16 minutes
- C 15 minutes

Question No.11

When their father died, their elder brother sold the old house and ______ in a small flat in a far-off suburb

- C set them down
- o put them down
- O put them up
- o set them up

Question No.12

This is the school where I studied till class 5. The underlined word is a

- C adjective
- C pronoun
- o adverb
- preposition

Question No.13

4.00 Bookmark [

A single equation econometric model of the demand for a product is a ______ equation in which the quantity demanded of the product is an_

- variable C
- definitional, endogeneous C
- structural, endogeneous definitional, exogeneous C
- structural, exogeneous C

Bookmark

4.00

4.00 Bookmark 🔽

A pessimistic decision making criterion is

- Equally likely
- C Maximax
- Maximin

Bookmark [

Given the following statements about a one parameter exponential family of distribution:

I. It always admits sufficient statistics,

- II. The moment estimator θ based on sufficient statistics is CAN for θ .
- III. The asymptotic variance attains CRLB.

Which of the above are correct:

- Only I and II are correct
- Only II and III are correct
- C Only I and III are correct

C All are correct

Question No.20	4.00
	Bookmark 🔽
If V be a collection of vectors, then V is said to be subspace, if	
○ V is closed under scalar multiplication	
○ V is closed under multiplication	
○ V is closed under multiplication and addition	
O V is closed under addition and scalar multiplication	
Question No.21	4.00 Bookmark ☑
The probability of extinction for a linear growth process with birth rate equal to death rate is	
C 0	
01	
O 1/2	
○ less than one	
Question No.22	4.00
	Bookmark
Let X and Y be two random variables having a joint density function $f(x, y)$. Then to obtain the density of U = X+Y, the Jacobian of tra-	Insformation
is:	
© Either -1 or 1	
O 0.5	
O 1	
O -1	
Question No.23	4.00
	Bookmark 🔽
The test for variance which is not robust against deviations from normality	
 Chi-Square test 	
O Z-lest	
Z-test Bartlett's test	
 D Z-test D Bartlett's test O F-test 	
 D Z-test O Bartlett's test O F-test 	
 D Z-test O Bartlett's test O F-test 	
 Z-test Bartlett's test F-test 	
 Z-test Bartlett's test F-test 	
C Z-test O Bartlett's test O F-test Question No.24	4.00
C Z-lest C Bartlett's test C F-test Question No.24	4.00 Bookmark
Cuestion No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A	4.00 Bookmark ⊡ BE, ACE.
O 2-test O Bartlett's test O F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? • ADE ADOD DOE	4.00 Bookmark ⊡ BE, ACE.
C 2-test C Bartlett's test C F-test C F-test C F-test C ADE, ABCD, BCE C ABC, ABCE	4.00 Bookmark ⊡ BE, ACE.
C Z-test C Bartlett's test C F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? C ADE, ABCD, BCE C ABC, ADE, DCBE	4.00 Bookmark ⊡ BE, ACE.
C 2-test C Bartlett's test C F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? C ADE, ABCD, BCE C ACE, ABD, BCDE C ACE, ABD, BCDE	4.00 Bookmark ⊡ BE, ACE.
C 2-test O Bartlett's test O F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? O ADE, ABCD, BCE O ABC, ADE, DCBE O ABC, ACE, BCDE	4.00 Bookmark ⊡ .BE, ACE.
O Z-test O Bartlett's test O F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? O ADE, ABCD, BCE O ADE, ADE, DCBE O ABC, ADE, DCBE O ABC, ACE, BCDE	4.00 Bookmark ⊡ BE, ACE.
O Z-test O Bartlett's test O F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? O ADE, ABCD, BCE O ADE, ADE, DCBE O ACE, ABD, BCDE O ABC, ACE, BCDE	4.00 Bookmark BE, ACE. 4.00
O Z-test C Bartlett's test C F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? O ADE, ABCD, BCE O ABC, ADE, DCBE O ACE, ABD, BCDE O ABC, ACE, BCDE O Cuestion No.25 D	4.00 Bookmark BE, ACE. 4.00 Bookmark
C Z-test C Bartlett's test C F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? C ADE, ABCD, BCE C ABC, ADE, DCBE C ABC, ACE, BCDE Question No.25 If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti	4.00 Bookmark □ BE, ACE. 4.00 Bookmark □ me, then the
C 2-test C Bartlett's test C F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? C ADE, ABCD, BCE C ABC, ADE, DCBE C ABC, ACE, BCDE Question No.25 If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: C the notice loss of the of the other of growth	4.00 Bookmark □ BE, ACE. 4.00 Bookmark □ me, then the
C Z-test C Bartlett's test C F-test C	4.00 Bookmark □ BE, ACE. 4.00 Bookmark □ me, then the
C 2-test Bartlett's test Bartlett's test F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? ADE, ABCD, BCE ABC, ADE, DCBE ABC, ADE, DCBE ABC, ACE, BCDE Ir regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: the natural logarithm of the square root of the rate of growth the natural logarithm of the rate of growth	4.00 Bookmark BE, ACE. 4.00 Bookmark me, then the
Cuestion No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? ADE, ABCD, BCE ABC, ADE, DCBE ACE, ABD, BCDE ACE, ABD, BCDE ACE, ABD, BCDE ABC, ACE, BCDE If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: the natural logarithm of the square root of the rate of growth the natural logarithm of the rate of growth the linear trend	4.00 Bookmark □ BE, ACE. 4.00 Bookmark □ me, then the
Cuestion No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? ADE, ABCD, BCE ABC, ADE, DCBE ACE, ABD, BCDE ACE, ABD, BCDE ABC, ACE, BCDE If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: Cuestion No.25 If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: Cuestion the natural logarithm of the square root of the rate of growth Cuestion the natural logarithm of one plus the	4.00 Bookmark ⊡ .BE, ACE. 4.00 Bookmark ⊡ me, then the
Cuestion No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? ADE, ABCD, BCCE ABC, ADE, DCBE ACE, ABD, BCDE ACE, ABD, BCDE ACE, ABD, BCDE Cuestion No.25 If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: the natural logarithm of the square root of the rate of growth the natural logarithm of one plus the rate of growth the natural logarithm of one plus the rate of growth Cuestion No.25	4.00 Bookmark □ .BE, ACE. 4.00 Bookmark □ me, then the
Cuestion No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? ADE, ABCD, BCE ABC, ADE, DCBE ABC, ADE, DCBE ABC, ACE, ABD, BCDE ABC, ACE, BCDE It regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: the natural logarithm of the square root of the rate of growth the natural logarithm of one plus the rate of growth Cuestion No.26 Cuestion No.26	4.00 Bookmark □ BE, ACE. 4.00 Bookmark □ me, then the 4.00
C 2-test Bartlett's test C F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? ADE, ABCD, BCE ABC, ABC, BCE ABC, ACE, BCDE Question No.25 If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: C the natural logarithm of the square root of the rate of growth C the interar trend C the interar trend Cuestion No.26 Being awarded the Best Singer in 2010 marked a in her life.	4.00 Bookmark □ BE, ACE. 4.00 Bookmark □ me, then the 4.00 Bookmark □
C 2-test C Bartlett's test C F-test Question No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? C ADE, ABC, BCE C ABC, ABC, BCE C ABC, ACE, BCDE Question No.25 If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: C the natural logarithm of the square root of the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C milestone	4.00 Bookmark □ BE, ACE. 4.00 Bookmark □ me, then the 4.00 Bookmark □
C 2-test C Bartiett's test C F-test Cuestion No.24 In a design of experiments with 5 factors each considered at 2 levels, the key block is given as: (1), BC, DE, BCDE, ABD, ACD, A Which one of the following gives confounded interactions? C ADE, ABCD, BCE C ABC, ADE, DCBE C ABC, ADE, DCBE C ABC, ACE, BCDE CLestion No.25 If regression analysis is used to estimate the linear relationship between the natural logarithm of the variables to be forecast and ti slope estimate is equal to: C the natural logarithm of the square root of the rate of growth C the natural logarithm of the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C the natural logarithm of one plus the rate of growth C attestion No.26 Being awarded the Best Singer in 2010 marked a in her life. C milestone C vardstick C attack a disc disc disc disc disc disc disc disc	4.00 Bookmark ⊡ BE, ACE. 4.00 Bookmark ⊡ me, then the 4.00 Bookmark □

C memorial

4.00

01	
0.4	
03	
0 2	
Ourself we ble 00	4.00
Question No.28	4.00 Rockmark
Statement: Apart from it's entertainment value of Television, it's educational value cannot be ignored	BOOKINGIK
Assumptions:	
I. People take Television to be the means of entertainment only.	
II. The educational value of Television is not realized properly	
 If only assumption I is implicit 	
O If neither I nor II is implicit	
○ If only assumption II is implicit	
O If both I and II are implicit	
Question No.29	4.00
	Bookmark
The measure of Kurtosis of t-distribution is	
° 2/ - 2)	
$\frac{3(n-2)}{2}$	
n+4	
0	
n-2	
n-3	
$^{\circ}$ 3(n-2)	
n-4	
$^{\circ}$ n+2	
$\overline{n+4}$	
<i>I</i> 1 4	
Question No.30	4.00
	Bookmark 🖂
Economic forecasts require	
 Accurate estimates of the coefficients of structural coefficients 	
 forecasts of future values of exogeneous variables 	
C appropriate theoretical models	
C all of the above	
Question No.31	4.00
	Bookmark 🔽
Study the following information carefully and answer the question below it	
The Diversity of an MDA college has decided that all guest leadings on the tables of Mathematical Decision Mathematical College to the second	Accoment
The Director of an INDA college has decided that six guest lectures on the topics of Motivation, Decision Making, Quality Circle, / Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday.	Assessment
(i) One day there will be no lecture (Saturday is not that day). just before that day Group Discussion will be organised	

(ii) Motivation should be organised immediately after Assessment Centre.
 (iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion
 (iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion

Which of the following information is not required for the above lecture arrangements?

- Only (i)
 - Only (ii)
 - Only (iii)
 - C All are required

Question No.32	4.00
The goodness of fit of the fitted regression model can be checked from the value of	Bookmark
C Residual sum of squares.	
Coefficient of determination	
© Coefficient of correlation	
Question No.33	4.00
	Bookmark
$\begin{bmatrix} 2 & -2 & -4 \end{bmatrix}$	
If $A = \begin{bmatrix} 2 & 2 & 4 \\ -1 & 3 & 4 \end{bmatrix}$ is an idempotent matrix, then the value of x is	
$\begin{bmatrix} 1 & -2 & x \end{bmatrix}$	
O -1	
0-3	
0.3	
Quantian No. 24	4.00
	Bookmark
In many situations managers resort to sampling to draw some conclusions about a population. Which of the following is not an advant sampling over a census?	age of
C Sampling usually provides information quicker than a census	
 A study of sample is usually cheaper than a census The conclusions obtained from sampling are more accurate than census 	
 In destructive testing sampling is the only available course 	
Question No.35	4.00
Correct the error in the italicized part of the sentence by choosing the most appropriate options	Bookmark
Job was a tiny man, barely five feet tall, with a spright walk	
C spright walk	
© spright walkingly	
C a sprightly walk	
Question No.36	4.00
In decision making underthere are several possible outcomes for each alternative, and the decision maker knows the	Bookmark
probability occurrence of each outcome:	
O Probability	
O Certainty	
O Utility	
Question No.37	4.00
The equations 2x+5=5, x+3y=5, x-2y=0 have number of solutions	BOOKMARK
C one	
○ zero ○ two	
© many	
Question No.38	4.00
Select the Pair that hest respresents the relationship that is given in the question:	Bookmark
Explore : Discover	
© Tree : Wood	
© Research : Learn	
C Books : Knowledge	
Question No.39	4.00

.

~ 10

Choose the best synonym of the italicized word. Children of excessively indulgent parents often become very *recalcitrant*.

- insolent
- \circ indolent
- C disobedient
- C dependent

Question No.47

The ratio of number of replication required in CRD and RBD for the same amount of information is

- O 5:4
- O 3:5
- O 5:3
- O 3:2

Question No.48

Let $X_1, X_2, ..., X_n$ be iid with $f(x) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0$. Then the Cramer-Rao Lower Bound for estimating θ is $c \quad n\theta$ $c \quad \frac{\theta^2}{n}$ $c \quad \frac{\theta}{n}$ $c \quad \frac{\theta^2}{n^2}$

Question No.49

4.00 Bookmark ⊡

Let T be CAN for θ so that $T \sim AN(\theta, \sigma_{\tau}^2(\theta)/a_{\theta}^2)$ and let Ψ be a differentiable function such

that $\frac{d\psi}{d\theta}$ is continuous and non vanishing then $\Psi(T)$ is CAN for $\Psi(\theta)$ with asymptotic variance:

$$\overset{C}{\left(\frac{d\psi}{d\theta}\right)^2} \frac{\sigma_{\tau}^4(\theta)}{a_n^4} \\ \overset{C}{\left(\frac{d\psi}{d\theta}\right)^2} a_n^2 \sigma_{\tau}^2(\theta) \\ \overset{C}{\left(\frac{d\psi}{d\theta}\right)^2} \frac{\sigma_{\tau}^2(\theta)}{a_n^2} \\ \overset{C}{\left(\frac{d\psi}{d\theta}\right)^2} \frac{\sigma_{\tau}^2(\theta)}{a_n^2} \\ \overset{C}{\left(\frac{d\psi}{d\theta}\right)^2} \frac{\sigma_{\tau}^2(\theta)}{a_n^2}$$

$$\left(\frac{d\psi}{d\theta}\right)^2 \sigma_{\tau}^2(\theta)$$

Question No.50

Bookmark

4.00

4.00 Bookmark

4.00 Bookmark Rectified sampling plans are designed to answer

- Rejected lots
- C Small lots
- Accepted lots
- Subgroup lots

Question No.51

If $X \sim Poisson(4)$ and $Y \sim Poisson(3)$, and X and Y are independent. What is the value of E[XI(X+Y)], if n = 10?

- O 6.23
- O 4.23
- O 5.71
- O 5.32

Question No.52

The quadratic form $6x_1^2 + 3x_2^2 + 14x_3^2 + 4x_2x_3 + 18x_1x_3 + 4x_1x_2$ is

- C Positive semi definite
- C Negative semi definite
- O Negative definite
- C Positive definite

Question No.53

Based on the information given answer the following question.

1. In a family of six persons, there are people from three generations. Each has separate professions and they like different colours. There are two couples.

- 2. Shyam is an Engineer and his wife is not a doctor and she does not like Red colour.
- 3. Chartered Accountant likes green colour and his wife is a teacher.
- 4. Manisha is the mother-in-law of Sunita and she likes orange colour.
- 5. Vimal is the grand father of Tarun and tarun is the Principal and likes black colour.
- 6. Nyna is the grand daughter of Manisha and she likes blue colour. Nyna's Mother likes white colour.

What is the profession of Sunita?

- Teacher
- O Principal
- C Chartered Accountant
- C Cannot be determined

Question No.54

What assumptions does ANCOVA have that ANOVA does not?

- Homoscedasticity
- Homogeneity of variance
- Homogeneity of regression slopes
- Homogeneity of sample size

Question No.55

A set of logical and mathematical operations performed in a specific sequence is called:

- C Complete enumeration
- Algorithm
- Objective
- Diagnostic analysis

Question No.56

Consider the following statements:

.

I. A complete class of decision rules contains only admissible decision rules

II. A minimal complete class of decision rule contains only admissible decision rules

III. A minimal complete class of decision rule is always complete Which of the above is correct?

Bookmark 🔽

4.00

4.00

4.00

4.00

Bookmark [

Bookmark 🗸

Bookmark

Bookmark

Bookmark [

4 00

4.00

Only I is correctBoth II and III is correct

- O only II is correct
- O Both I and II is correct.

Question No.57

The probability distribution function which is not a member of exponential family but satisfies monotonic likelihood ratio property is

- C Hypergeometric
- Poisson
- O Binomial
- O Normal

Question No.58

Lots are defined as bad quality, if the proportion of defectives are greater than a specified number known as

- C AOQ
- LTPD
- O AOQL
- O ATI

Question No.59

Statement: Ten Candidates, who were on the waiting list could finally be admitted to the course. Assumptions:

I. A large of number of candidates were on the waiting list.

- II. Wait listed candidates do not ordinarily get admission.
 - O If neither I nor II is implicit
 - If only assumption I is implicit
 - If only assumption II is implicit
 - C If both I and II are implicit

Question No.60

If X and Y are two independent non negative integer valued random variables such that P(X=k)>0 & P(Y=k)>0 for k=0, 1, 2,... and the conditional distribution of X/X+Y is binomial, then

- X is Binomial and Y is Poisson
- Both X and Y are Binomial
- Both X and Y are Poisson
- X is Poisson and Y is Binomial

Question No.61

Wishart distribution is a generalization of

- t-distribution
- C Normal distribution
- C Beta distribution
- C Chi-square distribution

Question No.62

Which of the following techniques yields a simple random sample?

- C Choosing volunteers from an introductory psychology class to participate
 - O Numbering all the elements of a sampling frame and then using a random number table to pick cases from the table.
 - Listing the individuals by ethnic group and choosing a proportion from within each ethnic group at random.
- C Randomly selecting schools, and then sampling everyone within the school.

Bookmark

4.00

4.00

4.00

4.00

4.00

Bookmark

Bookmark [

Bookmark

Bookmark

Bookmark

Bookmark

Let T be an estimator based on a sample $X_1, X_2, ..., X_n$ from a distribution with parameter θ . Then T is a consistent estimator of θ if :

^o $P\{T-\theta \ge \epsilon\} = 0$, for all $\epsilon \ge 0$

$$P\{|\mathbf{T} - \boldsymbol{\theta}| \ge \epsilon\} = 0$$

^c
$$\lim_{n\to\infty} P\{T - \theta < \epsilon\} = 0$$
, for all $\epsilon > 0$

$$\int \lim_{n \to \infty} P\{|T - \theta| > \epsilon\} = 0, \text{ for all } \epsilon > 0$$

Question No.64

Suppose X is a Gamma distribution with pdf:

$$f(x) = \frac{1}{\theta^{\beta} \Gamma(\beta)} x^{\beta-1} e^{-x/\theta}, x \ge 0, \theta, \beta > 0$$

The moment estimator of β is

$$\begin{array}{c} C & \frac{m_{1}^{'2}}{m_{2}^{'}-m_{1}^{'}} \\ C & \frac{m_{1}^{'}}{m_{2}^{'}-m_{1}^{'}} \\ C & \frac{m_{1}^{'2}}{m_{2}^{'}-m_{1}^{'2}} \\ C & \frac{m_{1}^{'2}}{m_{2}^{'}-m_{1}^{'2}} \end{array}$$

Question No.65

4.00 Bookmark

Every sequence {Xn} of independent random variables with uniformly bounded variances obeys

O SLLN

O WLLN

- O Borel-Cantelli lemma
- C Cauchy's criterion

Question No.66

4.00 Bookmark

Let $X_1, X_2, ..., X_n$ be 'n' independent random variables. Let $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ be real numbers such that none of which equals zero. If $\sum_{i=1}^n a_i X_i$ and $\sum_{i=1}^n b_i X_i$ are

independent, then

- O all the variables are normally distributed
- $\ensuremath{\mathbb{C}}$ the variables need not be normally distributed
- $\ensuremath{\mathbb{C}}$ some of the variables are normally distributed
- all the variables are uniformly distributed

Bookmark

4.00

Let $\{X_n\}$ be any sequence of random variables, then for the sequence of $\{X_n\}$ to satisfy the Weak Law of Large Numbers, the condition for $Y_n = \frac{1}{n} \sum_k X_k$ that $E\left\{\frac{Y_n^2}{1+Y_n^2}\right\} \rightarrow 0$ as \circ Neither necessary nor Sufficient condition \circ Necessary and sufficient condition \circ Necessary condition \circ Sufficient condition
Question No.72 4.00
Bookmark □ If the responses for treatments in a factorial experiment with factors A and B each at 2 levels from 3 replications are a ₀ b ₀ = 18, a ₁ b ₀ = 17, a ₀ b ₁ = 25 and a ₁ b ₁ = 30, the sum of squares for interaction AB equal to 0 675 0 3 0 4 0 6
Question No.73 4.00
Bookmark □ If the periodicity of the state J, d _J = GCD {n:p _{JJ} ⁽ⁿ⁾ >0} is equal to unity then state J is known as: C Absorbing Periodic Aperiodic Closed
Question No.74 4.00
Bookmark f after performing a student-test for comparison of means, we obtain p=0.0256, then we reject H0 and accept H1 we cannot decide we accept H0 we reject H1
Question No.75 4.00
Question No.75 4.00 Bookmark [] If for a bivariate data the correlation coefficient is 0.8, the percentage of variation in the response variable explained by the variation in the explanatory variable is 64% 0.80% 80% 0.64%
Question No.75 4.00 Bookmark □ If for a bivariate data the correlation coefficient is 0.8, the percentage of variation in the response variable explained by the variation in the explanatory variable is 64% 0.80% 80% 0.64% 0.64%
Question No.75 6400 If for a bivariate data the correlation coefficient is 0.8, the percentage of variation in the response variable explained by the variation in the explanatory variable is 64% 0.80% 80% 0.64% 0.64%
Question No.75 4.00 Bookmark □ If for a bivariate data the correlation coefficient is 0.8, the percentage of variation in the response variable explained by the variation in the explanatory variable is □ 0 64% □ 0 0.80% □ 0 0.64% □ 0 0.64% □ 0 0.64% □ 0 0.64% □ 0 0.64% □ 0 0.64% □ 0 0.64% □ 0 0.64% □
Question No.75 4.00 Bookmark Bookmark If for a bivariate data the correlation coefficient is 0.8, the percentage of variation in the response variable explained by the variation in the explanatory variable is 64% 0.80% 0.80% 0.64% 0.64% 0.064% 0.64% Version No.76 4.00 Bookmark Bookmark Cuestion No.76 4.00 Sookmark Bookmark Optimum Allocation Proportional Allocation Optimum Allocation Optimum Allocation Neyman Allocation Neyman Allocation
Question No.75 4.00 Bookmark Bookmark If for a bivariate data the correlation coefficient is 0.8, the percentage of variation in the response variable explained by the variation in the explanatory variable is 6.64% 0.80% 80% 0.64% 0.64% 0.64% 4.00 Which one of the following allocation procedures can be used when no other information except the total number of units in the stratum is given? 6.200 Caustion No.76 4.00 Bookmark Optimum Allocation Proportional Allocation Optimum Allocation Nergen Allocation Nergen Allocation Name Allocation Nergen Allocation Nergen Allocation Nergen Allocation Nergen Allocation Nergen Allocation

 $\hat{\theta}$ is consistent and not Asymptotically Normal

 $\hat{\theta}$ is consistent and Asymptotically Normal

 $\hat{\theta}$ is not consistent and unbiased

 $\hat{\theta}$ is consistent and unbiased

Question No.78

4.00 Bookmark

If (X, Y) has a Bivariate Normal with parameters μ_1 , μ_2 , σ_1^2 , σ_2^2 and ρ , then Var(Y/X=x) is

 $\begin{array}{c} \circ & \sigma_2^2(1-\rho^2) \\ \circ & \sigma_2^2\rho^2 \\ \circ & \sigma_1^2(1-\rho^2) \\ \circ & \sigma_1^2\rho^2 \end{array}$

Question No.79

4.00 Bookmark

For $S^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{(n-1)}$, an unbiased estimate of the variance of the sample mean in random sampling with replacement is given by

 $\begin{array}{c} \circ \quad \frac{s^2}{n} \\ \circ \quad \frac{s^2(N-n)}{N} \\ \circ \quad \frac{s^2}{n-1} \\ \circ \quad \frac{s^2}{N} \end{array}$

Question No.80

4.00 Bookmark

Variance of the estimate of the population mean (\overline{y}_{st}) is minimum for fixed total size of the sample 'n ' if :

- \circ n_i \propto N_iS_i
- $\circ_{n_i} \propto N_i$
- \cap n_i \propto Ni/Si
- \cap $n_i \propto n_i S_i$.

Question No.81	4.00
With the usual notations, find p for a binomial random variable X, if $n = 6$ and if $9 P(X=1) = P(X=2)$.	
C 18/23	
0 9/14	
° 19/27	
O 12/15	
Question No.82	4.00 Bookmark ⊡
n the analysis of RBD with b blocks and v treatments, the error degrees of freedom are	
○ v(b-1)	
○ b(v-1)	
○ b(v+1) ○ (b-1)(v-1)	
Question No.83	4.00
	Bookmark
Let X be a random variable having the probability function:	
$(n) \binom{n}{n} e^{x/n} e^{n/2x} = 0.12$	
$f(x,\theta) = \int_{x} \theta^{n} (1-\theta)^{n-n}, x = 0, 1, 2,, n.$	
If $d(x) = \frac{x}{n}$, then the risk function $R(\theta, d)$ under squared error loss function is:	
O2	
$\frac{\theta}{\theta}$	
n	
$\frac{\theta(1-\theta)}{\theta(1-\theta)}$	
n	
$\circ \theta(\theta+1)$	
n	
$^{\circ}$ $\theta(\theta-1)$	
<u> </u>	
Question No.84	4.00
What som he spid shout the following date: 17, 14, 25, 20, 20, 41	Bookmark 🗌
No such statement can be made	
O Data is positively skewed	
○ Data is negatively skewed	
O Data is symmetric	
Question No.85	4.00
Which of the following is an example of ordinal variable?	Bookmark
© Nationality	
© Caste	
O Date of Birth	
C Annual income	
Question No.86	4.00
et there be 'n' pedestrians on the side walk at time 't', then the probability of any one of them would leave in the interval	BOOKMARK [] I (t, t+h) is given by
© O(h)	
$^{\circ}$ nµh+O(h)	
^υ nμh	

°μh	
Question No.87	4.00 Bookmark ⊡
Let {X _n , Y _n }, n=1,2,, be a sequence of random variables. Then $ X_n-Y_n \xrightarrow{p} 0$ and $ X_n-Y_n \xrightarrow{p} 0$ and	
$\begin{array}{c} \gamma_n & \gamma \end{array} \text{ implies} \\ C & \gamma_n \xrightarrow{l} \chi \\ C & \chi \xrightarrow{l} \gamma_n \end{array} $	
$ \begin{array}{c} & X_n \longrightarrow X \\ C & X_n Y_n \xrightarrow{\iota} Y \end{array} $	
$ X_n \xrightarrow{\iota} Y $	
Question No.88	4.00 Bookmark
Consider the following statements: I. Least square estimators are unbiased for all general linear models II. Under fairly general conditions, the estimates obtained by method of moments will have asymptotically normal distribution for large III. The minimum chi-square estimators are not necessarily consistent. Which of the above are correct?	n.
Only I and II are correct Only II and III are correct	
 Only I and III are correct 	
Question No.89	4.00 Bookmark ⊡
She studies very hard for the exams,?	
C doesn't she?C is it?	
⊂ isn't it?	
Question No.90 If A+B means A is daughter of B, A-B means A is husband of B	4.00 Bookmark []
A × B means A is brother of B	
C D is brother of C C A B C are male	
 A, b, c are mare B is the brother of A C is the brother of A 	
Ouestion No 91	4 00
Nidhi walks 10 metres in front and 10 metres to the right. Then every time turning to her left, she walks 5, 15 and 15 metres respective is Nidhi now from her starting point?	Bookmark 🗖 ely. How far
© 10 metres © 5 metres	
15 metresNone of the above	
Question No 92	4.00
	Bookmark

A can finish a work in 18 days and B can do the same work in half the time taken by A. Then, working together, what part of the same work they
can finish in a day?
C 0 1/6

- O 0 1/2
- O 1/8
- O 0 1/4

Choose the best antonym of the italicized word.

- - C stupidity
 - © impetuosity
 - C pleasantness

Question No.94

4.00 Bookmark

4.00

4.00

Bookmark

Bookmark

4.00

Bookmark

Let $X_1, X_2, ..., X_n$ be a random sample from a density $f(x; \theta)$. If $T=t(X_1, X_2, ..., X_n)$ is a complete sufficient statistic and S' = s(t), a function of T, is an unbiased estimator of $\tau(\theta)$, S' is an UMVUE of $\tau(\theta)$. The above result is due to

- C Rao-blackwell Theorem
- O Basu's Theorem
- C Lehmann-Scheffe Thereom
- O Neyman Factorization Theorem

Question No.95

Suppose a random variable U has a Uniform distribution in the interval (0, 1) and let X= - 2 log U. Then the probability density function of X is

^c $f(x) = \frac{1}{2}$, if $x \in (0, 2)$

- $f(x) = \exp(-x)$, if x>0
- $f(x) = 2\exp(-2x)$, if x>0
- ° $f(x) = \frac{1}{2} \exp(-\frac{x}{2})$, if x>0

Question No.96

Which of the following is false with regard to the Simplex method of solving Linear Programming problems?

- $\ensuremath{\mathbb{C}}$ It involves an iterative procedure for arriving at the optimal solution
- C Slack variables are used to represent the unused resources
- O Slack variables make zero contribution towards the objective to be achieved
- $\ensuremath{\mathbb{C}}$ The Zj Cj values indicate the variable to leave solution

Question No.97

4.00 Bookmark

Let $X_{(1)}, X_{(2)}, ..., X_{(r)}$ be a Type-II censored sample when n independent and identical items are put on life test. Define $D_i = (n - i + 1)(X_{(i)} - X_{(i-1)}), X_{(0)} = 0.i = 1, 2, ..., r$. Then which of the following is TRUE?

- $^{\circ}$ D_i's are dependent exponential random variables
- \circ D_i 's are independent exponential random variables
- $^{\circ}$ D_i's are dependent random variables
- $^{\circ}$ D_i's are iid life time random variables

Bookmark

4.00

The distribution of test scores in a class is given as follows:

Number of students	Number of correct answers
10	36 to 40
16	32 to 35
12	28 to 31
14	26 to 27
8	00 to 25

What percentage of the class answered 32 or more questions correctly?

O 43.3

O 26

O 20

O 32.5

Question No.99

4.00 Bookmark

In calculation of control limits ' σ ' can be estimated in 2 ways as

$$\hat{\sigma} = \frac{\sigma}{c_2}, \hat{\sigma} = \frac{\bar{X}}{d_2}$$

$$\hat{\sigma} = \frac{\bar{R}}{d_1}, \hat{\sigma} = \frac{\bar{\sigma}}{c_1}$$

$$\hat{\sigma} = \frac{\bar{R}}{d_2}, \hat{\sigma} = \frac{\bar{\sigma}}{c_2}$$

$$\hat{\sigma} = \frac{d_2}{\bar{R}}, \hat{\sigma} = \frac{c_2}{\sigma}$$

Question No.100

Find the odd one out?

- C Deduction
- C Deposit
- O Withdrawal
- C Debit

4.00 Bookmark