Module Name : PhD Statistics-E Exam Date : 19-Sep-2020 Batch : 12:30-14:30

Sr. No	Client Question	Question Body and Alternatives	Marks	Negative Marks
Object	ive Question			
1			4.0	1.00
1	1	Identify the correct order from the following steps involved in phenomenological approach of research.	4.0	1.00
		A1 Illumination, explication, incubation, creative synthesis, immersion		
		A2 Explication, immersion, creative synthesis, incubation, illumination		
		A3 Incubation, illumination, immersion, creative synthesis, explication		
		A4 Immersion, incubation, illumination, explication, creative synthesis		
Ohiart	ive Questier			
object	ve Question		4.0	1.00
2	2	In which sampling, a researcher includes those individuals who are willing and are readily avaiable?	4.0	1.00
		Al Simple Random Sampling		
		A2 Incidental Sampling		
		A3 Snowball Sampling		
		A4 Systematic Sampling		
Object	ive Question			
3	3	The basic purpose of using Analysis of Variance in research studies is	4.0	1.00
		A1 for equating groups on one or more variables		
		A2 for determining the significance of differences among means :		
		A3 for measuring the proficiency level of students		
		A4 for determining the significance of differences among standard deviations :		
Object	ive Question			
4	4	In a research study, under the structured questionnaire, which of the following are considered for optimality issue in sampling techniques.	4.0	1.00

(i) Minimizing time;
(ii) Minimizing the Standard;
(iii) maximizing the volatility;
(iv) Minimizing the sample size;

		(v) Minimizing the cost;(vi) Maximizing the Precision		
		A1 (i), (ii), (iii) and (vi) are relevant & (iv), (v) and (vi) are irrelevant		
		A2 (i), (iv), (v) and (vi) are irrelevant & (ii) and (iii) are relevant		
		A3 (i), (iv), (v) and (vi) are relevant & (ii) and (iii) are irrelevant		
		A4 (ii), (iii), (iv) and (vi) are relevant & (i), (iv), and (v) are irrelevant		
Objec	tive Question			
5	5	When the findings of an experimental research are generalized to target population, the research is said to possess	4.0	1.00
		A1 : Internal validity		
		A2 Concurrent validity		
		A3 : External validity		
		A4 Predictive validity		
Objec	tive Question			
6	6	For a linear regression model with 20 observations and 6 independent variables satisfying the usual assumptions, the residual sum of squares is found to be 160. Then the maximum likelihood estimate of the error variance is	4.0	1.00
		A1 : 10		
		A2 8 : 8		
		A3 32		
		A4 : 8.42		
Objec	tive Question		4.0	1.00
1	/	The variance of the OLS estimator of the regression parameters in an underfitted linear model will when compared with that of the full model.	4.0	1.00
		A1 : be large		
		A2 : be small		
		A3 remain the same		

Objec	tive Question			
8	8	One indicator for the presence of collinearity among regressors in a linear regression model is that	4.0	1.00
		A1 Individually the regressors will be insignificant but collectively they are significant		
		A2 Individually the regressors will be significant but collectively they are insignificant		
		A3 : Individually as well as collectively the regressors will be insignificant		
		A4 Individually as well as collectively the regressors will be significant		

9	9	Consider an intercept free linear regression model with 4 independent variables. The total number of subset models that can be formed is	4.0	1.00
		A1 : 16		
		A2 4		
		A3 1 :		
		A4 15		

10 10 A large studentized residual value associated with an observation in a linear regression model indicate that the observation 4.0 1.00 A1 is an outlier A^2 is an inlier A^2 is an inlier A3 has large leverage value A^2 A^3 A^3 A^3				
10	10	A large studentized residual value associated with an observation in a linear regression model indicate that the observation	4.0	1.00
		A1 : is an outlier		
		A2 : is an inlier		
		A3 : has large leverage value		
		A4 : has small leverage value		
Object	ive Question			
11	11	Ridge regression estimator for the regression parameters in a linear model is	4.0	1.00
		A1 : is an unbiased estimator		
		A2 is a biased estimator		

A3 is biased estimator having larger mean square error than the variance of OLS estimator :

A4 is biased estimator having smaller mean square error than the variance of OLS estimator

bjective	e Question			
2 12	2	If for a linear regression model with 10 observations and 3 regressors, R^2 is found to be 0.75, then the value of the test statistic for testing the overall significance of the slope parameters is	4.0	1.00
		A1 3 :		
		A2 0.33		
		A3 6		
		A4 1 :		
biective	Question			
3 13	3	Distribution free methods	4.0	1.00
		$\stackrel{A1}{:}$ do not depend on the distribution of the random variable on which sample observations are made		
		A2 : do not assume any distribution of the random variable on which sample observations are made		
		A3 do not make any assumptions on the distribution of the random variable on which sample observations are made		
		A4 : make normality assumption on the distribution of the random variable on which sample observations are made		
Dbjective	e Question			
4 14	4	Compared to parametric tests, non-parametric tests in general	4.0	1.00
		A1 : are more powerful		
		A2 : are less powerful		
		A3 have same power		
		A4 none of these		
Dhiective	Question			
5 15	5	The distribution of the sign test statistic is	4.0	1.00

		A2 Bernoulli :		
		A3 : Binomial		
		A4 : Hyper geometric		
Objec	tive Question			
16	16	A design is said to be orthogonal if	4.0	1.00
		A1 Treatment contrasts are correlated with block contrast		
		A2 Treatment contrasts are uncorrelated		
		A3 Block contrasts are correlated		
		A4 Treatment contrasts are uncorrelated with block contrast		
Objec	tive Question			
17	17	Two contrasts $c_i^T \hat{\beta}$ and $c_j^T \hat{\beta}$ are said to be orthogonal if	4.0	1.00
		$\sum_{i=1}^{A1} c_i^T c_j = 1$		
		$\begin{array}{cc} A2 \\ \vdots \\ c_i^T c_j = 0 \end{array}$		
		$c_i^{A3} c_i^2 = 1$		
		$\begin{array}{c} \mathbf{A4} \\ \mathbf{c}_j^2 = 0 \\ \mathbf{c}_j^2 = 0 \end{array}$		
Objec	tive Question			
18	18	In a 2 ⁵ factorial experiment with block size 8 confounding the interactions ADE and ACD, the concerting distance in	4.0	1.00
		In a 2 factorial experiment with block size 6, combunding the interactions ABE and ACD, the generalized interaction is		
		A1 ABDE		

A2 BCDE

A3 ABCE

A4 ABCD

19 19

For a spilt plot experiment conducted with 5 concentration of an insecticide in main plots and 4 varieties of gram in sub-plots 4.0 1.00 and having 3 replications, main plot error degrees of freedom will be

		A1 8	
		A2 10	
		A3 24	
		A4 : 6	
Object	tive Question		

20	20	A Balanced Incomplete Block Design (BIBD) with parameters (v, b, r, k, λ) is	4.0	1.00
		Al Connected, Balanced, Orthogonal		
		A2 Connected, Not Balanced, Orthogonal		
		A3 Connected, Balanced, Non-Orthogonal		
		A4 : Not Connected, Balanced, orthogonal		
Ohiaa	tive Question			
21	21	In conducting a 2 ⁴ experiment with 4 factors A, B, C, D, if blocks of size 4 only are available and the effects ABC, BCD, AD are confounded then the composition of key block is	4.0	1.00
		A1 '1', bc, abd, acd		
		A2 '1', ad, bc, abcd		
		A3 '1', ad, cd, ac		
		A4 '1', ab, cd, abcd		
Obiec	tive Question			
22	22	In a 3 ³ factorial with factors A, B and C each at 3 levels, the interaction A ² BC ² is same as the interaction	4.0	1.00
		Al ABC		
		A^2 AB ² C		
		$A^3 AB^2C^2$		

23 23	A Balanced Incomplete Block Design (BIBD) with 4 treatments arranged in 6 blocks of size 2 each, has an efficiency factor equal to A1 4/5 A2 3/4 A3 2/3 A4 1/2	4.0	1.00
Diective (lestion		
24 24	A sufficient estimator of θ based on a random sample of size <i>n</i> from Uniform distribution U(0, θ) is given by A1 $\frac{1}{n} \sum_{i=1}^{n} X_i$ A2 $\sqrt{\sum_{i=1}^{n} X_i^2}$ A3 Max. (X_1, \dots, X_n) A4 Min. (X_1, \dots, X_n)	4.0	
5 25	Suppose V V · V gro independent random variables	4.0	1.00
	where Xi's have density $f_X(x) = \frac{1}{\lambda} e^{-\frac{x}{\lambda}}; x > 0$ and Yi's have density $f_Y(y) = \frac{1}{2\lambda} e^{-\frac{y}{2\lambda}}; y > 0$. The maximum likelihood estimator of λ based on all Xi's and Yi's is Al $\frac{\overline{X} + \overline{Y}}{2}$ Al $\frac{\overline{X} + \overline{Y}}{3}$ Al $\frac{2\overline{X} + \overline{Y}}{4}$ Al $\frac{4}{\overline{X} + 2\overline{Y}}$		
Objective (uestion	4.0	1.00
26		4.0	1.00

Let $\binom{X_1}{X_2} \sim N\left[\binom{2}{3}, \binom{1}{1/2} \quad \frac{1/2}{3}\right]$ Then $Y_1 = X_1 + X_2$ and $Y_2 = aX_1 + bX_2$ are independent if and only if $\begin{array}{l} A1 \\ \vdots \\ A2 \\ \vdots \\ 3a + 7b = 0 \\ \vdots \\ A3 \\ \vdots \\ 2a + 3b = 0 \end{array}$ $\begin{array}{l} A3 \\ \vdots \\ 3a + b = 0 \end{array}$

Objective Question

27	27	The dispersion matrix of a random vector $(X_1, X_2, X_3)'$ is $\begin{pmatrix} 10 & 5 & 5 \\ 5 & 9 & a \\ 5 & a & 16 \end{pmatrix}$. The value of a , so that $X_1 + X_2 + X_3$ and $X_1 - 2X_2 + X_3$ are uncorrelated is A1 8 A2 21 A3 13	4.0	1.00
		A4 15		

Objective Question

Objec	live Question			
28	28	The correlation structure between the x-variates in a dimensionality reduction can be obtained in	4.0	1.00
		Al Canonical Correlation Analysis		
		A2 Factor Analysis		
		A3 Cluster Analysis		
		A4 : Discriminant Analysis		
Objec	tive Question			
29	29	Which of the following is not a test that can be used to evaluate the overall model fit for logistic regression models?	4.0	1.00
		A1 Change in likelihood		
		A2 Hosmer-Lomeshow goodness fit		

A3 Cox and Snell R squared

	:		
	A4 Wald test		
jective Ques	ion		
30	Suppose $n_1 = 19$, $n_2 = 21$ and $n_3 = 23$ for a one factor Analysis of Variance (ANOVA), the degrees of freedom for total (df _{total}) would be	4.0	1.00
	A1 2 :		
	A2 3		
	A3 60		
	A4 : 62		
ojective Ques	ion		
31	The probability distribution function which is not a member of exponential family but satisfies monotonic likelihood ratio property is	4.0	1.00
	A1 Binomial		
	A2 Poisson		
	A3 Normal		
	A4 Hypergeometric		
piective Oues	ion		
32	If the p-component vector Y is distributed according to N (0, Σ) and Σ is non-singular then $Y^T \Sigma^{-1} Y$ is distributed according to	4.0	1.00
	$\frac{A1}{2}\chi^2$ distribution with p degrees of freedom		
	$\frac{A^2}{2}\chi^2$ distribution with (p-1) degrees of freedom		
	$\stackrel{A3}{:} N_P(0, Y^T \Sigma Y)$		
	$\stackrel{A4}{:} N_P(0, Y^T \Sigma^{-1} Y)$		
jective Ques	ion		

		A1 0		
		A2 14		
		A3 36		
		A4 49 :		
Ohie	tive Question			
34	34	If the relationship between two variables is linear, then which one of the following is correct?	4.0	1.00
		All the points must fall on a curve line		
		A2 : The relationship is best represented by a curved line		
		A3 All the points must fall on straight line		
		A4 The relationship is best represented by a straight line		
Obie	ctive Ouestion			
35	35	For any non-negative random variable X, which one of them is true?	4.0	1.00
		$\sum_{x=1}^{A1} E x + E\left(\frac{1}{x}\right) > 2$		
		$\frac{A2}{2} E X - E\left(\frac{1}{x}\right) > 2$		
		$ \overset{A3}{:} E X + E\left(\frac{1}{x}\right) \ge 2 $		
		$\frac{A4}{E} E X + E\left(\frac{1}{x}\right) \le 2$		
Obie	ctive Ouestion			
36	36	The p.d.f. of a Normal distribution is given by $f(x) = \frac{8}{\sqrt{2\pi}}e^{-4(x-1)}$; $-\infty < x < \infty$. Then the mean and standard deviation is	4.0	1.00
		A1 : (1/2, 1/8)		
		A2 (1/8, 1/2)		
		A3 : (1/3, 3/8)		
		A4 : (3/8, 1/3)		

Objective Que 37 37	stion The distribution function of a random variable X is given by $F(x) = \begin{cases} 0; & x \le 1\\ \frac{1}{16}(x-1)^4; & 1 \le x \le 3\\ 1; & x > 3 \end{cases}$ Then E(X) is equal to $A^1_{12/5}$	4.0]
	$ \begin{array}{c} A2 & 11/5 \\ \vdots & \\ A3 & 13/5 \\ \vdots & \\ A4 & 17/5 \\ \vdots & \\ \end{array} $		
Objective Que	stion		
Objective Oue	The m.g.f. of a certain continuous distribution is $e^{2t + \frac{2t^2}{2}}$. Then the mean and variance are A1 (2, 3) $\frac{A2}{2}$ (2, $\sqrt{3}$) A3 (2, 1/3) $\frac{A4}{2}$ (2, $1/\sqrt{3}$) stion	4.0	1.00
39 39	A discrete random variable X has the following p.m.f. $ \frac{x - 1}{p(x)} \frac{1}{1/2} \frac{1}{1/2} $ Then the characteristic function $\phi_x(t)$ is equal to $ \begin{array}{l} A^1 \\ \vdots \\ A^2 \\ cos t \\ \vdots \\ A^3 \\ tan t \\ A^4 \\ cot t \\ \vdots \end{array} $	4.0	

40	40	If $G_X(s)$ denote the p.g.f. of a random variable X, then the p.g.f. of the r.v. $aX + b$ is	4.0	1.00
		$\stackrel{A1}{:} s^b G_{X}(s^a)$		
		$\stackrel{A2}{:} s^a G_{X}(s^b)$		
		$\stackrel{A3}{:} ab G_{X}(s)$		
		$\stackrel{A4}{:}$ a/b $G_X(s)$		
Obiec	tive Ouestion			
41	41	Suppose X1, , Xn are i.i.d random variables of size 100 which have uniform distribution on $[a - 2, a + 2]$, where 'a' is unknown. Suppose the random sample produces sample mean equal to 3. Then the 95% confidence interval for a will be?	4.0	1.00
		A1 (2.73, 3.27)		
		A2 (2.37, 3.77)		
		A3 (2.05, 3.27)		
		A4 (2.37, 3.07)		
	rian Orașe din a			
06jec	tive Question		4.0	1.00
72	72	Let φ be a test function having maximum power at each $\theta \in \Theta_1$ from among the tests in \mathcal{U}_{α} then such test is called as	1.0	1.00
		A1 Most Powerful test		
		A2 : Uniformly Most Powerful test		
		A3 : Uniformly Most Powerful Unbiased test		
		A4 Uniformly Most Powerful Similar test		
Objec	tive Question		4.0	1.00
43	43	Let the distribution of a random variable X under H_0 and H_1 be	4.0	1.00
		X 1 2 3 4 5 6		
		f0(x) 0.01 0.01 0.01 0.01 0.01 0.95		
		fi(x) 0.05 0.04 0.03 0.02 0.01 0.85		
		Obtain the power of the test for size 0.03 for testing $H_0: f = f_0$ Vs $H_1: f = f_1$		
		$^{A1}_{\cdot}$ 0.15		
		42		
		: 0.12		

		A3 : 0.85		
		A4 : 0.88		
Objec	tive Question			
44	44	Let X ₁ , X ₂ ,, X _n be a random sample of size n from N(μ ,1), $\mu \in \mathbb{R}$. The likelihood ratio test for testing the $H: \mu \leq \mu_0 vs K: \mu > \mu_0$ is	4.0	1.00
		$\frac{A1}{2} e^{\frac{\pi}{2}(\vec{x}-\mu_0)^2}$		
		$ \sum_{i=1}^{A2} e^{-\frac{\pi}{2}(\vec{x}+\mu_0)^2} $		
		$ \overset{A3}{:} e^{-\frac{\pi}{2}(\bar{x}-\mu_0)^2} $		
		$\begin{array}{c} A4 \\ \vdots \\ e^{\frac{n}{2}(\bar{x}+\mu_0)^2} \end{array}$		
Objec	tive Question			
45	45	If X ₁ , X ₂ ,, X _n are i.i.d N($N(\theta, \sigma^2)$), σ^2 is unknown. Then the likelihood ratio test for testing $H_0: \theta = \theta_0 \ vs \ H_1: \theta \neq \theta_0$ leads to	4.0	1.00
		A1 : One sided Chi-Square test		
		A2 : One sided student's t-test		
		A3 Two sided student's t-test		
		A4 : Two sided chi-square test		
Objec	tive Question			
46	46	The variance of the moving average M _i is	4.0	1.00
		$\frac{A1}{x} \frac{\sigma^2}{w}$		
		$\begin{array}{c} A2 \\ \vdots \\ w-1 \end{array}$		
		$\stackrel{A3}{:} \sigma^2$		
		$\frac{A4}{1} \cdot \frac{\sigma^2}{n} - 1$		
Objec	tive Question			
47	47	One of the approach to using an \bar{x} chart to monitor the fraction of nonconforming units, or the fraction of units exceeding specifications, is called	4.0	1.00

	A1 Modified control chart	
	A2 Acceptance control chart	
	A3 Relative range control chart	
	A4 Cusum chart	
Objective Question	JI	

48	48	In single sampling plan, let 'p' be the quality and P_a be the probability of lot acceptance, then the average total inspection (ATI) per lot will be	4.0	1.00
		$ \begin{array}{l} A1 \\ \vdots \\ \end{array} ATI = n + (P_a)(N-n) \\ \vdots \end{array} $		
		$A2 = ATI = n + (1-P_a)$		
		A3 $ATI = n + (1-Pa)(N-n)$		
		$A4_{a} ATI = (1-P_{a})(N-n)$		

49	49	In sequential sampling plan, the expression to determine 's' in constructing the limit lines is	4.0	1.00
		Al $s = log[(1 - p_1)(1 - p_2)]/k$		
		$\sum_{i=1}^{A2} s = log[(p_1)(1-p_2)]/k$		
		$A_{1}^{A_{3}} s = log[(1-p_{1})/(p_{2})]/k$		
		$A4 = log[(1-p_1)/(1-p_2)]/k$		

50	50	Ease estimation the completion momentum D is a completion having N units, the variance of the estimator n of D based on a	4.0	1.00
50	50	For estimating the population proportion P in a population having N units, the variance of the estimator p of P , based on a sample of size n , is	4.0	1.00
		$\stackrel{A1}{\cdot} \frac{N}{N-1} \cdot \frac{PQ}{n}$		
		$\stackrel{A2}{:} \frac{N}{N-1} \cdot \frac{PQ}{N}$		
		$\begin{array}{c} A3 \\ \vdots \\ N-n \\ N-1 \\ n \end{array} \begin{array}{c} PQ \\ n \end{array}$		
		A4		

		$\frac{N-1}{N-1} PQ$		
		N-n n		
Objec	tive Question			
51	51	If larger units have greater probability of their inclusion in the sample it is known as	4.0	1.00
		A1 selection with replacement		
		A2 selection with probability proportional to size		
		A3 selection with constant probability		
		robability selection		
hier	tive Question			
2	52	The name "Two_Stage Sampling" is due to	4.0	1.00
•		The name Two- Stage Sampling is due to		
		Cochran		
		A2		
		Fisher		
		A3 x 1		
		Midzuno :		
		A4 Mahalanahis		
		: Wanafanoois		
bjec	tive Question			
3	53	Random sampling error	4.0	1.00
		A1 is the difference between a survey that includes only those who responded and a survey that also includes those who		
		: failed to respond.		
		$\frac{A2}{A}$ is a function of sample size.		
		A^{3} results from the nature of a study's design and the inappropriate or random administration of the sampling process.		
		does not occur in non-probability samples.		
biec	tive Question			
4	54	Which of the following best describes why quote campling is widely used in market recearch?	4.0	1.00
		when or the following best deserves why quota sampling is when y used in market research?		
		It allows the interviewer to choose who should be interviewed		
		A2		
		It is easier to use quotas to allocate fieldwork to interviewers		
		A3 Achieving a representative sample is not usually important		
	11	1		11

A4 The	client and/or the research supplier have extensive knowledge of the relevant characteristics of the population of
: inte	rest on which to base quotas

Obje	bjective Question							
55	55	A simple random sample of size n is drawn from a finite population of N units with replacement. The probability that the ith $(1 \le i \le N)$ unit is included in the sample is	4.0	1.00				
		$ \begin{array}{c} A1 \\ \vdots \\ \end{array} \left(\frac{N-1}{N} \right)^n \end{array} $						
		$ \stackrel{A2}{:} 1 - \left(1 - \frac{1}{N}\right)^n $						
		A3 n/N						
		$\frac{A4}{N(N-1)} \frac{n(n-1)}{N(N-1)}$						

objec	are Question			
56	56	For a random variable X degenerate at $a \in R$	4.0	1.00
		A1 P(X=a) = 0		
		$\sum_{x=1}^{A2} P(x=a) = \infty$		
		$\begin{array}{l} A3\\ \vdots \end{array} P(X=a) = -\infty \end{array}$		
		$\begin{array}{c} A4\\ \vdots \end{array} P(X=a) = 1 \end{array}$		

Objec	tive Question			
57	57	If A and B are two events such that $P(A)=P(B)=1/3$ and $P(A/B)=1/6$, what is $P(A' \cap B')$? A1 7/18 A2	4.0	1.00
		$ \begin{array}{c} A2 & 1/6 \\ A3 & 1/3 \\ A4 & 1/2 \end{array} $		
Objec	tive Question			
58	58	Strong Law of Large Numbers is based on the concept of	4.0	1.00
		A1 Weak convergence		

59	59	The percentile point function of the Weibull distribution is	4.0	1.00
Objec	ctive Question			
		A4 : Convergence in r th mean		
		A3 Convergence in probability		
		A2 Almost sure convergence		
		A2		

-	59	59	The percentile point function of the Weibull distribution is	4.0	1.00
			A1 : $G(p) = (-ln(1+p))^{1/\gamma}; 0 \le p < 1; \gamma > 0$		
			$A2 : G(p) = (ln(1-p))^{1/\gamma}; 0 \le p < 1; \gamma > 0$		
			A3 : $G(p) = (-ln(1-p))^{1/\gamma}; 0 \le p < 1; \gamma > 0$		
			$ \overset{A4}{:} G(p) = \left(-ln(1-p^2)\right)^{1/\gamma}; 0 \le p < 1; \gamma > 0 $		

The three-parameter Weibull distribution reduces to the two parameter Exponential distribution, when β takes the value	4.0	1.00
$\begin{array}{c} A1 \\ \vdots \end{array} \beta < 1 \end{array}$		
$\begin{array}{c} A2\\ \vdots \end{array} \beta = 1 \end{array}$		
$\begin{array}{c} A3\\ \vdots \end{array} \beta > 1 \end{array}$		
$\begin{array}{c} A4\\ \vdots \end{array} \beta = 0$		
on		
Consider the vector space V of real polynomials of degree less than or equal to n. Fix distinct real numbers as $a_0, a_1,, a_k$. For $p \in V$, max $\{ p(a_j) : 0 \le j \le k\}$ defines norm on V	4.0	1.00
A1 only if k < n		
$\frac{A^2}{2}$ only if $k \ge n$		
A3 if k + 1 > n		
	The three-parameter Weibull distribution reduces to the two parameter Exponential distribution, when β takes the value $ \begin{array}{l} A^{1} \beta < 1 \\ A^{2} \beta = 1 \\ A^{3} \beta > 1 \\ A^{4} \beta = 0 \\ \end{array} $ on Consider the vector space V of real polynomials of degree less than or equal to n. Fix distinct real numbers as ao, a1,, ak. For peV, max { $ p(a_{j}) : 0 \le j \le k$ } defines norm on V $ \begin{array}{l} A^{1} \text{only if } k < n \\ A^{2} \text{only if } k \ge n \\ \end{array} $	The three-parameter Weibull distribution reduces to the two parameter Exponential distribution, when β takes the value $ \begin{array}{c} A1 \\ \beta < 1 \\ A2 \\ \beta = 1 \\ A3 \\ \beta > 1 \\ A4 \\ \beta = 0 \\ \end{array} $ on $ \begin{array}{c} Consider the vector space V of real polynomials of degree less than or equal to n. Fix distinct real numbers as ao, a_1,, a_k. For peV, max { p(a_j) : 0 \le j \le k} defines norm on V \begin{array}{c} A1 \\ A1 \\ A2 \\ A1 \\ A1 \\ A1 \\ A2 \\ A1 \\ A1 \\ A2 \\ A1 \\ A2 \\ A1 \\ A1 \\ A2 \\ A2 \\ A1 \\ A2 \\ A1 \\ A2 \\ A2 \\ A1 \\ A2 \\ A1 \\ A2 \\ A1 \\ A2 \\ A2 \\ A1 \\ A2 \\ A1 \\ A2 \\ A1 \\ A2 \\ A2 \\ A1 \\ A2 \\ A2 \\ A2 \\ A3 \\ A4 \\ A4 \\ A5 \\ A5$

Objec	tive Question			
62	62	Let W_1 , W_2 , W_3 be three distinct subspaces of \mathbb{R}^{10} such that W_i has dimension 9. Let $W_1 \cap W_2 \cap W_3$. Then we can conclude that	4.0	1.00
		$\stackrel{A1}{:}$ W may not be a subspace of R ¹⁰		
		$\frac{A2}{1} \dim(W) \le 8$		
		$\operatorname{A3}_{:} \operatorname{dim}(W) \leq 5$		
		$\frac{A4}{2} \dim(W) \le 6$		
Objec	tive Question			
63	63	Let A be $n \times n$ matrix with real entries. Define $(x,y)_A = (Ax, Ay)$, x, y $\in \mathbb{R}^n$. Then $(x,y)_A$ defined as inner product if and only if	4.0	1.00
		$\frac{A1}{A}$ Ker(A) = {0}		
		$\stackrel{A2}{:} \operatorname{rank} (A) = 1$		
		A3 : all eigen values of A are positive		
		A4 : all eigen values of A are negative		
Objec	tive Question			
64	64	Let A_{3x4} be a real matrix of rank 2. Then the rank of $A^T A$ is	4.0	1.00
		A1 : exactly 2		
		A2 : exactly 3		
		A3 : exactly 4		
		A4 : exactly 1		
Objec	tive Question			
65	65	Let f be a non-zero symmetric bilinear form on \mathbb{R}^3 . Suppose that there exist linear transformation $T_i: \mathbb{R}_3 \rightarrow \mathbb{R}$, $i=1,2$ such that for all $\alpha, \beta \in \mathbb{R}^3$, $f(\alpha, \beta)=T_1(\alpha)T_2(\beta)$. Then (i) rank(f)=1 (ii) f is a positive semi-definite or negative semi-definite (iii) { $\alpha \in \mathbb{R}^3: f(\alpha, \alpha)=0$ } is a linear subspace of dimension 2 Which of the statements is correct?	4.0	1.00
		A1 : (i) only		

	11			1
		A2 (ii) only		
		A3 (iii) only		
		A4 : (i), (ii) and (iii)		
Objec	tive Question			
66	66	Consider the AR(1) model with disturbances having zero mean and unit variance $y_t = 0.2 + 0.4y_{t-1} + u_t$ The value of the autocorrelation function at lag 3 for the above model will be	4.0	1.00
		A1 0.4		
		A2 0.064		
		A3 0 :		
		A4 0.076		
Objec	tive Question			
67	67	For a stationary autoregressive process, shocks will	4.0	1.00
		A1 eventually die away		
		A2 : persist indefinitely		
		A3 grow exponentially		
		A4 never occur		
Objec	tive Question			
68	68	If the Engel-Granger test is applied to the residuals of a potentially cointegrating regression, what would be the interpretation of null hypothesis?	4.0	1.00
		A1 The variables are cointegrated.		
		A2 : The variables are not cointegrated.		
		A3 Both variables are stationary.		
		A4 Both variables are not stationary.		

Objective Questio	n		
9 69	Autocovariance measure is	4.0	1.00
	A1 inear dependence between multiple points on different series observed at different times.		
	A2 quadratic dependence between two points on the same series observed at different times.		
	A3 linear dependence between multiple points on different series observed at same times.		
	A4 inear dependence between two points on the same series observed at different times.		
bjective Questio		4.0	1.00
) //	Which of the following is not a necessary condition for weakly stationary time series?	4.0	1.00
	A1 : Mean is constant and does not depend on time.		
	A2 : Time series under considerations is finite variance process.		
	A3 : : : : : :		
	A4 : Autocovariance depends on moments in time through their difference.		
biective Questio	n		
1 71	Index numbers are tools, over a period of time, for measuring	4.0	1.00
	A1 changes of variables :		
	A2 changes of attributes :		
	A3 changes of mean		
	A4 changes of standard error :		
hiective Questio	n		
2 72	Existence of alternative optimal basic feasible solution is indicated as	4.0	1.00
	A1 The net evolution of none of the non basic variable is zero on par with basic variables in the final simplex table :		
	A2 : The net evolution of all non basic variable should be negative on par with basic variables in the final simplex table		
	A3 : The net evolution all basic variables are negative on par with non basic variables in the final simplex table		
	A4 The net evolution of at least one non basic variable should be zero on par with basic variables in the final simplex table		

Objec	tive Question			
73	73	When both primal and dual Linear Programming Problems (LPP) possesses the optimal basic feasible solution, then	4.0	1.00
		A1 The value of the objective functions in both problems are not necessarily equal :		
		A2 : The value of the objective functions in primal LPP is more than its corresponding dual LPP		
		A3 The value of the objective functions in primal LPP is less than its corresponding dual LPP		
		A4 The value of the objective functions in both problems are equal :		
Ohiec	tive Question			
74	74	When the demand over certain period of time is not known with certainty, then the those inventory models may be classified as	4.0	1.00
		Al Probabilistic Models		
		A2 : Deterministic Models		
		A3 Static Models		
		A4 : Constant Rate Models		
Objec 75	75	The value of optimal ordering interval (t*) in economic lot size system with uniform demand is	4.0	1.00
		A1 : Is directly proportional to the square root of holding cost		
		A2 : Is directly proportional to the square root of set up cost		
		A3 Is inversely proportional to the square root of holding cost		
		A4 Is inversely proportional to the square root of set up cost		
01-1	tive Orent'			
76	76		4.0	1.00
/0		Let T be CAN for θ so that $T \sim AN(\theta, \sigma_{\tau}^2(\theta)/a_n^2)$ and let Ψ be a differentiable function such dw	4.0	1.00
		that $\frac{-r}{d\theta}$ is continuous and non vanishing then $\Psi(T)$ is CAN for $\Psi(\theta)$ with asymptotic variance:		
		$\stackrel{\mathrm{A1}}{:} \left(\frac{d\psi}{d\theta}\right)^2 \sigma_{\tau}^2(\theta)$		

$$\stackrel{A2}{:} \left(\frac{d\psi}{d\theta}\right)^2 a_n^2 \sigma_\tau^2(\theta)$$

$$\stackrel{A3}{:} \left(\frac{d\psi}{d\theta}\right)^2 \frac{\sigma_\tau^2(\theta)}{a_n^2}$$

$$\stackrel{A4}{:} \left(\frac{d\psi}{d\theta}\right)^2 \frac{\sigma_\tau^4(\theta)}{a_n^4}$$

Object	ive Question			
77	77	If $X \sim f(x), y \sim g(y)$, then the distribution of Z=X +Y is $\stackrel{\text{A1}}{:} P(Z - z) = \sum_{n=1}^{\infty} P(X - z) P(X - z)$	4.0	1.00
		$P(Z - z) = \sum_{c = -\infty}^{\infty} P(X = c)P(Y = z - c)$		
		$\sum_{c=-\infty}^{A3} P(Z=z) = \sum_{c=-\infty}^{\infty} P(X=c+y)P(Y=x+c)$		
		$\sum_{c=-\infty}^{A4} P(Z=z) = \sum_{c=-\infty}^{\infty} P(X=x)P(Y=c)$		
Object	ive Question			
78	78	The quadratic form $6x_1^2 + 3x_2^2 + 14x_3^2 + 4x_2x_3 + 18x_1x_3 + 4x_1x_2$ is	4.0	1.00
		Al Positive definite		
		A2 Negative definite		
		A3 Positive semi definite		
	ive Question	A4 Negative semi definite		
100000	A 10 YO M 10 YO M 10 YO M			
Object 79	79	The multiplife density for the Constant of Madernance in	4.0	1.00

A1 $P(X_1, X_2, X_3, \dots, X_N) = P(X_1)P(X_2/X_1)P(X_3/X_2)\dots P(X_N/X_{N-1})$:

		A2 $P(X_1, X_2, X_3, \dots, X_N) = P(X_1)P(X_1/X_2)P(X_2/X_3)\dots P(X_{N-1}/X_N)$:		
		$A3 P(X_1, X_2, X_3, \dots, X_N) = P(X_1)P(X_2)P(X_3)\dots P(X_N)$		
		$\stackrel{A4}{:} P(X_1, X_2, X_3, \dots, X_N) = P(X_1)P(X_2 * X_1)P(X_3 * X_2), \dots, P(X_N * X_{N-1})$		
Objec	tive Question			
80	80	If calls arrive at a telephone exchange such that the time of arrival of any call is independent of the time of arrival of earlier or future calls, the probability distribution function of the total number of calls in a fixed time interval will be	4.0	1.00
		A1 Poisson		
		A2 Gaussian		
		A3 Exponential		
		A4 Gamma		
Objec	tive Question			
81	81	Dual Simplex method is used to solve a Linear Programming Problem when	4.0	1.00
		A1 The solution is non-optimum and infeasible.		
		A2 : The solution is optimum and infeasible.		
		A3 The solution is non-optimum and feasible.		
		A4 The solution is optimum and degenerate.		
Obiec	tive Ouestion			
82	82	In post-optimality analysis of Linear Programming Problem, the feasibility condition is affected due to (i) Changes in the cost vector (ii) Changes in the requirement vector (iii) Addition and deletion of linear constraints Choose the correct option.	4.0	1.00
		A1 (i)		
		A2 (i) and (ii)		
		A3 (i) and (iii)		
		A4 (ii) and (iii)		

Objective Question

bject	tive Question			
3	83	The mean of non-central F distribution with n_1 and n_2 degrees of freedom and non-centrality parameter λ_1 is	4.0	1.00
		$\begin{array}{ccc} A1 & \underline{n_1} & \underline{n_2-2} \\ \vdots & \overline{n_2} & \underline{n_1+\lambda_1} \end{array}$		
		$\begin{array}{c} A2 \\ \vdots \\ n_2 \end{array} \frac{n_1}{n_2} \frac{n_2 - 2}{n_1} \end{array}$		
		$\begin{array}{c} A3 \frac{n_2}{n_1} \frac{n_1 + \lambda_1}{n_2 - 2} \end{array}$		
		$\begin{array}{c} A4 \frac{n_1 + \lambda_1}{n_2 - 2} \end{array}$		
bject	tive Question			
4	84	Let $X_1, X_2,, X_n$ be i.i.d random variables with mean μ and variance σ^2 . If $\frac{X_1^2 + X_2^2 + + X_n^2}{n} \xrightarrow{p} c$, where c is a positive constant. The value of c is	4.0	1.00
		A1 μ :		
		$\stackrel{A2}{:} \mu + \sigma$		
		$\stackrel{A3}{:} \sigma^2$		
		$\stackrel{A4}{:} \mu^2 + \sigma^2$		
bject	tive Question			
5	85	The probability density function of a Poisson distribution with parameter θ , truncated at origin is	4.0	1.00
		$\stackrel{A1}{:} \frac{e^{-\theta} \theta^x}{x!} \frac{1}{1 - e^{-\theta}}$		
		$\frac{A2}{x!} \frac{e^{-\theta} \theta^x (1-e^{-\theta})}{x!}$		
		$\begin{array}{c} A3 \frac{1}{1-e^{-\theta}} \end{array}$		
		$\frac{^{A4}}{^{\cdot}} 1-e^{- heta}$		
bject	tive Question			
6	86	If X and Y are two independent random variables with cumulative distribution functions F_1 and F_2 , then the convolution (F) of F_1 and F_2 is given by	4.0	1.00

$$A2 \quad F(x) = \int_{-\infty}^{\infty} F_1(x) dF_2(y)$$

$$A3 \quad F(x) = \int_{-\infty}^{\infty} F_1(x) dF_2(x-y)$$

$$A4 \quad F(x) = \int_{-\infty}^{\infty} F_2(x-y) dF_2(y)$$

Objective Question S7 S7 Let $(X_1, X_2,, X_n)$ be a random sample of observations with mean μ and finite variance. Then for estimating μ , the statistic $T_n = 2\sum_{n=1}^{\infty} [X_n/n(n+1)]$ is A^1 unbiased and consistent A^2_n biased and not consistent A^2_n biased bias					
87 87 Let (X_1, X_2, \dots, X_n) be a random sample of observations with mean μ and finite variance. Then for estimating μ , the statistic $T_n = 2\sum_{n=1}^{n} X_n/n(n+1) $ is 1.00 A1 unbiased and consistent $\frac{A2}{1}$ biased and consistent $\frac{A3}{1}$ unbiased and not consistent $\frac{A4}{1}$ biased and not consistent $\frac{A4}{1}$ biased and not consistent M3 unbiased and not consistent $\frac{A4}{1}$ biased and not consistent $\frac{A4}{1}$ biased and not consistent M4 biased and not consistent $\frac{A4}{1}$ biased and not consistent $\frac{A4}{1}$ biased and not consistent M4 biased and not consistent $\frac{A4}{1}$ biased and not consistent $\frac{A4}{1}$ biased and not consistent M4 biased and not consistent $\frac{A4}{1}$ biased and not consistent $\frac{A4}{1}$ biased and not consistent M4 biased and not consistent $\frac{A4}{1}$ and $\frac{A4}{1}$ andia and $\frac{A4}{1}$ and $\frac{A4}{1}$ and $\frac{A4}{1}$ and	Objec	tive Question			
$ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &$	87	87	Let $(X_1, X_2,, X_n)$ be a random sample of observations with mean μ and finite variance. Then for estimating μ , the statistic $T_n = 2\sum_{i=1}^n i X_i / n(n+1)$ is	4.0	1.00
Cbjective Question A^2 biased and consistent A^3 ubiased but not consistent A^4 biased and not consistent A^4 Objective Question A^4 A^3 a sequence of random variables is convergent in probability then as $n \to \infty$, $P(X_n - X < \epsilon)$ A^0 A^0 A^1 1 1 A^2 0 A^3 α A^4 $-\infty$ A^4			A1 unbiased and consistent		
CONjective Question If a sequence of random variables is convergent in probability then as $n \rightarrow \infty$, $P(X_n - X < \epsilon)$ 4.0 1.00 88 88 If a sequence of random variables is convergent in probability then as $n \rightarrow \infty$, $P(X_n - X < \epsilon)$ 4.0 1.00 81 1 1 1 1 1.00 A1 1 1 1.00 1.00 A3 ∞ A4 Velocitive Question A1 1 1.00 A1 1 A4 $-\infty$ Objective Question 89 89 Ahypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. A1 $p = 5\%$. 81 8 A1 $p = 5\%$. 100 8 8 </td <td></td> <td></td> <td>A2 biased and consistent</td> <td></td> <td></td>			A2 biased and consistent		
Objective QuestionIf a sequence of random variables is convergent in probability them as $n \rightarrow \infty$, $P(X_n - X < \epsilon)$ 4.0 1.00 88 If a sequence of random variables is convergent in probability them as $n \rightarrow \infty$, $P(X_n - X < \epsilon)$ 4.0 1.00 $A1$ 1 $A2$ 0 $A1$ 1 $A2$ 0 $A3$ ∞ $A4$ $-\infty$ Objective Question $A4$ $-\infty$ 1.00 $A1$ $B3$ $B3$ Ahypothesis is rejected at the level of significance $a = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. $A1$ $p = 5\%$ $A1$ $p = 5\%$ $A2$ $p < 5\%$ $A2$ $p < 5\%$ $A3$ $p > 5\%$ $A3$ $p > 5\%$ $A1$ $p > 5\%$ $A2$ $p < 5\%$ $A3$ $p > 5\%$ $A1$ $A1$ hx hx hx hx $A1$ hx hx hx $A3$ hx $A3$ hx $A3$ hx hx hx $A4$ hx </td <td></td> <td></td> <td>A3 : unbiased but not consistent</td> <td></td> <td></td>			A3 : unbiased but not consistent		
Objective Question If a sequence of random variables is convergent in probability then as $n \to \infty$, $P(X_n - X < \epsilon)$ 4.0 1.00 88 88 If a sequence of random variables is convergent in probability then as $n \to \infty$, $P(X_n - X < \epsilon)$ 4.0 1.00 A1 1 A2 0 A3 ∞ Objective Question 89 89 A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. 81 82 82 82 83 83 83 84 1 <			A4 biased and not consistent		
88 88 If a sequence of random variables is convergent in probability then as $n \to \infty$, $P(X_n - X < \epsilon)$ 40 1.00 A1 1 Objective Question 89 89 A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. 1.00 A1 $\rho = 5\%$ 89 89 A hypothesis is rejected at the level of the test. A1 $\rho = 5\%$ 89 89 A hypothesis is rejected at the level of the test. A1 $\rho = 5\%$ 89 89 A hypothesis is rejected at the level of the test. 1.00 81	Objec	tive Ouestion			
Objective Question4.18989Ahypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test.A.1 $p = 5\%$ A.2 $p < 5\%$ A.3 $p > 5\%$ A.4 A any one of the three can be true	88	88	If a sequence of random variables is convergent in probability then as $n \to \infty$, $P(X_n - X < \epsilon)$ tends to	4.0	1.00
A1 $p = 5\%$ A1 $p = 5\%$ A0 $h = 1$ A0 			A1 1 :		
A3 \therefore ∞ $A4 - \infty$ a Objective QuestionA4 \therefore $-\infty$ 8989A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. 4.0 1.00 8989 $A hypothesis is rejected at the level of significance \alpha = 5\% by a test. Then which one of thefollowing statements is true regarding the p-value of the test.4.01.00A hypothesisA^{2} p < 5\%A^{2} p < 5\%A^{2} p < 5\%A^{3} p > 5\%A^{4} Any one of the three can be trueA^{4} Any one of the three can be trueA^{4}$			A2 0		
A4 $-\infty$ Objective Question A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. 4.0 1.00 89 89 A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. 4.0 1.00 A1 $p = 5\%$ A1 $p = 5\%$ A2 $p < 5\%$ A3 $p > 5\%$ A4 Any one of the three can be true A4 Any one of the three can be true A4 Any one of the three can be true A4 Any one of the three can be true A4 Any one of the three can be true A4 Any one of the three can be true A4 Any one of the three can be true A4 Any one of the three can be true A4 A4 Any one of the three can be true A4 Any one of the three can be true A4 Any one of the three can be true A4 A4 Any one of the three can be true A4			A3 ∞ :		
Objective Question 89 89 A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. 4.0 1.00 A1 $p = 5\%$ A1 $p = 5\%$ 4.0 1.00 A2 $p < 5\%$ A3 $p > 5\%$ 4.0 1.00 A4 Any one of the three can be true A1 $p = 5\%$ 1.00			A4 - ∞ :		
89 89 A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test. 4.0 1.00 A1 $p = 5\%$ A^{2} $p < 5\%$ A^{2} $p < 5\%$ A^{3} $p > 5\%$ A^{4} Any one of the three can be true A^{4} Any one of the three can be true	Ohiaa	tive Question			
$\begin{array}{c} A1 \\ \vdots \\ p = 5\% \\ A2 \\ \vdots \\ p < 5\% \\ A3 \\ \vdots \\ p > 5\% \\ A4 \\ \vdots \\ Any one of the three can be true \end{array}$	89	89	A hypothesis is rejected at the level of significance $\alpha = 5\%$ by a test. Then which one of the following statements is true regarding the p-value of the test.	4.0	1.00
$ \begin{array}{c} A2 \\ \vdots \\ p < 5\% \\ A3 \\ \vdots \\ p > 5\% \\ A4 \\ \vdots \\ Any one of the three can be true \end{array} $			$\begin{array}{c} A1\\ \vdots \\ p=5\% \end{array}$		
$ \begin{array}{l} \text{A3} \\ \text{:} \\ \text{P} > 5\% \\ \text{A4} \\ \text{:} \\ \text{Any one of the three can be true} \end{array} $			A2 = p < 5%		
A4 Any one of the three can be true			A3 = p > 5%		
			A4 Any one of the three can be true		

Objec	tive Question			
90	90	If Type-I and Type-II errors are kept fixed, then the power of the test increases,	4.0	1.00
		A1 if there is an increase of sample size		
		A2 if sample size remains unchanged		
		A3 if there is a decrease of sample size		
		A4 if the test is unbiased		
Objec	tive Ouestion			
91	91	Let ${}_{n}D_{x}$ be the number of deaths in the age group (x, x+n) and ${}_{n}P_{x}$ be the total population of the age group x to x+n, then the age specific death rate for the age group x to x+n (${}_{n}m_{x}$) is given by	4.0	1.00
		$\stackrel{A1}{:} \frac{{}_{n} D_{x}}{{}_{n} P_{x}} X1000$		
		$\stackrel{A2}{:} \frac{{}_{n} P_{x}}{{}_{n} D_{x}} X1000$		
		$\stackrel{A3}{:} \frac{{}_{n}P_{x}}{{}_{n}D_{x}}X100$		
		$\stackrel{A4}{:} \frac{{}_{n}D_{x}}{{}_{n}P_{x}} X100$		
Objec	tive Question			
92	92	In R program, list is an object that contains	4.0	1.00
		A1 : only numeric vectors		
		A2 only matrices		
		A3 only logical vectors		
		A4 : either numeric vectors or matrices or logical vectors		
Ohior	tive Question			
93	93	What will be the output if the following source code is run in R program? mean (c(10, 5, 15, NA, 6, NA))	4.0	1.00
		A1 9 :		
		A2 NA :		

A3 : 6

		A4 0		
Object	ive Question			
94	94	In the context of cluster validity measures, which among the following is true for F-measure?	4.0	1.00
		A1 : it is the arithmetic mean of precision and recall		
		A2 it is the geometric mean of precision and recall		
		A3 it is the harmonic mean of precision and recall		
		A4 it is product of precision and recall		
Object	ive Question			
95	95	Single linkage method in agglomerative clustering makes use of	4.0	1.00
		A1 the average distance among pairs of objects between two clusters		
		A2 the Minimum distance among pairs of objects between two clusters		
		A3 : the Maximum distance among pairs of objects between two clusters		
		A4 the Distance between two cluster centers		
Object	ive Question			
96	96	In which phase of a clinical trial, Maximum Tolerance Dose is achieved?	4.0	1.00
		Al Phase I		
		A2 Phase I and III		
		A3 Phase III		
		A4 Phase II :		
Object	ive Ouestion			
97	97	In parallel line assay, the intercept is	4.0	1.00

 $\stackrel{A1}{:} \beta + \log \rho$

		$\begin{array}{c} A2 \alpha + \beta \log \rho \\ \vdots \end{array}$		
		$A_{1}^{A_{3}} \alpha + \beta \rho$		
		A4 βlogρ		
Object	tive Question			
98	98	In which of the following design samples are collected over time	4.0	1.00

		A2 : Fixed sample design		
		A3 Sequential design		
		A4 Cross over design		
Objec	tive Question			
99	99	Unique feature is that model includes people who do not have the event-incomplete data on survival time	4.0	1.00
		A1 : Censoring		
		A2 Symmetry		

	A3 : Truncation	
	A4 : Uncensoring	

A1 : Simple randomized design

100	The probability density function of X is $f(x) = \begin{cases} \frac{1}{4}, x < 2\\ 0 \text{ otherwise} \end{cases}$ then P(2X +3 > 5) is equal to	4.0	1.00
	A1 1/3		
	A2 1/2		
	A3 1/7		
	A4 : 1/4		
L	00	The probability density function of X is $f(x) = \begin{cases} \frac{1}{4}, x < 2\\ 0 \text{ otherwise} \end{cases}$ then P(2X + 3 > 5) is equal to A1 1/3 A2 1/2 A3 1/7 A4 1/4	00 The probability density function of X is $f(x) = \begin{cases} \frac{1}{4}, x < 2\\ 0 \text{ otherwise} \end{cases}$ then P(2X +3 > 5) is equal to A1 1/3 A2 1/2 A3 1/7 A4 1/4 $\frac{A4}{1}$ 1/4