ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (ZOOGEOGRAPHY)

COURSE CODE: 133

Register Number:		
		Signature of the Invigilator (with date)

COURSE CODE: 133

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	How	many Zoogeog	raphica	l regions are t	here in	this world?		
	(A)			9	(C)			12
2.	Whic	h Zoogeograph	ic regio	on is called as	living n	nuseum?		
	(A)	Palaeartic	(B)	Ethiopian	(C)	Oriental	(D)	Australian
	****	<i>a</i>			0			
3.		first divided th				T :	(D)	Danwin
	(A)	Sclater	(B)	Wallace	(C)	Linnaeus	(D)	Darwin
4.	Repr	oductive isolat	ion in s	sympatric spec	iation d	levelops wit	ha	
	(A)	Geographic ba			(B)	Barrier to		
	(C)	Change in chi	romoso	me	(D)	Barrier to	mating	
5.	Sym	patric speciation	on occu	rs most comm	only in			
	(A)	Mammals	(B)	Plants	(C)	Birds	(D)	Fishes
	D	2.11		1.1		1		lationa in th
6.	-	ılation with ov s of overlap	erlappi	ng geographic	ranges	are known	aspo	pulations in th
	(A)	Sympatric			(B)	Allopatric		
	(C)	Parapatric			(D)	None of th		
7.	Hard	dy-Weinberg la	aw is as	sociated with				
	(A)	Plant disease)		(B)	Eugenics		
	(C)	Population ge	enetics		(D)	Embryolo	gy	
	m		C					11-14
8.		total collection	1 of gen	es, at any one	(B)	Demotype		ned the
	(A) (C)	Genotype Multiple alle	lie grou	ın	(D)	1,500		
	(0)	wutupie ane	IIC GIOC	·P	(1)	dene poo	•	
9.	Ribo	zyme is						
	(A)	RNA with ex	tra pho	sphate	(B)	RNA with	nout phosp	nate
	(C)	RNA without	t sugar		(D)	RNA with	n enzyme a	ctivity
10.		ymes with diff	erent n	nolecular confi				tion are called
	(A)	Isoenzymes			(B)			
	(C)	Co-enzymes			(D)	inducible	enzymes	
11.	Whi	ich of the follo	wing ca	uses water no	llution?			
	(A)	2,4-D and pe			(B)			
	(C)	Automobile			(D)		е	
	-							

12.	The	biological amplification of pollutant n	neans							
	(A) The accumulation of pollutants in top carnivores through food chain									
	(B)	The increase in the potentiality of th	_							
	(C)	The increase in the population of top								
	(D)									
13.	DD	T causes egg shell thinning in birds be	ecause	it inhabits:						
	(A)	Magnesium ATPase	(B)	Calcium ATPase						
	(C)	Carbonic anhydrase	(D)	Calmodulin						
14.		ution caused by persistent pesticides	is rela	tively more dangerous to which type of						
	(A)	Herbivores	(B)	Producers						
	(C)	Top-carnivores	(D)	First level carnivores						
15.	Min	amata disease is a pollution related d	lisease	which results from:						
	(A)	Oil spill into sea								
	(B)	Release of human organic waste int	o drinl	king water						
	(C)	Accumulation of arsenic into atmos	phere							
	(D)	Release of industrial waste of merce	ary int	o fishing water						
16.	Rele	ease of phosphates and nitrates in wa	ter boo	lies likes lakes lead to:						
	(A)	Increased growth of decomposers	(B)	Nutrient enrichment						
	(C)	Reduced algal growth	(D)	None of these						
17.	Eut	Eutrophication refers to:								
	(A)	High production in an aquatic ecosy	stem							
	(B)	Low production in a terrestrial ecos	ystem							
	(C)	Stable production in a terrestrial ed	osyste	m						
	(D)	Low production in an aquatic ecosy	stem							
18.	Cor	mplete eutrophication of a lake render	s it:							
	(A)	Nutrient rich and productive								
	(B)	Nutrient poor and unproductive								
	(C)	Nutrient rich and unproductive								
	(D)	Nutrient poor and productive								
19.	ВО	D of a river water is found very high.	This n	neans water;						
	(A)	is clean	(B)	is highly polluted						
	(C)	contain algae	(D)	contain many dissolved minerals						

20.	Ther	mal pollution of water bodies due to:		
	(A)	Discharge of waste from mining		
	(B)	Discharge of agricultural run-off		
	(C)	Discharge of chemicals from industri	es	
	(D)	Discharge of heat (hot water) from po	ower p	plants
21.	Soun	nds above what level are considered ha	azardo	ous noise pollution?
	(A)	Above 30 db	(B)	Above 80 db
	(C)	Above 120 db	(D)	Above 100 db
22.	The	most outstanding danger at present fo	or sur	vival of living beings on earth is:
	(A)	Glaciation	(B)	Deforestation
	(C)	Radiation hazards	(D)	Desertification
23.	The	term 'Nuclear winter' is associated wi	th	
	(A)	Nuclear war	(B)	Nuclear disarmament
	(C)	Nuclear weapon testing	(D)	Aftermath of a nuclear holocaust
24.	Whi	ch of the following chemicals causes b	one ca	ancer and degeneration of tissues?
	(A)	Iodine-131 (B) Calcium-40		Iodine-127 (D) Strontium-90
25.	Biol	ogical control of agricultural pests, un	like t	he chemical control is
	(A)	Toxic		Very expensive
	(C)	Polluting	(D)	Self perpetuating
26.	Opa	rin's Theory is based on		
	(A)	Artificial synthesis	(B)	Spontaneous generation
	(C)	God's will	(D)	All of the above
27.	Whi	ich one of the following is the outcome	of ev	olutionary process?
	(A)	Over production		***
	(B)	Struggle for existence		
	(C)		vironn	nent
	(D)	None of the above		
28.	Wh	ich of the following is considered as ev	olutio	onary force?
	(A)	Inheritance of acquired characters	(B)	Speciation
	(C)	Mutation	(D)	Natural selection
29.	Nat	tural selection means		
	(A)	Better adaptability	(B)	Elimination of less adaptation
	(C)	Better survival	(D)	All of the above
133	3	4		

30.	The	most important requirement of evolut	ion is	
	(A)	Adaptation	(B)	Mutation
	(C)	Sexual reproduction	(D)	Development abnormality
31.	Whi	ch of the following was the contribution	n of H	Iugo de Vries?
	(A)	Theory of mutation		
	(B)	Theory of natural selection		
	(C)	Law of dominance		
	(D)	Theory of inheritance of acquired cha	aracte	rs
32.		ch law of evolution states that warm abundant melanin pigment?	-blood	ed mammals of hot and humid areas
	(A)	Dollo's Law (B) Gloger's Law	(C)	Cope's Law (D) Gause's Law
33.	Phe	nomenon of 'industrial melanism' dem	onstr	ate
	(A)	Natural selection	(B)	Induced mutation
	(C)	Geographical isolation	(D)	Reproductive isolation -
34.		pond ecosystem, the shape of pyramic	d num	
	(A)	Upright (B) Inverted	(C)	Linear (D) Irregular
35.	The	pyramid of energy is always:		
	(A)	Inverted	(B)	Upright
	(C)	Both upright and inverted	(D)	Inverted of forest ecosystem
36.	In e	cological pyramid of numbers from ba	se to a	apex, the number of carnivores:
	(A)	increases	(B)	decreases
	(C)	remains static	(D)	none of the above
37.		number of individuals of a species ains constant due to:	in a	particular ecosystem at a given time
	(A)	Available food (B) Predators	(C)	Parasites (D) Man
38.		rate at which the light energy is ecules is the ecosystem's:	conve	erted into chemical energy of organic
	(A)	Net primary productivity	(B)	Gross primary productivity
	(C)	Net secondary productivity	(D)	Gross secondary productivity
39.	Loti	ic ecosystem refers to		
	(A)	Static water ecosystem	(B)	Ecosystem of estuaries
	(C)	Deep marine water systems	(D)	

40.	Whic	ch ecosystem doesn't	show variation	depe	nding upon geog	graphi	c location and
	(A)	Marine ecosystem		(B)	Fresh water eco	systen	n
	(C)	Desert ecosystem		(D)	Tropical ecosyst	em	
41.	The	term ecosystem was c	oined by				
	(A)	Odum (B)	Reiter	(C)	Ernst Haeckel	(D)	Tansley
42.	Ecos	ystem consists of					
	(A)	A population					
	(B)	A population and its	non-living envir	onme	nt		
	(C)	A biotic community					
	(D)	Temperature				.00	
43.	Whi	ch one is not a factor o	of the abiotic env	vironm	ent?		
	(A)	Sunlight (B)	Decomposers	(C)	Water	(D)	Temperature
44.	Keys	stone species in an eco	system are thos	e			
	(A)	Present in maximum	number				
	(B)	Contributing to ecos	ystem properties	3			
	(C)	That are most freque	ent				
	(D)	Attaining large biom	nass				
45.	A fu	nctional aspect of an	ecosystem is				
	(A)	Producers, consume	rs and abiotic en	viron	ment		
	(B)	Regulation of popula	ation				
	(C)	Light, temperature,	oxygen and carb	ondi-	oxide		
	(D)	Both (A) and (C)					
46.	Biot	ic components of an e	cosystem consis	ts of			
	(A)	Producers		(B)	Consumers		
	(C)	Decomposers		(D)	All of the above	9	
47.	Driv	ving force of ecosysten	n is				
	(A)	Solar energy		(B)	Biomass		
	(C)	Producers		(D)	Carbohydrate	in plai	nts
48.	The	number of primary p	roducers within	a spec	cified area would	be ma	aximum in
	(A)	Desert		(B)	Forest ecosyste		
	(C)	Grassland ecosyster	m	(D)			

49.	Max	timum number in pond ecosystem is of	f	
	(A)	Producers	(B)	Consumers
	(C)	Top consumers	(D)	Decomposers
50.		re completely remove the decompose ersely affected because	ers fro	om an ecosystem functioning will be
	(A)	Energy flow will be blocked		
	(B)	Rate of decomposition of other composition	onents	s will be very high
	(C)	Herbivore will not receive solar ener	gy	
	(D)	Mineral movement will be blocked		
51.	Food	d levels in an ecosystem are called		
	(A)	Trophic levels	(B)	Consumer levels
	(C)	Producer levels	(D)	Herbivore levels
52.	The	ultimate trophic level of any food cha	in is n	nade of
	(A)	Animals	(B)	Tertiary consumers
	(C)	Top carnivore	(D)	Decomposers
53.	In a	food chain, animal constitute the		
	(A)	First trophic level	(B)	Second trophic level
	(C)	Last trophic level	(D)	None of the above
54.	Sec	ond order consumers are		
	(A)	All heterotrophs		
	(B)	Animals feeding on plants		
	(C)	Animals preying over herbivorous a	nimal	S
	(D)	Larger animals		
55.	Inte	erlocking of food chains results in:		
	(A)	Ecological pyramids	(B)	
	(C)	Food lock	(D)	Food web
56.		he rate of addition of new species inc same population, then the graph obta		s with respect to the individual loss of
				Zero population growth
	(A) (C)	Declined growth Exponential growth	(D)	
	(0)	Exponential growth	(1)	none of these
57.	Wh	en population reaches carrying capaci	ity:	
	(A)	Mortality rate = Birth rate	(B)	Mortality rate > Birth rate
	(C)	Mortality rate < Birth rate	(D)	None of the above

58.	Agro	oup of individ	uals of t	he same age	within a p	opulation is	called:	
	(A)	Clone	(B)	Cohort	(C)	Cline	(D) (Community
59.	Popu	lation which	show gr	adual trends	within zo	nes of ecolog	gical variation	ns are called
	(A)	Ecoclines			(B)	Clines		
	(C)	Clones			(D)	None of the	above	
60.	A po	pulation is a	group of					
	(A)	Species in a	commur	nity	(B)	Communiti	es in an eco	system
	(C)	Individuals	in a spec	cies	(D)	Individuals	in a family	
61.	Popt	ılation densit	y is the					
	_	Number of s	3.0	er communit	у			
	(B)			als per comm				
	(C)			als per specie				
	(D)			als per specie		area or vol	ume	
62.	Pop	ulation disper	rsion is t	he				
	(A)	Spatial dist	ribution	of individual	ls			
	(B)	Movement a	away fro	m a natal sit	е			
	(C)	Movement	from one	fixed point t	o another	and back as	gain	
	(D)	Mixing of to	vo popul	ation				
63.	Exp	onential grov	vth occur	r when there	is			
	(A)	Asexual rep	roductio	on only	(B)	Sexual rep	roduction o	nly
	(C)	A fixed carr	ying cap	pacity	(D)	No inhibit	ion from cro	wding
64.	Log	istic growth o	occurs w	hen there is				
	(A)	Asexual rep	roductio	on only	(B)	No inhibit	ion from cro	wding
	(C)	A fixed car	rying cap	pacity	(D)	None of th	e above	
65.	The	carrying cap	acity of	a population	is determ	ined by its		
	(A)	Population	growth:	rate	(B)	Birth rate		
	(C)	Limiting re	esource		(D)	Death rat	е	
66.	Org	ganisms with	very hig	h intrinsic g	rowth rate	es have		
- 01	(A)	Short gene					eration time	
	(C)				(D)		hip behavio	

67.	Intr	aspecific competition is competition among
	(A)	Species
	(B)	Individuals of a population
	(C)	Populations and their regulatory factors
	(D)	Individuals of a community
68.	Intr	aspecific competition is strongest when the
	(A)	Species overlap in their distribution
	(B)	Populations overlap in their ranges
	(C)	Population is at its carrying capacity
	(D)	Reproductive rate is at its maximum
69.	In s	some animal population, crowding cause some individuals to emigrate. Such
	emi	grants usually
	(A)	Establish new population elsewhere (B) Successfully join other populations
	(C)	Return to their place of birth (D) Die
70.		age-structure of a populations is its
	(A)	Relative number of individuals at each age
	(B)	Number of newborns each year
	(C)	Relative number of death at each age
	(D)	Number of young reaching puberty each year
220	· 0a - 10	
71.		logy is found between
	(A)	Hands of man and forelimbs of horse
	(B)	Hand of man and flippers of whale
	(C)	Wings of bat and butterfly
	(D)	Wings of bird and bat
=0	****	
72.		ch set includes vestigial structures of man?
	(A)	Wisdom tooth, vermiform appendages, coccyx, nail
	(B)	Coccyx, wisdom tooth, vermiform appendix, auricular muscles
	(C)	Vermiform appendix, coccyx, wisdom tooth, pancreas
	(D)	Auricular muscles, nail, wisdom tooth, coccyx
72	A+	
73.		vism in man means
	(A)	Appearance of ancestral characters

(B)

(C)

Appearance of new characters

(D) Evolution of existing characters

Loss of some pre-existing characters

74.	Whic	ch of the following is an example of	atavism	1?	
	(A)	Hairs on the head of man	(B)	Feathers on birds	
	(C)	Tail in some babies	(D)	Scales on fishes	
75.	The	presence of gill slits in the embryos	s of all ve	ertebrates supports the theory of	
	(A)	Metamorphosis	(B)	Organic evolution	
	(C)	Biogenesis	(D)	Recapitulation	
76.	Biog	genetic law was postulated by			
	(A)	T.H. Morgan (B) Darwin	(C)	Haeckel (D) Wallace	
77.		ch of the following characters pro ution?	vides a	strong evidence in support of organ	ic
	(A)	Wings in insects, birds and bats			
	(B)	Jointed legs in arthropods and in	mamma	ıls	
	(C)	Gill clefts in vertebrate embryo			
	(D)	Excretory organs of earthworm a	nd frog		
78.	Who	propounded the theory of aquatic	or marin	ne origin of life?	
	(A)	Thales	(B)	Erasmus Darwin	
	(C)	Spallanzani	(D)	Aristotle	
79.	The	presence of vestigial organs in ma	n suppor	rts	
	(A)	Synthetic theory			
	(B)	Natural selection theory			
	(C)	Germplasm theory			
	(D)	The theory of evolution, but no characters	t Lamar	ck's theory of inheritance of acquir	ed
80.	The	tradition of boring ears and nostri	ls in Ind	lian women	
	(A)	Supports Lamarckism			
	(B)	Disproves Lamarckism		/	
	(C)	Neither supports nor disproves L	amarcki	ism	
	(D)	None of the above			
81.	Wh	ich one does not favour Lamarckia	n concep	t of inheritance of acquired character	s?
	(A)	Presence of webbed toes in aquat	ic birds		
	(B)	Absence of limbs in snakes			
	(C)	Melanisation of peppered moth i	ndustria	l areas	
	(D)	Lack of pigment in cave dwellers			

82.	One	of the several objections to natu	ıral selecti	on t	theory of Darwin is	
	(A)	Struggle for existence				
	(B)	Continuity of germplasm				
	(C)	Inheritance of acquired charac	ters			
	(D)	Many animals posses chara positively harmful	cteristics	wi	thout utility and	those that are
83.	Who	provided experimental evidence	age for 'col	ooti	on' in hactoria usin	a renlica platina
00.	tech	nique?				
	(A)	Zinderberg (B) Louis P	asteur (C))	Lister (D) Lederberg
84.	Mod	lern synthetic theory of evolutio	n was desi	gna	ated by	
	(A)			7) Darwin
85.	Port	formance theory' of evolution st	ates that			
00.	(A)	All living forms have originate		an	water	
	(B)	All living beings have arisen f				
	(C)	Living things were animated l			and franco	
	(D)	Ova contains miniatures of th			formed state	
	(D)	Ova combanio ininiavares or sir	c addit in j	0.0		
86.	Orga	anic evolution was defined as				
	(A)	Formation of complex animals	3			
	(B)	Evolution of land and its orga	nisms			
	(C)	Formation of existing anima change over a period of time	als and pl	ant	ts from simpler on	es by a gradual
	(D)	All of the above				
87.	The	strongest support of organic ev	olution cor	nes	from the study of	
	(A)	Fossils	(B	3)	Comparative anator	my
	(C)	Embryology	(I))	Taxonomy	
88.	The	early believe of spontaneous or	igin of life	wa	s disproved by	
	(A)	Charles Darwin	(E	3)	Louis Pasteur	
	(C)	Koch	(I))	Lederberg	
89.	The	theory of spontaneous generat	ion was giv	en	by	
	(A)	Redi (B) Pasteu	r (C	(2)	Spallanzani (I	O) Van Helmont
00	4421	0.1		. 7		0
90.		o was one of the greatest advoca				on!
	(A)	Huxley		3)	Charles Darwin	
	(C)	Aristotle	(1))	Father Saurez	

91.	Abou	it how long ago was the earth formed?		
	(A)	20 million years ago	(B)	10 million years ago
	(C)	5 million years ago	(D)	3 million years ago
92.	"Evo	lution: A modern synthesis" is the title	e of a	book written by:
	(A)	Thomas Huxley	(B)	Aldous Huxley
	(C)	J.B.S. Haldane	(D)	Julian Huxley
93.	Lam	arck's argument in support of Theory	of Eve	olution was centred around:
	(A)	Use and disuse of organs	(B)	Survival of the fittest
	(C)	Continuous variations	(D)	All of the above
94.	Cha	rles Darwin knew of mutations. He ca	lled tl	nem
	(A)	Continuous variations	(B)	Discontinuous variation
	(C)	Sports	(D)	None of the above
95.	The	author of the classical work "The orig	in of l	ife on earth" is
	(A)	Darwin (B) Fox	(C)	Oparin (D) Urey
96.	Acco	ording to Lamarck the presence of vest	igial	organs in animals was due to
	(A)	Change of habitat	(B)	Environmental reaction
	(C)	Continuous disuse	(D)	Inheritance of acquired characte
97.	The	law which states that "Ontogeny repe	ats pl	hylogeny" is known as
		Law of heredity		Biogenetic law
	(C)	Theory of natural selection	(D)	Mutation theory
98.	For	mation of large molecules from small 1	nucleo	oproteins is termed as
	(A)	Coacervation	(B)	Polymerization
	(C)	Aggregation	(D)	All of these
99.	Dar	win's theory is also known as		
	(A)	Germinal - selection theory	(B)	Pangenesis theory
	(C)	Special creation theory	(D)	
100	The	first geological time scale was develo	ped by	y
	(A)		(B)	Charles Lapworth
	(0)	Adam Sadawick	(D)	Giovanni Avduina