Module Name : PhD Zoology-E

Exam Date: 19-Sep-2020 Batch: 12:30-14:30

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
Objec	tive Question			
1	1	Small charged molecules, often biogenic amines function as	4.0	1.00
		A1 Hormones		
		A2 Neurotransmitters		
		A3 Both hormones and neurotransmitters		
		A4 None of these		
Objec	tive Question			
2	2	In paracrine signaling, the signaling molecules affects only	4.0	1.00
		A1 target cells close to the cell from which it was secreted:		
		A2 target cells distant from its site of synthesis in cells of an endocrine organ		
		A3 Both target cells close to the cell from which it was secreted and target cells distant from its site of synthesis in cells of : an endocrine organ		
		A4 None of these		
Obiec	tive Question			
3	3	Which of the following is true about a hydrophilic signaling molecule?	4.0	1.00
		A1 Its receptor is located in the cytosol of the target cell		
		A2 It might trigger a signal cascade that causes some effect in a cell		
		A3 Since it can enter the cell, it directly affects some specific cell process		
		A4 It is a steroid		
01.				
Objec 4	tive Question	cAMP and cGMP are derived from	4.0	1.00
		CAIVII and COIVII are derived noin		
		A1 ATP and GTP by the actions of adenylate cyclase and guanylate cyclase respectively		

		A2 GTP and ATP by the actions of adenylate cyclase and guanylate cyclase respectively:		
		A3 ATP and GTP by the actions of guanylate cyclase and adenylate cyclase respectively:		
		A4 None of these		
Ohiec	ctive Question			
5	5	In terms of cell communication, what do bacterial pathogens such as cholera and anthrax have in common?	4.0	1.00
		A1 They destroy the receptors for key signaling molecules		
		A2 They prevent the production of key signaling molecules		
		A3 They alter the chemical structure of key signaling molecules:		
		A4 They block the normal functioning of signal transduction mechanisms:		
Objec	ctive Question			
6	6	The enzyme that catalyzes the splitting of PIP2 into two molecules of inositol triphosphate (IP3) and diacylglycerol in cell signaling, is	4.0	1.00
		A1 Phosphokinase C		
		A2 Phospholipase C		
		A3 Phosphodiesterase C		
		A4 Lipokinase		
Objec	ctive Question		<u></u>	
7	7	What is the name of the protein signaling molecule that alters glucose uptake, and where would its receptors be located?	4.0	1.00
		A1 Insulin; many different cell types that use glucose for fuel:		
		A2 Insulin; beta cells of the pancreas		
		A3 PDGF; the blood		
		A4 NGF; the nerves involved in simple reflexes		
Objec	ctive Question			
	MYC Quebilen	Which of the following statement is correct?		1.00

		A1 Cell communicate with one another in multicellular organisms using extracellular signaling molecules or hormones :		
		A2 Cell communicate with one another in unicellular organisms using extracellular signaling antigen and antibody		
		A3 Cell communicate with one another in multicellular organisms using intracellular signaling molecules only		
		A4 Cell communicate with one another in unicellular organisms using intracellular signaling antigen and antibody		
Ohioo	ctive Question			
9	9	Embryonic stem cells of mammals are derived from	4.0	1.00
		A1 Trophoectoderm:		
		A2 Inner cell mass		
		A3 Gametes		
		A4 Blastocoel		
	tive Question			
10	10	In case of turtles, the temperature at which the eggs are exposed during development is the deciding factor in sex determination. This is because of the temperature sensitivity of	4.0	1.00
		Al Estrogen		
		A2 Testosterone		
		A3 Aromatase enzyme		
		A4 Progesterone		
	ctive Question			
11	11	The ability of cells, to achieve their respective fate by themselves without the influence of neighboring cells is called as	4.0	1.00
		A1 Autonomous specification		
		A2 Conditional specification		
		A3 Syncytial specification:		
		A4 Non-conditional specification		

2 12	on The state of th	4.0	1.00
2 12	The blastomeres of a two-celled embryo are separated and allowed to develop independently. Each blastomere gives rise to the young one. This type of development pattern suggests that potential of development is	4.0	1.00
	A1 Greater than fate		
	A2 less than fate		
	A3 Equal to its fate:		
	A4 Independent of fate		
Objective Questi	on		
3 13	Blastomeres derived from early stages of cleavage divisions of frog embryo, when separated, can give rise to viable tadpoles. The blastomeres derived from late cleavage stages, however, fail to develop into normal tadpoles when separated from each other. Which is the most correct statement that explains the phenomenon?	4.0	1.00
	A1 Each early blastomere carries the entire genetic information for the development of a tadpole.		
	A2 Each early blastomere carries the entire cytoplasmic information for the development of a tadpole.		
	A3 Early blastomeres are mirror images of each other.		
	A4 None of these		
Objective Questi	on		
4 14	The secondary tissue is added by the	4.0	1.00
	A1 Intercalary meristem		
	A2 Vascular cambium		
	A3 Apical meristems		
	A4 Both Vascular cambium and Intercalary meristem		
Objective Questi	on		
5 15	If one parent has type A blood and the other parent has type B blood, what blood type will the offspring denoted by the white square and circle have?	4.0	1.00
	A1 Type A.		
	A2 Type B.		

		A4 Type O.		
Ohioa	tive Question			
16	16	The four cells produced in meiosis will have a:	4.0	1.00
		A1 2n number of chromosomes and will differ genetically from each other.		
		A2 2n number of chromosomes and will be genetically identical to each other.		
		A3 n number of chromosomes and will be genetically identical to each other.		
		A4 n number of chromosomes and will differ genetically from each other.		
Objec	tive Question			
17	17	Mitosis involves separation of only sister chromatids while meiosis involves?	4.0	1.00
		A1 Also separation of only sister chromatids.		
		A2 Separation of only homologous chromosomes.		
		A3 Separation of homologous chromosomes as well as sister chromatids.		
		A4 Separation of sister chromatids twice.		
Objec	tive Question	_!		
18	18	An example of alleles is:	4.0	1.00
		A1 AB and Tt.		
		A2 TT and Tt.		
		A3 T and t.		
		A4 X and Y.		
Objec	tive Question			
19	19	Which of the following gives information about the phenotype but not the genotype?	4.0	1.00
		A1 XHY.		
		A2 Hemophiliac man.		

	A3 Tall pea plant.		
	A4 Female carrier for colour-blindness.		
Objective Question			
20 20	An extra finger in humans is rare but is due to a dominant gene. When one parent is normal and the other parent has an extra finger but is heterozygous for the trait, what is the probability that the first child will be normal?	4.0	1.00
	A1 0%.		
	A2 _{25%} .		
	A3 50%.		
	A4 75%.		
Objective Question			
21 21	A strand of DNA with the sequence A A C T T G will have a complimentary strand with the following sequence:	4.0	1.00
	A1 CCAGGT		
	A2 AACTTG		
	A3 TTCAAG		
	A4 TTGAAC:		
Objective Question			
22 22	Long radishes crossed with round radishes result in all oval radishes. This type of inheritance is:	4.0	1.00
	A1 Multiple alleles.		
	A2 Complete dominance.		
	A3 Co-dominance.		
	A4 Incomplete dominance.		
Objective Question			
23 23	A pedigree chart shows:	4.0	1.00
	A1 The genotypic ratios of the offspring.		

	A2 The types of gametes produced by the parents.		
	A3 The pattern of inheritance of a specific gene.		
	A4 Which genes is co-dominant.		
Objective (uestion		
24 24	The ability of cells, to achieve their respective fate by themselves without the influence of neighboring cells is called as	4.0	1.00
	A1 Autonomous specification		
	A2 Conditional specification		
	A3 Syncytial specification		
	A4 Non-conditional specification		
Objective (uestion		
25 25	Nitroglycerin has long been administered to human patients suffering from chronic chest pain (angina). This medication works because it	4.0	1.00
	A1 mimics the action of signal receptors		
	A2 is broken down into hormones that affect the heart		
	A3 interferes with chemical cascades that trigger contraction of heart muscle		
	A4 breaks down into nitric oxide, which increases blood flow to the heart:		
Objective (
26 26	A researcher developed quadruple mutant that disrupted the function of all phytochrome interacting factor (PIF) family members. The following hypotheses were proposed regarding the phenotype of the mutant plants when grown in dark:	4.0	1.00
	A. Plants would show short hypocotyls B. Plants would be etiolated C. Light induced genes would be activated D. The cotyledons would be open		
	Which one of the following combinations of the above hypotheses is correct?		
	A1 A,B and C		
	42		
	A2 A,B and D		

		A4 B, C and D		
	tive Question			14.00
27	27	Transgenic tobacco plants over expressing isopentenly transferase (IPT) under the control of promoter region of senescence-Associated Receptor kinase (PSARK) were exposed to drought for 15days followed by re-watering for 7 days. The following hypotheses were proposed regarding changes in the transgenic plants at the end of 7 days of re-watering:	4.0	1.00
		A. The plant would be wilted and fail to survive. B. The plant would be healthy and survive. C. The plant would show higher production of cytokinin compared to wild type plants. D. The plant would show higher production of absicic acid compared to wild type plants.		
		Which one of the following combinations of the above hypothesis is correct?		
		A1 A and C		
		A2 A and D		
		A3 B and C		
		A4 B and D		
Object	tive Question			
28	28	In terpene biosynthesis pathways, three acetyl- CoA are joined together stepwise to form mevalonic acid. Which one of the following three steps is required by mevalonic acid to form isopentenyl diphosphate or isopentenyl pyrophosphate (IPP)?	4.0	1.00
		Al Pyrophosphorylation, decarboxylation and dehydration.		
		A2 Alkylation, Pyrophosphorylation and decarboxylation.		
		A3 Methylation, dehydration and alkylation.		
		A4 Pyrophosphorylation, carboxylation and methylation.		
Object	tive Question			
29	29	Following segments are related to oxidative phosphorylation:	4.0	1.00
		A) Redox reactions of electron transport chain coupled with ATP synthesis are collectively called oxidative phosphorylation B) Three major process:: Glycolysis, oxidative pentose phosphate pathway and citric acid cycle are related to oxidative phosphorylation. C) Electron transport proteins are bound to outer of the two mitochondrial membranes. D) In the Electron transport chain electrons are transferred to oxygen from NADH.		
		Which one of the following combinations of above statements is correct?		
		A1 A and D		
		A2 B and C		
		A3 C and D		

		A4 A and C		
hica	tive Question			
0	30	Which one of the following plant hormones uses the two-component histidine kinase receptor system for signal transduction?	4.0	1.00
		A1 Auxin		
		A2 Gibberellin		
		A3 Cytokinin		
		A4 Abscisic acid:		
1	31	Ribulose bisphosphate carboxylase (Rubisco) catalyzes both carboxylation and oxygenation of ribulose-1,5-bisphosphate. The latter reaction initiates a physiological process known as "photorespiration". The following are certain statements on photorespiration: A) The active site on Rubisco for carboxylation and oxygenation are different. B) One of the steps in photorespiration is conversion of glycine to serine. C) 50% of carbon lost in chloroplast due to oxygenation is recovered through Photo-respiration. D) The pathway of Photo-respiration involves chloroplast, peroxisome and mitochondria. Which one of the following combinations of above statement is correct? A1 A and C A2 A and D A3 B and D A4 C and D A4 C and D	4.0	1.00
Objec 2	32	The photosynthetic assimilation of atmospheric CO2 by leaves yield sucrose and starch as end products of two gluconeogenic pathways that are physically separated. Which one of the following combination of cell organelles is involved in such physical separation of the process?	4.0	1.00
		Al Sucrose in cytosol and starch in mitochondria.		
		A2 Sucrose in chloroplast and starch in cytosol.		
		A3 Sucrose in mitochondria and starch in cytosol.		
		A4 Sucrose in cytosol and starch in chloroplasts.		

33 33	Phenylalanine, a precursor of most of the phenolics in higher plants is a product of which one of the following pathways?	4.0	1.00
	A1 Shikimic acid pathway		
	A2 : Malonic acid pathway		
	A3 Mevalonic acid pathway		
	A4 Methylerythritol pathway		
Objective Questio	n		
34 34	If the core body temperature of a human rises above normal, which of the following processes would be initiated sequentially for thermo-regulation?	4.0	1.00
	A1 Peripheral vasodilation, increased rate of respiration, tachycardia.		
	A2 Peripheral vascoconstriction, increased rate of respiration, bradycardia.		
	A3 Peripheral vasodilation, decreased rate of respiration, tachycardia.		
	A4 Peripheral vasodilation, decreased rate of respiration, bradycardia.		
Objective Questio	n		
35 35 35	Graves disease is associated with	4.0	1.00
	A1 Insufficiency of thyroid hormones		
	A2 Excess of thyroid hormones:		
	A3 Insufficiency of corticosteroids		
	A4 Excess of growth hormones		
Objective Questio	n		
36 36	Which of the following waves is likely to be absent in a normal frog ECG?	4.0	1.00
	Al P		
	A2 Q :		
	A3 T		

Objective Question			
37 37	In an animal experiment:	4.0	1.00
	P) Electrical stimulation of an area in the brain (A) Increased a function (F) which was prevented by systemic injection of adrenergic antagonistic, prazosin. Q) Injection of carbachol (cholinergic agonist) into A also increased function F which was however, not prevented by		
	systemic injection of adrenergic antagonistic, prazosin. The results are likely to be due to the stimulation of		
	A1 Non-adrenergic and cholinoceptive neurons.		
	A2 Cholinergic and Non-adrenoceptive neurons.		
	A3 : Adrenergic terminals in 'A'.		
	A4 Both neurons and fibres passing through 'A'		
Objective Question 38 38	Desert animals have longer loop of Henle compared to that of humans. It may be due to the following reasons:	4.0	1.00
	A. Long loop of Henle, the counter – current exchanger is more effective. B. In long loop of Henle, the counter-current exchanger is more effective. C. Long loop of Henle conserves more water. D. Long loop of Henle stimulates production of angiotensin II		
	Which of the above reason(s) is / are correct?		
	A1 A and B		
	A2 B and C		
	A3 C and D		
	A4 Only D		
Objective Question			
39 39	Open vascular system is usually found in	4.0	1.00
	A1 Crabs		
	A2 Monkeys		
	A3 Crows		
	A4 Humans		

40	40	Which of the following statement is true regarding the transport of CO ₂ in the body?	4.0	1.00
		A1 CO ₂ is completely transported through plasma :		
		A2 CO ₂ is completely transported by hemoglobin.		
		A3 Hemoglobin transport 99.5% of CO ₂		
		A4 Hemoglobin carries about 20-25% of CO ₂		
Object	tive Question			
41	41	Select the correct sequence of intermediates from the following biosynthetic pathway	4.0	1.00
		A1 Testosterone to estrogen to progesterone:		
		A2 Testosterone to progesterone to estradiol		
		A3 Estradiol to testosterone to progesterone:		
		A4 Progesterone to testosterone to estradiol		
Object	tive Question			
42	42	During physical exercise, the oxygen supply to the active muscles is increased, which has been explained by the following statements:	4.0	1.00
		P) PO2 declines and PCo2 rises in the active muscles. Q) The temperature is increased and pH is decreased in active muscles. R) 2,3-biphosphoglycerate is decreased in RBC and P50 rises. S) Metabolites accumulating in the active muscles increase the affinity of hemoglobin to oxygen.		
		Which one of the following is NOT correct?		
		Al Ponly:		
		A2 P and Q:		
		A3 Q and R		
		A4 R and S		
01.	···· • · · ·			
Object 43	tive Question 43	Which among the following is a diploblastic organism?	4.0	1.00
		A1 Hydra		

		A3 Squid:		
		A4 Earthworm		
Objec 44	ctive Question		4.0	1.00
1-1	111	Which of the following National parks has the highest density of tigers among protected areas in the A1 Manas	4.0	1.00
		A2 Jim Corbett		
		A3 Kaziranga		
		A4 Keoladeo Ghana		
Obje	ctive Question			
45	45	Which one of the following show complete metamorphosis in all three orders?	4.0	1.00
		A1 Coleopterans, Dipterans and Hymenopterans		
		A2 Coleopterans, Hymenopterans and Orthopterans		
		A3 Dipterans, Lepidopterans and Hymenopterans		
		A4 Hymenopterans, Lepidopterans and Orthopterans		
	ctive Question			
46	46	Cnidarians are	4.0	1.00
		A1 Triploblastic animals with bilateral symmetry		
		A2 Diploblastic animals with medusa as one of the basic body forms.		
		A3 Monoblastic organisms with tube feet		
		A4 Asymmetric organisms with tentacles containing poison glands.		
Objec	ctive Question			
47	47		4.0	1.00

		Match the following plant diseases with the name of pathogen associated with the disease		
		Disease Pathogen		
		A. Powdery muldew i. Erwinia amylovora		
		B. Rice blast ii Pseudomonassyringae pv. syringae		
		C. Bacterial canker iii Magnaporthe oryzae		
		D. Fire blight iv Erysiphe cicloracearum		
		$ \begin{array}{c} A1 \\ \vdots \\ A-ii, B-iii, C-i, D-iv \end{array} $		
		$ \stackrel{A2}{:} A-i, B-iv, C-ii, D-iii $		
		$ \stackrel{A3}{:} A - iv, B - iii, C - ii, D - i $		
		A4 A – iii, B – ii, C – iv, D - i		
bjec	tive Question	JI.		
8	48	Match the following taxa with genus of the microorganism Taxa Genus A. Ascomycota i. Rhizopus B. Basidiomycota ii Erysipine C. Zygomycota iii Pythium D. Oomycota iv Ustilago	4.0	1.00
		$\begin{bmatrix} A1 \\ \vdots \\ A-ii, B-iv, C-i, D-iii \end{bmatrix}$		
		$ \begin{array}{c} A2 \\ \vdots \\ A-ii, B-iii, C-i, D-iv \end{array} $		
		$\begin{bmatrix} A3 \\ \vdots \\ A-ii, B-iv, C-iii, D-i \end{bmatrix}$		
		$\begin{bmatrix} A4 \\ : \end{bmatrix} A - i, B - ii, C - iv, D - iii$		
bjec	tive Question			
9	49	The wings of birds and insects have the same function, but they do not have the same evolutionary wings are	origin. Bird and insect 4.0	1.00
		A1 Homologous :		
		A2 Phylogenetic		
		A3 Analogous		
		A4 Binomial		
bjec	tive Question			
	50	A new species is formed when	4.0	1.00

		A1 An individual with a new genotype is formed due to exchange of chromosome segments during crossing - over in gametogenesis		
		A2 Genotypic changes accumulate in a population resulting in its reproductive isolation		
		A3 Variants with new phenotypes are produced due to new combinations of genes during reproduction		
		A4 Homologous chromosome exchange segments during crossing over in gametogenesis.		
	tive Question		1.0	1.00
51	51	In the grassland ecosystem, trees do not replace the grasses as part of ecological succession because-	4.0	1.00
		A1 Insect and fungi		
		A2 Limited sunlight & nutrients		
		A3 Water limit & regular fire or overgrazing:		
		A4 Cool temperature		
01:				
52	tive Question 52	The evolution of numerous species in a short period of time from a single ancestral population, such as Darwin's finches, is called	4.0	1.00
		A1 Adaptive radiation :		
		A2 Sympatric speciation		
		A3 Gradualism		
		A4 Nondisjunction :		
Object 53	tive Question	Constitution and the constitution of the const	4.0	1.00
33		Genetic drift occur by	4.0	1.00
		A1 Chance		
		A2 Immigration		
		A3 Emigration :		
		A4 Mutation :		

4	Consider the following assumption	4.0	1.00
i :	i) All known living organism possess parasite ii) A single host species can harbour more than one type of parasite		
	From the above information it can be concluded that		
	A1 Species of host organism is more than parasites :		
	A2 Species of parasites is more than host organism:		
	A3 Number of parasite is equal to the number of host		
	A4 No valid conclusion can be drawm :		
e Question			
	The type of vegetation in climate having temperature range 5-20 °C and rainfall 150 – 300 cm will be	4.0	1.00
	A1 Temperate deciduous		
	A2 Temperate evergreen		
	A3 Taiga :		
	A4 Grasslands		
e Question			
	The accumulation of DDT has decreased the population of pelican ducks because DDT	4.0	1.00
	Al Killed all ducken		
	A2 Decreased availability of Ca for egg shells which leads into thin shelled fragile eggs		
	A3 Stoppede synthesis of eggs		
	A4 : Interfered Ca metabolism		
e Question			
	Hot spots are primarily designated on basis	4.0	1.00
	A1 Endemism		
	A2 Species diversity:		
	: Species diversity		

	A3 Area covered species :		
	A4 Flowering plant species		
Objective Question	on		
58 58	Temporary fluctuation in population size is due to	4.0	1.00
	A1 Migration		
	A2 Carrying capacity		
	A3 Bottle neck		
	A4 Interspecific competition		
Objective Question 59 59		4.0	1.00
39	Effective population size for completely monogamous species having 40 males and 10 females would be A1 :	4.0	1.00
	A2 32		
	A3 20 :		
	A4 10 :		
Objective Question 60 60	Which of the following statement is true regarding the transport of CO ₂ in the body?	4.0	1.00
	${ m Al}_{ m CO_2}$ is completely transported through plasma :		
	A2 CO ₂ is completely transported by hemoglobin.		
	A3 Hemoglobin transport 99.5% of CO ₂ :		
	$^{\rm A4}$ Hemoglobin carries about 20-25% of $\rm CO_2$:		
Objective Question 61 61	Which part of translational modification of proteins does not occur in lumen of ER	4.0	1.00
	Al Glycosylation		
	A2 Ubiquitnation		

	A3 Conformation folding and formation of quaternary structure.		
	A4 Formation of Disulphide bonds		
Objective Question	<u> </u>		
62	Human mitochondria.	4.0	1.00
	A1 are inherited as an X-linked trait		
	A2 are all inherited from the father:		
	A3 have linear DNA:		
	A4 none of these		
Objective Question			
63 63	Choose the pair of terms that correctly completes this sentence nucleotides are to as are to proteins.	4.0	1.00
	A1 Amino acids; polypeptides		
	A2 Genes; enzymes		
	A3 Nucleic acids; amino acids		
	A4 POLYMERS; Polypeptides		
Objective Question	1		
64	Environmental control of sex determination is seen in	4.0	1.00
	A1 Malandrium		
	A2 Drosophila		
	A3 Bonelia :		
	A4 ApesIndica		
Objective Question	1		
ojective Question		4.0	1.00
65 65	Progression through the eukaryotic cell cycle is regulated by	4.0	1.00

		A2 Cyclic-Dependent Kinase:		
		A3 The P ⁵³ Gene		
		A4 DNA ligase		
Obje	ective Question			
66	66	How do memory cells differ from effector cells	4.0	1.00
		A1 Memory cells are more numerous :		
		A2 Memory cells are responsible for the primary immune response:		
		A3 Memory cells attack invaders; effector cells do not		
		A4 Memory cells live longer:		
	ective Question			
67	67	Blocking action of enzyme through blocking its active site is	4.0	1.00
		A1 Allosteric inhibition		
		A2 Competitive inhibition		
		A3 Feedback inhibition		
		A4 Non-competitive inhibition		
	ective Question			
68	68	Eukoryotic mRNA differ from prokaryotic mRNA in that	4.0	1.00
		A1 They do not have a 5' untranslated region :		
		A2 Their coding regions are separated by spacers:		
		A3 They do not have 3' UTR:		
		A4 They have a free 3' hydroxy group on each of their ends		
Obje	ective Question			
69	69	Cyclic AMP regulates the lactose (lac) operon by	4.0	1.00

		A1 Binding to the operator to turn on transcription :		
		A2 Binding to the lac repressor to prevent transcription		
		A3 Combining with the catabolitic activator protein (cap) to form a complex that enhance transcription upon binding to the promotor.		
		A4 Combining with the cap to remove cap's inhibition of transcription.		
Objec	tive Question			
70	70	Micelles	4.0	1.00
		A1 Are the same as emulsion droplets:		
		A2 Form from bile acids at all bile acid concentration		
		A3 Although they are formed during lipid digestion, do not significantly enhance utilization of dietary lipid.		
		A4 Always consists of only a single lipid species.		
Objec	tive Question			
71	71	A shortage of phosphorus in the soil would make it especially difficult for a plant to manufacture.	4.0	1.00
		A1 DNA:		
		A2 Protein		
		A3 Cellulose		
		A4 Fatty acids		
Ohioo	tive Question			
72	72	In some place a protein moleculemay twist (or) fold back on itself, this is called and the coils (or) folds are hold in place by	4.0	1.00
		A1 Tertiary structure; hydrogen bonds.		
		A2 Primary structure; covalent bonds.		
		A3 Secondary structure; peptide bonds:		
		A4 Tertiary structure; covalent bonds		

73 73	homologous recombination	4.0	1.00
	A1 Occurs only between two segments from the same DNA molecules		
	A2 Requires thata specific DNA sequence be present:		
	A3 Requires that one of the duplexes undergoing recombination be nicked in both stands:		
	A4 May result in strand exchange by branch migration		
Objective Q		4.0	1.00
/	The transport system the maintain the Na ⁺ and K ⁺ gradients across the plasma membrane of Cells.	4.0	1.00
	A1 Moves Na+ either into (or) out of the cell.		
	A2 Involves an enzyme that is an ATPase		
	A3 Is an electrically neutral system		
	$^{\mathrm{A4}}$ in the membrane hydrolyzesATP Independently of the movement of Na $^{+}$ and K $^{+}$		
Objective Q	estion		
75 75	All the following are potential control mechanism for regulation of gene expression in eukaryotic organisms EXCEPT	4.0	1.00
	Al Gene amplification		
	A2 The desired Constant		
	A2 The degradation of mRNA		
	A3 The lactose operon		
	A4 Transcription		
Objective Q 76 76	TATA boxes and pribnow boxes are components of	4.0	1.00
	TATA boxes and prioriow boxes are components of		
	A1 Operators		
	*		
	A2 Promoters		

Ohied	ctive Question			
77	77	Which of the following is not true of photosystem-II	4.0	1.00
		mann sa masanan ang ar ara sa paranayanan sa		
		A1 It is located in thylakoid membranes		
		:		
		A2 It is involved in the oxidization of water		
		A3 It has a special oxidizablechlorophyll P ₆₈₀		
		:		
		 		
		A4 It is required for cyclic photophosphorylation.		
Objec	ctive Question			
78	78	Energy- requiring reaction can occur in biological system because enzyme s allows their coupling to other reactions with	4.0	1.00
		A1 An increase in entropy		
		A2 A low activation energy		
		A low activation energy		
		A3 No inhibition		
		A4 Products of lower free energy than the reaction		
		:		
Objec 79	ctive Question	Primary bile acids	4.0	1.00
, ,		Filmary one acids		
		A1 Are any bile acids that are found in the intestinal tract		
		:		
		A2 Are any bile acids reabsorbed from the intestinal tract		
		A3 Are synthesized in hepatocytes directly from cholesterol		
		: 110 symmetric in represely to cheerly 110 in choleston.		
		A4 Are converted to secondary bile acids by conjugation with glycine / taurine.		
	ctive Question			
		It is theoretically possible for a gene from any organism to function in any other organism. Why is this possible	4.0	1.00
	80			
	80	A1		
	80	A1 All organisms have similar nuclei		
Objec 80	80			
	80			
	80	A1 All organisms have similar nuclei A2 All organisms have the same genetic code :		
	80			

	A4 All the organisms have transfer RNA		
Objective Question	<u>I</u>		
81 81	A particular allele can have different effects if it was inherited from a male rather than a female. Thus phenomenon is known as	4.0	1.00
	A1 Extranuclear inheritance		
	A2 Aneuploidy		
	A3 Sex-linkage		
	A4 Genome imprinting		
01: - 1: - 0 1:			
Objective Question 82 82		4.0	1.00
02	Surface Plasmon resonance (SPR) detects binding of label free molecules on	7.0	1.00
	A1 The dector		
	A2 On coating tube		
	A3 The surface of a chip:		
	A4 None of these		
Objective Question			
83 83	A circadian cycle in the movement of plant leaves was first observed by	4.0	1.00
	A1 Jean-Jacquesd Ortous de Mairan		
	A2 Patricia de coursey		
	A3 Carolous Linnaeus		
	A4 Franz Helberg		
Objective Question		4.0	1.00
04	Altruistic behavior is not seen in	4.0	1.00
	A1 Silkworm		
	A2 Ant		

	A3 Bee		
	A4 Termite		
Objective Quest 85 85	C -value paradox is often encountered mostly in	4.0	1.00
	C –value paradox is often encountered mostly in		
	A1 Prokaryotes		
	A2 Bacteria		
	A3 Archaea		
	A4 Eukaryotes		
Objective Quest	ion		
86 86	In a population of randomly interacting individuals, the value of the correlation between genetic similarity and interaction strength will be	4.0	1.00
	A1 0		
	A2 _½ :		
	A3 1		
	A4 2 :		
Objective Quest	ion		
87 87	Circannual behaviors	4.0	1.00
	A1 : Are often linked to changes in day length		
	A2 Rely solely on endogenous cues		
	A3 Involve foraging, reproduction and migration		
	A4 Do not occur in free running conditions		
	ion		
Objective Quest			1.00
Objective Quest	Kin selection theory contributed to the demise of the	4.0	1.00

		A2 Species selection concept:		
		A3 Individual selection concept		
		A4 Population selection concept		
 ∩hie	ective Question			
89	89	Nitrates maintain the red color of preserved meats and	4.0	1.00
		A1 Prevent mold :		
		A2 Inhibit germination of botulism spores		
		A3 Widely used preservative		
		A4 Maintain a high osmotic pressure to kill micro organisms:		
	ective Question			
90	90	The pH should be maintained for the production of pencillin	4.0	1.00
		A1 5.0		
		A2 6.5		
		A3 7.5		
		A4 8.0		
	ective Question			
91	91	Testing on GMOs in food and feed is routinely done by	4.0	1.00
		A1 DNA micro arrays		
		A2 qPCR		
		A3 both DNA micro arrays and qPCR		
		A4 None of these		
Obje	ective Question			
92	92	Which of the following is a preferred vector for transferring genes to nerve cells	4.0	1.00

	A1 Retrovirus :		
	A2 AAV		
	A3 Herpes		
	A4 HIV		
Objective Q	action		
93 93	Marker- assisted background selection, a term coined by	4.0	1.00
	A1 Melchinger		
	A2 Young and Tanksley		
	A3 Eisenberg and Cohney		
	A4 Hospital and Charcosset		
Objective Qu	estion		
94	The gene for green fluorescent protein (GFP) a commonly used reporter gene was cloned form	4.0	1.00
	A1 Equorea Victoria :		
	A2 Vibrio cholera		
	A3 Danio rerio		
	A4 SUS domesticus		
Objective Q	estion		
95	BAC, which can be used to clone large DNA fragments is derived form	4.0	1.00
	A1 Col E plasmid		
	$^{ m A2}_{:}$ $^{ m 2}^{\mu}$ plasmid		
	A3 Mu phage		
	A4 F plasmid		

96	96	Which of the following stain is used for checking the transfer of proteins on to the membrane after electrophoresis	4.0	1.00
		A1 Commassie Brilliant Blue G-250		
		A2 Ponceau S:		
		A3 Amido Black		
		A4 Commassie Brilliant Blue R-250		
Objec	etive Question			
97	97	The advantage of FISH over ISH is	4.0	1.00
		Al High resolution		
		A2 Sensitivity and speed:		
		A3 Faster detection		
		A4 All of these		
Objec	etive Question			
98	98	Circular dichroism (CD) is observed only when molecule is	4.0	1.00
		Al Planar :		
		A2 Optically active:		
		A3 In sheet form		
		A4 In helix form		
Objec	etive Question			
99	99	Carbon dating is good for dating objects that are	4.0	1.00
		A1 Between 500 and 50,000 years old :		
		A2 Between 50-500 years old:		
		A3 Between 50,000-50,0000 years old :		

Object	etive Question			
100	100	A 3-dimentional appearance with higher resolutions than SEM can be obtained by TEM	4.0	1.00
		A1 Casting		
		A2 Shadowing		
		A3 Staining:		
		A4 Using fluoresecent dyes		