135 PU Ph.D Medical Entomology

174	F 100 P PU_2016_135_E at is the common name applied to mosquito larvae? Worm Wigglers Maggot Caterpillar
155	f 100 5 PU_2016_135_E ich amongst the following abbreviations stands for organization related to health research? DRDE DOD DRDO ICMR
133	f 100 8 PU_2016_135_E 9 objective of larval collection:- Mapping breeding sites & seasonal variations Measuring density Impact of control measures Measuring density, mapping breeding sites & seasonal variations and impact of control measures
186	f 100 6 PU_2016_135_E a to be collected in a filariasis survey:- Filarial disease rate Mf prevalence and Mf load in the community Filarial endemicity rate Mf prevalence, Mf load, filarial disease rate and Filarial endemicty rate
127	f 100 PU_2016_135_E at is the name given to chemicals used to kill fleas? Adulticides Larvicides Pulicides

0	Holocides
143 Wha	f 100 PU_2016_135_E at would be the best definition for Medical Entomology?
o that	The study of economic losses of commercially important animals and plants due to insect predation
	Branch of science that deals with insects that cause disease or that serve as vectors of organisms cause disease in humans
	Application of insect evidence to criminal investigations and civil cases
0	The scientific study of insects
136 In C	f 100 PU_2016_135_E Onchocerciasis, damage to human eyes results from host responses to:-
0	L ₄ larvae and adults
0	L ₂ larvae
0	L₁ larvae
0	L ₃ larvae
	F 100 PU_2016_135_E
	v is the double - pored tapeworm (<i>Dipylidium caninum</i>) typically transmitted to dogs and (sometimes) ple?
0	By being bitten by a cat or dog flea
0	By consuming uncooked meat
0	By ingestion of adult fleas containing cysticercoids
0	By being bitten by a human flea
108	f 100 PU_2016_135_E ch Indian doctor discovered a cure for Kala-Azar?
000	Dr Homi Bhaba
	Dr C P Thakur
	Dr U M Brahmachari
0	Dr Vikram Sarabhai
119	of 100 PU_2016_135_E intermediate host of <i>Dracunculus medinensis</i> :-

0	A black fly
0	A crustacean
\circ	A rotifer
0	A mosquito
184	of 100 PU_2016_135_E ich group of insects has simple metamorphosis? Beetles Flies Fleas Bugs
179	PU_2016_135_E exterile-male technique would probably NOT work well for an insect pest whose: Population is extremely abundant Females mate only once in their lifetime Males are very strong fliers Individuals are easily mass reare
153	PU_2016_135_E ich communication signal has low information content, but can be long-lasting in the environment? Wing color patterns Stridulation Light flashes Marking pheromones
137 Who	of 100 PU_2016_135_E ere do female body lice deposit their eggs? On the head In the pubic region On clothing On the abdomen
15	of 100

109 PU_2016_135_E
The stage of *Wuchereria bancrofti* that is ingested by the mosquito:-

0000	L_1 L_2 L_3 Mf
113 Soft O O	of 100 PU_2016_135_E t tick transmits:- Tick typhus Tularemia Kyasanur Forest Disease Relapsing fever
163	of 100 PU_2016_135_E nsect development, the germ band:- Gives rise to the cleavage and activation centers Differentiates into four germ layers Differentiates into three germ layers Forms the amnionic membrane
131	of 100 PU_2016_135_E pansoma brucei is transmitted by:- Mosquitoes Sand Fly Bed Bug Tsetse Fly
141	of 100 PU_2016_135_E insect that has evolved to resemble a plant twig will probably be able to avoid:- Commensalism Parasitism Competition Predation
166	of 100 PU_2016_135_E ich arthropods have chelicerae?

0	Mosquitoes
0	Spiders
	Millipedes
0	Shrimp
168	PU_2016_135_E ich amongst the following abbreviations stands for organization related to vector control programme? IVRI ICAR NVBDCP NARI
103 Wh	of 100 PU_2016_135_E o invented the first man-made insecticide, D.D.T.?
0	David Peakall
0	Paul Muller
0	Othmar Zeidler
0	Rachel Carson
135	of 100 PU_2016_135_E ch order is exclusively haematophagous (blood feeders)?
0	Hymenoptera
0	Thysanoptera
0	Phasmida
0	Siphonoptera
101	of 100 PU_2016_135_E aria results from a mosquito injecting the of Plasmodium into the human blood.
0	Sporocyst
0	Gametocytes
0	Sporozoites
0	Merozoites
	of 100 PU 2016 135 E

	ch of the following levels of organization is arranged in the correct sequence from most to least usive?
0	individual, community, population, ecosystem
0	ecosystem, community, population, individual
0	population, ecosystem, individual, community
0	community, ecosystem, individual, population
158 Sup	PU_2016_135_E pose you find an interesting arthropod living on the bottom of a fresh water pond. It has eyes, ennae, mandibles, and 10 pairs of legs. You conclude that this organism belongs in the class:- Crustacea Insecta Diplopoda Arachinida
145 Inse	of 100 PU_2016_135_E ect blood does not:-
0	Transport hormones
0	Flow through the wings
0	Contain antibodies
0	Clot
169	of 100 PU_2016_135_E ich of the following disease is not spread by houseflies? Conjunctivitis
0	Malaria
0	Amoebiasis
0	Typhoid
171 Why	of 100 PU_2016_135_E y leaf-cutting ants do take leaves to their colony?
0	To disguise the colony from raiding anteaters
0	To line the nest where the queen produces eggs
0	To repair colony walls after damage
0	To make mulch to grow the fungus that they eat

132	of 100 PU_2016_135_E duvid bugs are also known as Tickling Bugs Hissing Bugs Kissing Bugs
31 164 Dru	Laughing bugs of 100 PU_2016_135_E og of choice for the control of filariasis:-
0	Diethylcarbamazine citrate
0	Chloramphenicol
0	Brufen
0	Nifedepine
187	of 100 'PU_2016_135_E usefly breeding is an index of:- Standard of low socio-economy
0	Standard of Personal Hygiene
0	
0	Standard of Public Hygiene
	Standard of Living
Any	of 100 PU_2016_135_E chemical used to repel predators would always be classified as:- Pheromone Hormone Kairomone Allomone
151 Like cate	of 100 PU_2016_135_E e several of the other fields that are categorized within, entomology is a taxon-based egory; any form of scientific study in which there is a focus on insect related inquiries is, by definition, omology. Zoology
0	Ecology
0	Botany

0	Biology
125 Cho	of 100 PU_2016_135_E lose the odd one?
0	Chromosomal translocations
0	Cytoplasmic incompatibility
0	Induced sterility
0	DDT residual spray
124 Glos	of 100 PU_2016_135_E ssina morsitans transmits:-
0	Onchocerca volvulus
0	Trypanosoma brucei gambiense
0	Trypanosoma brucei rhodesiense
0	Hymenolepis diminuta
117	of 100 PU_2016_135_E or the tick attaches to humans:-
0	Only female ones can pass on the disease
0	Blood meal is essential for passing on viral/bacterial infections
0	12 hrs may pass before the tick starts to feed
	The tick has maximum feeding period of 1 minute
208 The	of 100 PU_2016_135_E fever associated with visceral leishmaniasis may resemble that of:-
0	Oriental sore
0	Malaria
0	Cutaneous leishmaniasis
0	Drug sensitivity
192 Whe	of 100 PU_2016_135_E ere does the name Hemiptera come from?
0	hemicellulose
0	hemimetabolous
0	hemelytron

0	hemocoel
110 Who	of 100 PU_2016_135_E o demonstrated the transmission of the filarial nematodes by mosquitoes in 1877?
0	Patrick Manson
0	Carlos Finlay
0	Sir Ronal Ross
0	Josiah Nott
126 To 0	of 100 PU_2016_135_E develop optimally Simulium (Black Flies) larvae require:-
0	Stagnant water
0	Well oxygenated running water
0	Cool sandy soil
0	An intermediate host
147 Whi	of 100 PU_2016_135_E ch sampling strategy is best suited for insects that live in the soil?
0	Light trap
0	Sex pheromone trap
0	Berlese funnel
0	Sweeping
100 Disc	of 100 PU_2016_135_E carded tyres, artificial containers, pots, discarded containers are associated with?
0	Anopheles stephensi
0	Culex vishnui
0	Aedes aegypti
0	Culex quinquefasciatus
134	of 100 PU_2016_135_E ch among the following is not a larvivorous fish?
0	Tilapia
0	Pearl spot
0	Guppy

0	Panchax	
140 Whi	of 100 PU_2016_135_E ch of these organisms causes Trench Fever including Urban Trench Fever?	
0	Bartonella quintana	
0	Staphylococcus aureus	
0	Rickettsia prowazeki	
0	Borrelia recurrentis	
195 Whi	of 100 PU_2016_135_E ch of the following does not apply to dengue fever?	
0	Principal vector is Anopheles culicifacies	
0	Principal vector is Aedes aegypti	
0	Reservoir of infection is humans	
О	It is viral disease	
47 of 100 217 PU_2016_135_E is an epitome of order Mallophaga.		
0	Ptanga succincta	
0	Blatta orientails	
0	Gryllotalpa Africana	
0	Menopon pallidium	
212	of 100 PU_2016_135_E cination in malaria has not been successful because?	
0	Plasmodium does not produce antibodies and antitoxins	
0	Plasmodium produces antitoxins	
0	Plasmodium produces minute bodies	
О	Plasmodium produces antibodies	
180 To v	of 100 PU_2016_135_E which of these groups do insect pathogens belong?	
0	Viruses, bacteria, protozoa and fungi	
0	Protozoa and fungi	
O	Viruses and bacteria	

0	Bacteria and protozoa
200 Aca	of 100 PU_2016_135_E prology addresses the study of which of these organisms?
0	Insects
0	All invertebrates
0	Mites
0	All arthropods
157 Flea	of 100 'PU_2016_135_E as:-
0	Can bite at all stages of development after hatching from eggs
0	Are more a cause of irritation than actual disease
0	Can fly short distances
0	Commonly spread typhus
202 Hov	of 100 PU_2016_135_E w many stages of immune responses are recognized in humans and animals repeatedly exposed to es or stings of the same or antigenically related arthropods? 5 6 12 3
144 Wh	of 100 PU_2016_135_E o first demonstrated the transmission of the causative agent of Rocky Mountain spotted fever by ticks 906?
0	Hayward Taylor Ricketts
0	Theobald Smith and F.L.Kilbourne
0	Carlos Finlay
	P.Mackie
54 of 100 139 PU_2016_135_E Sucking mouth parts are not found in:-	
0	Lice
0	Flies

0	Ants
0	Fleas
146	PU_2016_135_E process autogenous development in mosquito is? Development of egg
0	Hatching of egg
0	Development of egg without blood meal
	Development of egg with blood meal
121	of 100 PU_2016_135_E canosomiasis, or "sleeping sickness" is caused by a member of the:- Zoomastigotes
0	Dinoflagellates
0	Radiolarians
0	Sporozoans
203	of 100 PU_2016_135_E ctive malarial control intervention include all the following except? Use of pyrethroid impregnated mosquitoes net
0	Larviciding
0	Artemisinin Combination Therapy
0	Vaccination with SPF 66
105 Whi	of 100 PU_2016_135_E ch of the following is a long term complication in Filariasis?
0	Diabetes
0	High blood pressure
0	Lymphoedema
0	Lymphangitis
114	of 100 PU_2016_135_E vae on aquatic plants in Asia:-
0	Anophelines
0	Culicines

^	
Aedines	
persistence?	nsecticides is characterized by a relatively high degree of environmental
Carbamates	
Synthetic pyrethroids	
Organophosphates	
Chlorinated hydrocar	bons
^	g developed without fertilization is called:-
autogenesis	
autogenous develope	ement
parthenogenesis	
viviparity	
62 of 100 259 PU_2016_135_M Example for a stercorarian transmission is:-	
Malaria	
C Tick typhus	
C Kala azar	
Chagas disease	
· ·	uito egg with blood meal is known as:-
gonotrophic developr	nent
autogenous developr	nent
parthenogenesis	
anautogenous develo	ppment
64 of 100 239 PU_2016_135_M Breathing trumpets of Anopheline	pupae are short and broad apically.

0	water beetle
0	Toxorhynchites
0	Culicine
223	of 100 PU_2016_135_M gian filariasis is restricted to:- Asia Pacific islands Africa Latin America
221	of 100 PU_2016_135_M mites are examples of:-
0	Ametamorphosis
О	Hemimetamorphosis
0	Holometamorphosis
0	Paurometamorphosis
232 Mos	of 100 PU_2016_135_M equitoes belonging to genera <i>Aedes</i> deposit eggs:-
0	directly on water surface
0	just above water surface
0	outside water
0	The second secon
	bottom of the water
229	bottom of the water of 100 PU_2016_135_M gas disease is caused by:- Trypanosoma Theileria Falciparum Cyanobacteria

0	arthropods and arachnids
0	mites and ticks
0	arachnids and fleas
225	of 100 PU_2016_135_M sects, the number of generations per year is called:- frequency longevity viviparity voltinism
251	of 100 PU_2016_135_M can trypanosomiasis is vectored by:-
0	house flies
0	tsetse flies
0	black flies
0	sand flies
234	PU_2016_135_M It Anopheles have wings. black wings yellow wings spotted wings serrate wings
245 The	PU_2016_135_M vector of river blindness is:-
	house flies
0	sand flies
0	horse flies
O	Black flies
228	PU_2016_135_M fifth serotype of dengue virus was reported from:- China

0 0	Singapore Malaysia Indonesia
257	PU_2016_135_M number of potentially infective bites per unit of time is:- Entomological inoculation rate Vectorial capacity Infectivity rate Infection rate
	PU_2016_135_M is an important vector of bancroftian filariasis in India. Culex quinquefasciatus Aedes aegypti Armigeres subalbatus Anopheles punctualatus
222	PU_2016_135_M bies is caused by:- Hard ticks Itch mites Soft ticks Mosquitoes
247	PU_2016_135_M parasite responsible for river blindness is:- Wuchereria bancrofti Onchocerca volvulus Mansonella ozzardi Brugia malayi

79 of 100

255 PU_2016_135_M
Chemical that has little or no toxicity but, when combined with some insecticides, enhances their activity and thus reduces dosage rates:-

0	synergist
0	organochlorides
0	enzymes
0	organophosphates
253	of 100 3 PU_2016_135_M ost in which parasite does not reach sexual maturity:-
0 0	
	secondary host
0	intermediate host
	primary host
286 'Ma	of 100 6 PU_2016_135_D dabar legs' in Kerala was caused by:-
0	Mansonella ozzardi
0	Brugia malayi
0	Brugia timori
0	Wuchereria bancrofti
270 Wh	of 100) PU_2016_135_D ich of the following insecticide is not an organophosphate compound?
0	Dichlorvos
0	Fenitrothion
0	Propoxur
0	Propetamphos
287 In 1	of 100 7 PU_2016_135_D 1955, heavy mortality in monkeys lead to the discovery of Kyasanur Forest Disease (KFD) in Shimoga
	trict of Karnataka state. Which of the following is the causative organism of KFD?
dist	
	trict of Karnataka state. Which of the following is the causative organism of KFD?
	trict of Karnataka state. Which of the following is the causative organism of KFD? Virus
	virict of Karnataka state. Which of the following is the causative organism of KFD? Virus Protozoa

Whi	ch of the following is not soil transmitted?	
0	Ascaris lumbricoides	
0	Ancylostoma duodenale	
0	Strongyloides stercolaris	
0	Trichinella spiralis	
85 of 100 271 PU_2016_135_D Johnston's organ is a specialized organ found in the mosquitoes function		
0	Sensory organ	
0	Visual organ	
0	Respiratory organ	
0	Salivary gland	
283 Whi	of 100 PU_2016_135_D ch of the following is the major malaria vector in African region?	
0	Anopheles culicifacies	
0	Anopheles annularis	
0	Anopheles gambiae	
0	Anopheles sundaicus	
87 of 100 260 PU_2016_135_D Multiple gonotrophic cycle is a characteristic feature of:-		
0	Tsetse Fly	
0	Triatomine bug	
0	Ixodid tick	
0	Argasid tick	
276	of 100 PU_2016_135_D ch of the following insect order is not a holometabola?	
0	Diptera	
0	Siphonoptera	
0	Hemiptera	
0	Neuroptera	
	of 100 PU 2016 135 D	

Wh	ich class of insecticide is commonly used for mosquito repellents?
0	Organochlorines
000	Carbamates
	Pyrethroids
	Organophosphates
279	of 100 PU_2016_135_D ich of the following is an example for ovo-viviparous insect vector? Tsetse fly House fly Sand fly Blow fly
278	of 100 B PU_2016_135_D conomical hierarchy of Linnean classification systematically divides either plant or animal life into: Kingdom-Phylum-Order-Class-Family-Genus Species
0	Kingdom-Phylum-Family-Order-Class-Genus-Species
0	Kingdom-Phylum-Class-Order-Family-Genus-Species
0	Kingdom-Phylum-Class-Family-Order-Genus-Species
290	of 100 DPU_2016_135_D ccessful transmission of a disease by an insect vector is not depend on:-
0	Reproductive capacity
0	Vector longevity
0	Flight range
0	Intrinsic incubation period
296 Moi	of 100 6 PU_2016_135_D rphologically similar and reproductively isolated organism is known as:-
0	Sibling species
0	Plasmid
0	Cryptic species
0	Isolated species
	of 100 7 PU_2016_135_D

Which of the following mosquito species is not a species complex?		
0	Anopheles sundaicus	
0	Anopheles stephensi	
	Anopheles fluviatilis	
0	Anopheles minimus	
265	PU_2016_135_D ky urine" is a kind of symptom in which of the following diseases? Dengue Filariasis West Nile fever Kala azar	
274	PU_2016_135_D ch mosquito species is used as the first prototype for genetic analysis? Aedes aegypti Aedes albopictus Anopheles stephensi Chagasiabathana	
272	PU_2016_135_D vertebrate reservoir in the transmission cycle of Chikungunya is:- Human Birds Rodents Pig	
264	PU_2016_135_D ch of the following countries reported zero indigenous cases of Malaria in 2013? Sri Lanka & Azerbaizan Costa Rica & Argentina Pakistan & Sudan Bhutan & Malaysia	
	of 100 PU_2016_135_D	

Which of the following parasitic disease has been eradicated from India?	
0	Malaria
0	Filariasis
0	Giardiasis
0	Dracunculiasis
100 of 100 262 PU_2016_135_D In India, DDT resistance was first detected in:-	
0	Mosquito
0	Cockroach
0	Flea
0	Housefly