ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (ENVIRONMENTAL TECHNOLOGY)

COURSE CODE: 112

Register Number:	
	Signature of the Invigilator (with date)

COURSE CODE: 112

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

2.	The	force F and de	nsity d a	are related by	F = x/x	\sqrt{d}						
	The	dimensions of	x are:									
	(A)	$M^{\frac{3}{2}}L^{-\frac{1}{2}}T^{2}$	(B)	$M^{\frac{3}{2}}L^{\frac{1}{2}}T^{-2}$	(C)	$M^{\frac{3}{2}}L^{-\frac{1}{2}}T^{-2}$	(D)	$M^{-3\frac{1}{2}}L^{1}{}_{2}T^{-2}$				
3.		displacement- ngles of 30° and										
	(A)	1:2	(B)	$1:\sqrt{(3)}$	(C)	$\sqrt{(3):1}$	(D)	1:3				
4.		otor car moving						the application				
	(A)	20 m/sec^2	(B)	-20 m/sec^2	(C)	-40 m/sec^2	(D)	+2 m/sec ²				
5.		ody thrown up which it is thi			eaught b	oack after 4 sec	c. The sp	eed of the body				
	(A)	10 m/sec	(B)	20 m/sec	(C)	30 m/sec	(D)	40 m/sec				
6.	If X.	, F and U deno	te the di	isplacement, f	orce act	ing and potent	ial energ	gy of a particle,				
	(A)	U = FX	· (B)	$F = +\frac{dU}{dX}$	(C)	$F = -\frac{dU}{dX}$.(D)	$F = \frac{1}{x} \cdot \frac{dU}{dX}$				
7.	and	A planet moves around the sun. At a point P it is closest from the sun at a distance d ₁ and has a speed v ₁ . At another point Q, when it is farthest from the sun at a distance d ₂ , its speed will be:										
	(A)	$d_1^2 v_1 / d_2^2$	(P)	d_2v_1 / d_1	(C)	$d_{\scriptscriptstyle 1}v_{\scriptscriptstyle 1}/d_{\scriptscriptstyle 2}$	(D)	$d_2^2 v_1 / d_1^2$				
8.		itellite is orbiti vitational force				-		ellite is F. The on the satellite				
	(A)	F	(B)	zero	(C)	2F	(D)	F/2				
9.		all floats on the ainer is now co				-	the atm	osphere. If the				
	(A)			at its former d	_	·						
	(B)	The ball will			-							
	(C)	The ball will	sink to t	he bottom								

2

(C) $ML^{2}T^{-1}$ (D) $M^{0}L^{0}T^{0}$

Dimensional formula for angular momentum is: (B) MLT -1

(A) T -1

(D) The ball will sink a bit

112

10.	Solde	ering of two met	als is p	ossible beca	use of the	e property of:			
	(A)	Viscosity		Surface ten			(D)	Cohesion	
11.	The	viscosity of falli	ng rain	drop attains	s limited	value because	e of:		
	(A)	upthrust of air			(B)	viscosity for	ce exerted	by air	
	(C) _.	surface tension	effects		(D)	air currents	in atmosp	phere	
12.	A sm ball	nall steel ball fa is pulled upwar ard:	ills thro ds with	ugh a sysur a force equ	at a cor al to its	nstant speed effective weig	of 10 cm/s ht, how fa	ist win it move	
	(A)	10 cm/sec	(B)	20 cm/sec	(C)	5 cm/sec	(D)	zero cm/sec	
13.	V ₁ , T	s in a container I and M1 denot ainer 1. The cor ch of the followi	e the pr respond	essure, volu ling quantit	ime, tempies for ga ect?	perature and is in containe	moleculai	mass or gas in	
	(A)	$P_1 = P_2, V_1 = V_2$	2	•	(B)	$P_1V_1 = P_2V_2$			
	(C)	$\frac{P_1}{V_1} = \frac{P_2}{V_2}$			(D)	$\frac{M_1 P_1 V_1}{M_2 P_2 V_2} =$	constant		
14.	The	m of ice at -20°0 specific heat c rimeter will con	of water	pped into a is twice t	calorimet hat of ic	ter containing e. When equ	g 10 gm of ilibrium	water at 10°C. is reached, the	:
	(A)	10 gm ice and	10 gm v	vater	(B)	20 gm water	r		
* .	(C)	5 gm ice and 1	.5 gm w	ater	(D)	20 gm ice			
15.	Whi	ch one of the fo	llowing	is a correct	statemen	ıt:			
	(A)	The dimension	nal form	ula for the	angular v	elocity and li	inear velo	city are same	
	(B)	The dimension	nal form	ula for wav	elength i	s $M^{\scriptscriptstyle 0}L^2T^{\scriptscriptstyle -2}$			
	(C)	The dimension							
	(D)	The dimension	nal forn	ula for ang	ular mon	entum and la	atent heat	is same	
16.	If x	$= at + bt^2$, when	e x is in	metres and	l t is in h	our (hr), the t	units of b	will be:	
	(A)	metre	(B)	metre hr		$\frac{\text{metre}}{\text{hr}^2}$	(D)	hr hr	
17.	A be 20 i	ody travelling w m/sec and 30 m/	vith unit sec rest	form acceler pectively. Th	ation cro ie speed o	sses two poin of the body at	mia-poin	t of A and D is.	3
	(A)	25 m/sec	(B)	25.5 m/sec			(D)	$10\sqrt{6}$ m/sec	
	、 -/				3	,		112	2

18.	bus si	starts from rest tarts with a uni	form	velocity of to	n of 1 m m/sec,	n/sec2. A man v then the minir	vho is 48 num tim	m behind the ne after which
	the m	an will catch the	bus	18:				4.8 sec
		12 sec	(B)	8 sec	(C)	10 sec	(D)	4,0 800
19.	•	of mass M1 is placed force F is applied	ea to t	d along a horiz the free end of $\frac{FM_1}{M_1 + M_2}$	ULIO TOP			
20.	A 50	kg man is stand nalts. If the boat	ing o has a	n a flat boat at mass of 450 k	5,	. 0220		
	(A)	0.5 metres to th	e sou	th	(B)	0.55 metres to	the sou	ith
	(C)	0.5 metres to th			(D)	Zero metre		
	•							0.43 : 43
21.	A gu	n fires a bullet o is pushed back w	ntn a	velocity of 1 in	BCC .	1110 11111 -	•	
		15 kg	(B)	30 kg	(C)	1.5 kg	(D)	20 kg
					·	-oular motion is	z.	
22.	The	force required to	keep	a body in unit	orm cu	cular motion a	man	
	(A)	centripetal force	e			centrifugal fo		
	(C)	resistance			(D)	none of the a	pove	
23.	A bo	ody is projected i ection its total e	in spa nergy	ace from earth' will be:				At the time of
		potential energ				kinetic energ		
	(C)	partially K.E.	and p	artially P.E.	(D)	half K.E. and	d half P.	E.
24.	Λh	ody floats with o ther liquid. The	ne-th	aird of its volur	ne out	side water and		· · · · · · · · · · · · · · · · · · ·
	(A)	9/4 gm/c.c.	(B)		(C)	16/9 gm/c.c.	(D)	2/9 gm/c.c.
	, .	•			_			
25.	Soa	p helps in better	clear	ning of clothes	becaus	e:		
	(A)	It reduces the	surfa	ce tension of so	olution			
	(B)							
	(C)							
	(D)			hange				
					1	· h - i - dimnod	vorticall	v in it, what will
26	. Wa be	iter rises to a hei the rise if the tu	ight o be is	f 10 cm when a inclined at 30°0	a glass to the v	vertical:		ly in it, what will
	(A)	$\frac{5\sqrt{3}}{2}$	(E	3) 10 cm	(C	$) \frac{20}{\sqrt{3}}$	(D	$\frac{\sqrt{3}}{10} \text{ cm}$
1.1	12				4			

27.	Oxygen and hydrogen are at the same temperature T. The kinetic energy of the oxygen molecule will be:										
	(A)	16 times									
	(B)	4 times									
	(C)	Equal									
	(D)		K.E.	of hydrogen mol	ecule						
28.	The	energy of molecu	ılar m	otion appears i	n the i	form of:					
	(A)	Friction			(B)	Heat					
	(C)	Temperature			(D)	Potential ene	rgy				
29.	reac ther	thermometers, ling on Fahrend mometer. The te	neit tl mpera	hermometer is ature of the batl	just n is:	Fahrenheit are three times to 80°C	he readi	hot bath. The ng on Celsius			
	(A)	100°C	(B)	80/3°C	(0)	80 C	(D)	70 C			
30.	The	dimensional form	nula f	or latent heat is	3						
	(A)	$M^0L^2T^{-2}$	(B)	ML^2T^{-2}	(C)	MLT^{-2}	(D)	ML^2T^{-1}			
31.	Mel	ting point of ice									
	(A)		increa	sing pressure	(B)	Decreases wi	th increa	sing pressure			
		Is independent			(D)						
	(0)		•		, ,						
32.	The	The excess of pressure in a soap bubble of radius R and surface tension T is given by:									
	(A)	$P = \frac{2T}{R}$	(B)	$P = \frac{4T}{R}$	(C)	$P = \frac{T}{R}$	(D)	$P = \frac{6T}{R}$			
33.	The ther	total area of cro the average vel	ss-sectocity o	tion is 0.25 m2. of flow of blood t	hroug	gh the capillari	es is:				
	(A)	0.4 mm/s	(B)	4 mm/s	(C)	25 mm/s	(D)	400 mm/s			
34.	hoo	rcular wire of rac p whose radius is hoop is	dius 3 s 48 cı	cm. is cut and l m. The angle in	bent s degre	o as to lie alon ees which is sul	g the circ btended a	numference of a at the centre of			
	(A)	15°	(B)	22.5°	(C)	30°	(D)	45°			
35.	If si	in $\theta = -3/5$ and	θ lies	in the third qu	adran	nt, then the val	ue of cos	$(\theta / 2)$ is			
	(A)	1/5		$1 - \sqrt{(10)}$				$1/\sqrt{10}$			
				5				112			

36.	If in	a $\triangle ABC$, sin $A =$	$\sin^2 x$	B and $2\cos^2 A$	= 3 cos	2B, then the ΔA	BC is	
30.	(A)	right angled			(B)	obtuse angled		
	(C)	isosceles			(D)	equilateral		
						1 .		
37.	In a	$\Delta ABC, b = \sqrt{3+1},$	$c = \sqrt{3}$	$\sqrt{-1}$, $\angle A = 60^{\circ}$, th	en th	e value of tan $\frac{1}{2}$	B-C)	is
	(A)	2	(B)	1/2	(C)	1	(D)	3
38.	thac	an in a boat rowe	of the	e top of the cliti	irom	00 to 40 . The st	Seed Or	the boat is
	(A)	$(9-3\sqrt{3})/2 \text{ km/h}$	(B)	$(9+3\sqrt{3})/2$ km/	h (C)	$\left(9\sqrt{3/2}\right)$ km/h	(D)	None of these
39.	The	complex number	sin x	$t+i\cos 2x$ and co	$\cos x - i$	$\sin 2x$ are conjug	gate to	each other for
00.	(A)	$x = n\pi$	(B)	$x = (n+1/2)\pi$	(C)	x = 0	(D)	No value of x
40	TC O	$x^2 + 6i^3 + 3i^{16} - 6i^{19}$) ⊥ 1i ²	5 - r + iv then				
40.		x = 1, y = -4	T *\$1	- x ' ty', tiloii	(B)	x = 4, y = -1		
	• •	x = 1, y = -4 $x = 1, y = 4$			` '	x = -1, y = -4		
	•				` ,			<u>.</u>
41.		line segment joir ne ratio	ning t	he points (1,2)	and (-2,1) is divided b	y the	$\lim 3x + 4y = 7$
	(A)	3:4	(B)	4:3	(C)	9:4	(D)	4:9
42.	The	ends of the base allel to y-axis. Th	e of ar	n isosceles triar ation of the othe	ngle a er side	re at $(2a,0)$ and e is	(0,a)	and one side i
	_	x + 2y - a = 0				x + 2y = 2a		
	(C)	$3x + 4y - 4\alpha = 0$			(D)	3x - 4y + 4a = 0		
43.		(x,3) and $(3,5)$ and the value of x a			a dia	meter of a circle	with	centre at (2, y)
	(A)	_	na y c		(B)	x=4,y=1		
		x=8, y=2			(D)	None of these		
44.	The	e equation of the	e circ	umcircle of the	e tria	ngle formed by	the lii	$\text{nes } y + \sqrt{3x} = 6$
		$\sqrt{3x} = 6$ and $y =$						
	(A)	$x^2 + y^2 - 4y = 0$)			$x^2 + y^2 + 4x = 0$		
	(C)	$x^2 + y^2 - 4y = 1$	2		(D)	$x^2 + y^2 + 4x = 1$.2	
	_			c				

If $f(x) = \log\left(\frac{1+x}{1-x}\right)$ and $-1 < x, x_2 < 1$, then $f(x_1) - f(x_2)$ is equal to (B) $f\{(x_1-x_2)/(1-x_1x_2)\}$ $f\{(x_1-x_2)/(1+x_1x_2)\}$ (A) (D) $f\{(x_1 + x_2)/(1 + x_1x_2)\}$ (C) $f\{(x_1+x_2)/(1-x_1x_2)\}$ $\lim_{x\to 0} \frac{\log \cos x}{x} \text{ is equal to}$ 46. (D) None of these (C) 1 $(A) \quad 0$ The value of a so that $f(x) = \sin^2 \alpha x / x^2$, $x \neq 0$, f(0) = 1, is continuous at x = 0 is (C) only -1(D) ± 1 (B) only 1 (A) = 0If $y = \sin^{-1} \left[\frac{1 - x^2}{1 + x^2} \right]$ is equal to (C) $1/(2+x^2)$ (A) $-2/(1+x^2)$ (B) $2/(1+x^2)$ (D) $2/(2-x^2)$ If $x = 0\sin 2\theta$, $y = \theta\cos 2\theta$, then $\frac{dy}{dx}$ at $\theta = \pi/4$ is (D) $-\pi/2$ (C) $\pi/2$ (B) -1/2If $x = t + \frac{1}{t}$, $y = t - \frac{1}{t}$, then d^2y/dx^2 is (A) $-4t/(t^2-1)$ (B) $-4t^3/(t^2-1)^3$ (C) $(t^2+1)/(t^2-1)$ (D) $-4t^2/(t^2-1)^2$ If $z = \cos(xy^3)$, then $\frac{\partial^2 z}{\partial x \partial y} =$ (A) $-6xy\sin(xy^3) + 9x^2y^4\cos(xy^3)$ (B) $6xy\sin(xy^3) - 9x^2y^4\cos(xy^3)$ (D) $6xy\sin(xy^3) + 9x^2y^4\cos(xy^3)$ (C) $-6xy\sin(xy^3) - 9x^2y^4\cos(xy^3)$ If $z = \tan^{-1}(y/x)$, then $z_{xx} + z_{yy} =$ 52. (B) $x/(x^2+y^2)^2$ (C) $y/(x^2+y^2)^2$ (D) None of these (A) = 0The value of a for which the difference of the roots of the equation $ax^2 + (a-1)x + 2 = 0$ 53. is min, is given by (C) -1/5(D) None of these (B) 5 1/5(A) When a stone is thrown upwards on $s = 10t-3t^2$ in metres and seconds. It will fall 54.

(D) None of these

(B) (10/3) sec

(C) (5/3) sec

back (on the planet) again after

(A) (20/3) sec

55.	$\int_{2} \frac{V \mathbb{N}}{V}$	$\frac{x-4)}{x}dx =$:				
	(A)	$2(3\sqrt{3-\pi})/3$	(B)	π	(C)	$2(3\sqrt{3-\pi})$	(D)	None of these
56.	4	$\frac{dx}{(x-2)(4-x)} =$						
	2 9 61	$\frac{x-2)(4-x)}{\pi/2}$	(B)	π	(C)	0	(D)	None of these
E 17		common to the p		olog $u = 2m^2$ one	. م. ا	* ² 4 ia		
57.								
	(A)	16/3	(B)	8/3	(C)	32/3	(D)	None of these
58.		ation of the curve $dx = dx - xy dy = 0$ is		ugh the point (1	., 0) v	which satisfy the	differ	ential equation
	(A)	$x^2 + y^2 = 1$	(B)	$x^2 - y^2 = 1$	(C)	$2x^2 + y^2 = 2$	(D)	None of these
59.	If a.b	$b = a.c$ and $a \times b = a.c$	$= a \times a$	c, then				
		either $a = 0$ or b			(B)	a is parallel to (b	$-\mathbf{c}$	
		a is perpendicul		(b-c)	(D)	None of these	,	
60.	If ve	ctors $(x-2)a+b$ a	ind (2	(x+1)a-b are pa	rallel	, then $x =$		
	(A)		(B)		(C)		(D)	-1/3
61.	If x_1	x_2, x_3 are distinct	ct root	ts of the equatio	n ax²	+bx+c=0, then		
						$b^2 = 4\alpha c \ge 0$		a = b = c = 0
62.		e digit number is number has even			1, 2,	3, 4, 5, 6 and 8.	The p	robability that
	(A)	2/7	(B)	3/7	(C)	4/7	(D)	None of these
63.	If $f(x)$	$(x) = \cos^2 x + \sec^2 x$; , its ,	value always is				
					(C)	2 > f(x) > 1	(D)	$f(x) \ge 2$
64.	Ifsin	$\theta + \cos \theta = 1$, ther	the v	value of sin 2θ i	.s			
	(A)	1	(B)	1/2	(C)	0	(D)	None of these
	()	,	• /		, ,			
65.		$=\frac{1}{2}(\sqrt{3}+i)$, then a						•

66.	If a +	-b+c=0, the st	raight	line $2ax + 3by$	c + 4c = 0	passes throug	gh the fixed point			
	(A)	(2, 4/3)			(B)	(2, 2)				
	(C)	(4/3, 4/3)			(D)	no such fixed	point			
37.	Equa origi	n is					hich passes throu			
		x + 2y = 0	(B)	x - 2y = 0	(C)	2x + y = 0	(D) $2x - y =$	0		
38 .		iming salts to b sure?	e 90% (dissociated wl	hich of t	ne following w	vill have highest o	smotic		
	(A)	Decinormal A	1 ₂ (SO ₄))3						
	(B)	Decinormal B	aCl_2							
	(C)	Decinormal N	a_2SO_4							
	(D)	A solution obta	ained b	y mixing equ	al volum	es of (b) and ((c) and filtering			
69.	A sa	mple of water is	s distil	led at 2 atmos	spheric p	oressure. The	boiling point will	be?		
	(A)	100°C	(B)	200°C	(C)	300°C	(D) None			
70.	On the basis of relative strengths of intermolecular forces predict the correct order of decreasing boiling points of the compounds									
	(A)	$CH_3OH > H_2 >$				$CH_3OH > CI$	$H_4 > H_2$			
	(C)	CH ₄ > CH ₃ OH	> H ₂		(D)	$H_2 > CH_4 > 0$	CH₃OH			
71.	The blue colour of water in the sea is due to?									
	(A)	Absorption of	other c	olours except	blue by	water molecu	les			
	(B)	Scattering of l	olue lig	ht by water n	nolecules	3				
	(C)	Refraction of l	blue lig	ht by impurit	ties in se	a water				
	(D)	Reflection of b	olue sk	y by sea wate	r	•				
72.	The	e system PCl ₅ ~ PCl ₃ is doubled, (⇒PCl the con	3 + Cl2 attains	s equilib Cl2 woul	rium. If the e	quilibrium concen	tration		
	(A)	Half its origin			(B)		original value			
	(C)	One fourth of			(D)	None				
73.	For	the exothermic	reaction	on 2NO (g) ←	⇒ N ₂ (g	$O_2(g) + O_2(g) + he$	eat?			
, 0.	(A)	K increases w			(B)	K is indeper	ndent of temperat	ure		
	(C)	K decreases w			(D)	K varies wit	th addition of N_2 o	or O ₂		
				!	9			112		

74.	The c	order of reaction o	can b	e deduced from	?						
	(A) Chemical equation					Experiment					
	(C)	Rate constant			(D)	Thermochemical	equa	tion			
75.	react	tion vessel contai	ining	these gases is	sudde	s given by k[A] [B enly reduced to or nal rate would be	ne fou	e volume of the arth the initial			
	(A)	16/1	(B)	1/16	(C)		(D)	1/8			
76.	On combustion, carbon forms two oxides CO and CO ₂ . Heat of formation of CO ₂ is 94.3 K.cals and that of CO is 26.0 K.cals. Heat of combustion of carbon is?										
	(A)	26.0 K.Cals	(B)	94.3 K.Cals	(C)	68.3 K.Cals	(D)	120.3 K.Cals			
77.	Whic	ch of the following	g is tl	ne weakest acid	?						
	(A)	HBr		HClO ₄		H_2SO_4	(D)	HNO_3			
78.	Whic	ch of the following	g sho	ws decrease in s	solubi	lity with an increa	se in	temperature?			
	(A)	KNO_3	(B)	NH_4Br	(C)	Na ₂ SO ₄		All			
79.	Ifac	compound has a r	negati	ive heat of solut	ion, a	t high temperatur	e it d	issolves			
	(A) More rapidly and is more soluble					More rapidly and					
	(C)	Less rapidly and	d is le	ess soluble	(D)	Less rapidly and	l is m	ore soluble			
80.	0.1 N solution of a compound was prepared from its impure sample. If percentage purity of the compound is to be determined, then the weight of necessary substance will be?										
	(A)	More than the p	rinci	pal weight	(B)	Less than the pr	incip	al weight			
	(C)	Equal to the pri			(D)	None of these					
81.		ch of the followi	ng pa	airs of solutions	s can	we expect to be i	sotor	nic at the same			
	(A)	0.1 M NaCl and	0.1 N	M Na ₂ SO ₄	(B)	0.1 M urea and	0.1 M	NaCl			
	(C)	0.1 M urea and	0.2 M	I MgCl ₂	(D)	01. M Ca(NO ₃) ₂	and (0.1 M Na ₂ SO ₄			
82.		ratio of the valuation is?	ue of	any colligative	prop	erty for KCl solut	ion t	o that of suga			
	(A)	1	(B)	0.5	(C)	2	(D)	4			
83.	Whe	en dispersion med	lium	is water, the co	lloida	l system is called?					
	(A)	Sol	(B)	Aerosol	(C)	Organosol	(D)	Aquasol			

		11		11	12						
	(C)	1/3:1/2:1	(D)	None of these							
	of sa (A)	ame quantity of electricity through so Same number of moles of each	olutions (B)	of their salts? 1:1/2:1/3 moles							
92.		w many moles each of Ag+ ion Cu²+ ion			ge						
	(A)	80 (B) 260	(C)	180 (D) 130							
91.		lissociation energies of methane als/mole respectively, then bond ener			30						
	(D)	Δ H is strongly pressure dependent	t								
	(C)	ΔG is negative at low T, positive a	t high T								
	(B)	Δ H and ΔS are positive									
	(A)	Δ H, Δ S, and Δ G are positive at a									
90.	Vap	ourisation is an example of a process	for wh	ich?							
	(D)	Constancy in value of $\triangle H$									
	(C)										
	(B)	Specificity									
89.	Whi	ch of the following does not apply to Capability to initiate the non feasil									
		•	` ,								
	(A) (C)	Increase by 4 times Increase by 2 times	(D)	Remains the same							
		red, then the rate of the reaction will	(B)	Decrease by 2 times							
88.		he reaction $2A + B \rightarrow A_2B$, if the control than the rate of the reaction will		ation of A is doubled and that of B	is						
	(C)	The net ionic equation	(D)	Magnitude of negative ΔG							
	(A)	The atmospheric pressure	(B)	The number of bond changes							
87.	Som	etimes reaction rates can be estimat	ed by k	nowing							
86.	(A)	rate constant of a reaction depends of Temperature (B) Mass	(C)	Weight (D) Time							
o <i>c</i>											
	(D)	Favours neither the forward nor th		vard reaction							
	(D)	Favours the forward and backward	rates								
	(A) (B)	Favours the backward rate only	Jilly								
85.		sing the temperature of a reversible in Favours the forward reaction rate of									
05	ъ.	·	.aastisa	9							
	(C)	Finely divided platinum	(D)	Colloidal Fe(OH) ₃							
OT.	(A)	Colloidal solution of palladium	(B)	Finely divided nickel							
84.	Whi	ch of the following can absorb large i	volume (of hydrogen gas!							

93.	Whe	en a lead storage	batte	ry is discharge	d,?						
	(A)	SO_2 is evolved			(B)	Pb is formed					
	(C)	PbSO ₄ is consu	med		(D)	H ₂ SO ₄ is consu	med				
94.	A so	olution of pH 9.0	is one	thousand time	s as ba	asic as a solution	of pH	?			
	(A)	6	(B)	7	(C)	4	(D)	10			
95.	Whi	ch of the followin	ng is a	cidic salt?							
	(A)	$(NH_4)_2CO_3$	(B)	KClP ₄	(C)	KHSO ₄	(D)	BaO			
96.	Exce	essive solubility	of alco	hol in water is	due to	9?					
	(A)	Covalent bond			(B)	Ionic bond					
	(C)	Hydrogen bond	with	water	(D)	None of these					
97.	Which one of the following informations can be obtained on the basis of LeChatelier's principle?										
	(A)	Shift in equilib	rium p	osition on cha	nging v	value of a constar	ıt				
	(B) Dissociation constant of a weak acid										
	(C)	Energy change	in a r	eaction							
	(D)	Equilibrium con	nstant	of a chemical	reactio	n					
98.	At room temperature, the reaction between NO and O ₂ to give NO ₂ is fast, while that between CO and O ₂ is slow. It is because?										
	(A)	CO is smaller in	n size	than that of N	0						
	(B)	CO is poisonous	3								
	(C)	The activation	energy	for the reaction	n 2NC	$O + O_2 = 2NO_2$ is	less				
	(D)	The intrinsic er	ergy (of the reaction	2NO +	$O_2 = 2NO_2$ is less	88				
99.		=				rea boils at 100 volume will boil a		. The aqueous			
	(A)	$100.75^{\circ}\mathrm{C}$	(B)	$100.5^{\circ}\mathrm{C}$	(C)	100°C	(D)	100.25°C			
100.	Size	of colloidal parti	cles v	aries?							
	(A)	10 ⁶ - 10 ⁻⁹ m	(B)	$10^{-9} - 10^{-12} m$	(C)	10 ⁻³ - 10 ⁻⁹ m	(D)	10 ⁻¹² - 10 ⁻¹⁹ m			
						•					