ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (ZOOGEOGRAPHY)

COURSE CODE: 133

Register Number:		
		Signature of the Invigilator (with date)
		(with date)

COURSE CODE: 133

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	environment.								
	(A)	Population (B) Community	(C)	Lithosphere	(D) Ecosystem			
2.	The	number of species ir	a particular com	munit	y is known as				
	(A)	complexity		(B)	diversity				
	(C)	the niche		(D)	the intrinsic fa	actor			
3.	If re	sources are not in sh	ort supply,	w	ould not be expe	ected to occur.			
	(A)	Mutualism (B)	Amensalism	(C)	Competition	(D) Predation			
4.	Due	to competition, an a	nimal's	may l	oe observed in na	ature.			
	(A)	fundamental niche		(B)	realized niche				
	(C)	deme		(D)	habitat				
5.	each	=	l. However, they		*	he frogs do mate with reat degree. They are			
	(A)	Populations		(B)	Communities				
	(C)	Demes		(D)	Ecosystems				
6.	The	study of population s	structure is						
	(A)	demography		(B)	etymology				
	(C)	ecology		(D)	helm in tho log y				
7.	Modular animals are colonies of genetically identical organisms produced								
	(A)	parthenogenically		(B)	by asexual clor	ning			
	(C)	only during estrus	•	(D)	via internal fer	tilization			
8.		e III survivorship cu as fish, shows	irves, characteris	tic of	most invertebra	ates and vertebrates			
	(A)	rapid mortality at e	arly ages	(B)	constant morta	lity during life			
	(C)	rapid mortality at la	ater ages	(D)	none of the abo	ve			
9.	In th	ne equations describi	ng population gro	wth, I	R indicates the				
	(A)	intrinsic rate of inci	rease	(B)	carrying capac	ity			
	(C)	number in the popu	lation	(D)	death rate				

10.	In the equations describing population growth, K indicates the							
	(A)	intrinsic rate of	incre	ease	(B)	carrying cap	acity	
	(C)	number in the p	opul	ation	(D)	death rate		
11.	Exp	-	may	be graphed (tir	me vei	rsus populatio	on size) in a(n) shaped	
	(A)	S	(B)	K	(C)	C	(D) J	
12.	Pred	lator/prey and pa	rasite	e/host relationsh	nips ar	e classically co	onsidered to be	
	(A)	++	(B)	+-	(C)	- 0	(D)	
13.		elationship that : ies benefits but t					vo species in which on as	
	(A)	Commensalism	(B)	Amensalism	(C)	Mutualism	(D) Parasitism	
14.	comp foraș	petition, the bird	s wil. heigl	l use the limitir	ng resc	ource in a slig	re shown that to avoid htly different way (e.g. ets of slightly different	
	(A)	niche overlap			(B)	character dis	splacement	
	(C)	competitive excl	lusion	ı	(D)	niche adjusti	ment	
15.		s which divide u ribed as belongin			s descr	ibed in the pr	evious question may be	
	(A)	Deme	(B)	Niche	(C)	Guild	(D) Population	
16.	The	relationship betv	veen j	oredator and pre	ey is be	est characteriz	zed by	
	(A)	character displa	iceme	nt	(B)	functional ni	ches	
	(C)	realized niches			(D)	coevolution		
17.		pecies which is o					such that its absence	
	(A)	keystone species	S		(B)	top dog		
	(C)	primary predate	or		(D)	primary guil	d	
18.	Α	links tro	phic l	evels and depict	s the t	ransfers of en	ergy and materials.	
	(A)	food web			(B)	pyramid of n	umbers	
	(C)	pyramid of ener	gy		(D)	pyramid of b	iomass	

19.	Appr	oximatelyerted into new bioma	percent of the ass in the next tro	energ phic le	y available at evel.	one trophic level is
	(A)	5 (B)	10	(C)	25	(D) 75
20.	Nutr throu		between the bid	otic ar	nd abiotic compo	onents of ecosystems
	(A)	energy pyramids		(B)	food webs	
	(C)	biogeochemical cycl	es	(D)	predation	
21.		e are many exception	ons to the classic	pyram	ids, but the pyr	camid of may
	(A)	numbers (B)	biomass	(C)	carnivores	(D) energy
22.	Inter	eactions among deme	es resulting in ger	e flow	and recolonizat	tion is referred to as
	(A)	demography		(B)	parthenogenes	
	(C)	Semelparity		(D)	metapopulatio	n dynamics
23.		organism capable of cred to as	reproducing mon	re than	n one time dur	ing its life history is
	(A)	Iterparous (B)	Parthenogenic	(C)	Semelparous	(D) a cohort
24.	Abio beca	tic extrinisic factors use the magnitude o	such as floods a: f their effect is no	nd fire t relat	es are said to be ed to population	e 1 size.
	(A)	density dependent		(B)	density indepe	
	(C)	limiting factors		(D)	competition ba	ased
25.	Hari	mless species that re	semble poisoness	or har	mful species are	e referred to as
20.	(A)	keystone predators		(B)	endoparasites	
	(C)	mimics		(D)	host species	
26.	Glob	al decline in biodive	rsity is primarily	a cons	equence of	
	(A)	Disease	·	(B)		entation and Loss
	(C)	Predation		(D)	Recreational h	nunting.
27.	Cnic	larians are characte	rized by a———		—grade of orga	nization.
	(A)	cell-tissue		(B)	tissue-organ	
	(C)	organ-system		(D)	cellular	
28.	The	majority of organism	ns exhibit the		——grade of org	anization.
 .	(A)	cell-tissue		(B)	tissue-organ	
	(C)	organ-system		(D)	cellular	
	\ - /					

29.	Lar	ger size attained	by m	ore evolutionaril	y adva	nced organisms	prevented effective	
	(A)	reproduction			(B)	circulatory syst	ems	
	(C)	respiration by	cells d	leep within a bod	y(D)	digestive system	ns	
30.	Which of the following is not one of the four types of tissues?							
	(A)	Nervous			(B)	Muscular		
	(C)	Mesodermal			(D)	Epithelial		
31.	A fil	orous protein tha	ıt is p	articularly abun	dant ii	n many types of o	connective tissues is	
	(A)	Keratin			(B)	Collagen		
	(C)	Sclerenchyma			(D)	Parenchyma		
32.	Whi	ch of the followir	ng is a	ı pseudocoelomat	e anir	nal?		
	(A)	a sponge	(B)	a nematode	(C)	a fish	(D) a jellyfish	
33.		anisms that can mirror images ar				al line into left a — symmetry.	nd right halves that	
	(A)	Spherical	(B)	Radial	(C)	Biradial	(D) Bilateral	
34.	Thos	se parts of the bo	dv th	at are farther ro	m the	middle of the boo	dy are said to be	
-	(A)	Ventral	(B)	Dorsal	(C)	Distal	(D) Proximal	
35.		and right halves.	-	ne is the imagina	ry pla	nne dividing a bil	ateral organism into	
	(A)	Sagittal	(B)	Transverse	(C)	Frontal	(D) Coronal	
36.	Whi	ch of the followin	ng is n	ot characteristic	of pro	otostomes?		
	(A)	blastopore form	s the	mouth opening				
	(B)	radial cleavage						
	(C)	schizocoelous d	eveloj	oment				
	(D)	mosaic embryo						
37.	The	term ecosystem	was	coined by				
	(A)	Odum	(B)	Reiter	(C)	Ernst Haeckel	(D) Tansley	
38.	Ecos	system consists o	\mathbf{f}	,				
	(A)	A population						
	(B)	A population ar	nd its	non-living enviro	onmen	nt		
	(C)	A biotic commu	nity					
	(D)	Temperature						

39.	Whi	ch one is not a f	actor o	f the abiotic env	vironm	ent?	
	(A)	Sunlight	(B)	Decomposers	(C)	Water	(D) Temperature
40.	Key	stone species in	an eco	system are thos	se		
	(A)	Present in max	ximum	number			
	(B)	Contributing t	o ecosy	stem properties	3		
	(C)	That are most	freque	nt			
	(D)	Attaining large	e biom	ass			
41.	A fu	nctional aspect	of an e	cosystem is			
	(A)	Producers, con	sumer	s and abiotic en	vironn	nent	
	(B)	Regulation of p	oopula	tion			
	(C)	Light, tempera	ature, c	xygen and carb	ondi-o	xide	
	(D)	Both (A) and (C)	•			
42.	Biot	ic components o	f an ec	osystem consist	s of		
	(A)	Producers			(B)	Consumers	8
	(C)	Decomposers			(D)	All of the a	above
43.	Driv	ving force of ecos	system	is			
	(A)	Solar energy			(B)	Biomass	
	(C)	Producers			(D)	Carbohydr	rate in plants
44.	The	number of prim	ary pr	oducers within	a speci	fied area wo	ould be maximum in
	(A)	Desert			(B)	Forest ecos	system
	(C)	Grassland eco	system	ı	(D)	Pond ecosy	ystem
4 5.	Max	kimum number i	n pond	l ecosystem is of	f	·	
	(A)	Producers	(B)	Consumers	(C)	Top consu	mers (D) Decomposers
46.		ve completely re ersely affected B			ers fro	m an ecosy	stem functioning will be
	(A)	Energy flow w	ill be b	locked			
	(B)	Rate of decom	positio	n of other comp	onents	will be very	high
	(C)	Herbivore will	not re	ceive solar ener	gy		
	(D)	Mineral move	ment w	ill be blocked			

47.	Food	d levels in an ecosystem are called							
	(A)	Trophic levels	(B)	Consumer levels					
	(C)	Producer levels	(D)	Herbivore levels					
48.	The	ultimate trophic level of any food chai	in is m	ade of					
	(A)	Animals	(B)	Tertiary consumers					
	(C)	Top carnivore	(D)	Decomposers					
49.	Ina	food chain, animal constitute the							
	(A)	First trophic level	(B)	Second trophic level					
	(C)	Last trophic level	(D)	None of the above					
50.	Seco	ond order consumers are		•					
	(A)	All heterotrophs							
	(B)	Animals feeding on plants							
	(C)	Animals preying over herbivorous animals							
	(D)	Larger animals							
51.	Interlocking of food chains results in:								
	(A)	Ecological pyramids	(B)	Food link					
	(C)	Food lock	(D)	Food web					
52.	Organic evolution was defined as								
	(A)	Formation of complex animals							
	(B)	Evolution of land and its organisms							
	(C)	Formation of existing animals and change over a period of time	l plan	ts from simpler ones by a gradual					
	(D)	All of the above							
53.	The	strongest support of organic evolution	come	s from the study of					
	(A)	Fossils	(B)	Comparative anatomy					
	(C)	Embryology	(D)	Taxonomy					
54.	The	early believe of spontaneous origin of	life wa	as disproved by					
	(A)	Charles Darwin	(B)	Louis Pasteur					
	(C)	Koch .	(D)	Lederberg					

55 .	The theory of spontaneous generation was given by						
	(A)	Redi	(B)	Pasteur	(C)	Spallanzani	(D) Van Helmont
56.	Who	was one of the g	reate	st advocates	of the the	ory of special c	reation?
	(A)	Huxley	(B)	Charles Da	rwin (C)	Aristotle	(D) Father Saurez
57.	Abo	ut how long ago v	vas th	ne earth form	ied?		
	(A)	20 million years	s ago		(B)	10 million yea	irs ago
	(C)	5 million years	ago		(D)	3 million year	s ago
58.	"Evo	olution: A modern	ı synt	hesis" is the	title of a l	oook written by	
	(A)	Thomas Huxley	,		(B)	Aldous Huxley	y
	(C)	J.B.S. Haldane			(D)	Julian Huxley	
59 .	Lam	arck's argument	in su	pport of The	ory of Evo	lution was cent	red around
	(A)	Use and Disuse	of or	gans	(B)	Survival of the	e fittest
	(C)	Continuous var	iation	s	(D)	All of the abov	re
60.	Cha	rles Darwin knev	v of m	utations. He	called the	em	
	(A)	Continuous var	iation	s	(B)	Discontinuous	variation
	(C)	Sports		·	(D)	None of the ab	oove
61.	The	author of the cla	ssical	work "The	origin of li	fe on earth" is	
	(A)	Darwin	(B)	Fox	(C)	Oparin	(D) Urey
62.	Acco	ording to Lamarc	k the	presence of v	estigial o	rgans in animal	ls was due to
	(A)	Change of habit	at		(B)	Environmenta	l reaction
	(C)	Continuous dist	use		(D)	Inheritance of	acquired character
63.	The	law which states	that	"Ontogeny re	epeats phy	ylogeny" is knov	wn as
	(A)	Law of heredity			(B)	Biogenetic law	<i>i</i>
	(C)	Theory of natur	al sel	ection	(D)	Mutation theo	ry
64.	Forn	nation of large m	olecul	les from sma	ll nucleop	roteins is terme	ed as
	(A)	Coacervation			(B)	Polymerization	n
	(C)	Aggregation			(D)	All of these	
65.	Darv	win's theory is al	so kno	own as			
	(A)	Germinal — sel	ection	theory	(B)	Pangenesis th	eory
	(C)	Special creation	theo	ry	(D)	Spontaneous g	generation theory
133					8		

66.	The	first geological time scale was	developed	by						
	(A)	Aristotle	(B)	Charles Lapwo	rth				
	(C)	Adam Sedgwick	(D)	Giovanni Avdu	ina				
67.	Opa	rin's Theory is based on								
	(A)	Artificial synthesis	(B)	Spontaneous ge	eneration				
	(C)	God's will	. (D)	All of the above	,				
68.	Whi	ch one of the following is the o	utcome of e	evolu	utionary process	?				
	(A)	Over production								
	(B)	Struggle for existence								
	(C)	Adaptation of an organism to its environment								
	(D)	None of the above								
69 .	Which of the following is considered as evolutionary force?									
	(A)	Inheritance of acquired chara	icters (B) -	Speciation					
	(C)	Mutation	(D)	Natural selection	on				
70.	Natural selection means									
	(A)	Better adaptability	(B)	Elimination of	less adaptation				
	(C)	Better survival	. (D)	All of the above	:				
71.	The most important requirement of evolution is									
	(A)	Adaptation	. (B)	Mutation					
	(C)	Sexual reproduction	(D) -	Development a	bnormality				
72.	Which of the following was the contribution of Hugo de Vries?									
	(A)	Theory of mutation								
	(B)	Theory of natural selection								
	(C)-	Law of dominance								
	(D)	Theory of inheritance of acqu	ired chara	cters	3					
73.		ch law of evolution states tha e abundant melanin pigment?	t warm-blo	ode	d mammals of l	not and humid area	٤			
	(A)	Dollo's Law (B) Gloger	's Law (C)	Cope's law	(D) Gause's Law				

14.	4. Phenomenon of industrial melanism demonstrate						
	(A)	Natural selection	on		(B)	Induced mutati	on
	(C)	Geographical is	solatio	on	(D)	Reproductive is	olation
75.	In a	pond ecosystem,	the s	hape of pyramid	numb	pers is	
	(A)	Upright	(B)	Inverted	(C)	Linear	(D) Irregular
76.	The	pyramid of energ	gy is a	lways			
	(A)	Inverted			(B)	Upright	
	(C)	Both upright ar	nd inv	erted	(D)	Inverted of fore	st ecosystem
77.	How	many Zoogeogra	aphica	al regions are the	ere in	this world?	
	(A)	7	(B)	9	(C)	6	(D) 12
78.	Whi	ch Zoogeographic	regio	on is called as liv	ing m	useum?	
	(A)	Palaeartic	(B)	Ethiopian	(C)	Oriental	(D) Australian
79.	Who	first divided the	Zoog	eographic region	s?		
	(A)	Sclater	(B)	Wallace	(C)	Linnaeus	(D) Darwin
80.	Rep	roductive isolatio	n in s	ympatric speciat	tion de	evelops with a	
	(A)	Geographic Bar	rier		(B)	Barrier to gene	flow
	(C)	Change in chro	mosor	ne .	(D)	Barrier to matin	ng
81.	Sym	patric speciation	occui	es most commonl	y in		
	(A)	Mammals	(B)	Plants	(C)	Birds	(D) Fishes
82.		ılation with ove ılations in the ar			range	s are known as	
	(A)	Sympatric			(B)	Allopatric	
	(C)	Parapatric			(D)	None of the abo	ve
83.	Har	dy-Weinberg law	is ass	sociated with			
	(A)	Plant disease			(B)	Eugenics	
	(C)	Population gene	etics		(D)	Embryology	
84.	The	total collection of	f gene	s, at any one tim	ie, in a	a unit evolution i	s called the
	(A)	Genotype			(B)	Demotype	
	(C)	Multiple allelic	group)	(D)	Gene pool	

85.	Ribo	ozyme is								
	(A)	RNA with extra phosphate								
	(B)) RNA without phosphate								
	(C)	C) RNA without sugar								
	(D)	RNA with enzyme activity								
86.	Enz	ymes with different molecular configur	ations	s, but with same function are called						
	(A)	Isoenzymes	(B)	Apoenzymes						
	(C)	Co-enzymes	(D)	Inducible enzymes						
87.	Which of the following causes water pollution?									
	(A)	2,4-D and pesticides	(B)	Smoke						
	(C)	Automobile exhaust	(D)	Aeroplane						
88.	The	Biological amplification of pollutant m	eans							
	(A)	The accumulation of pollutants in top carnivores through food chain								
	(B)	The increase in the potentiality of the living organism								
	(C)	The increase in the population of top carnivores								
	(D)	None of the above								
89.	DDT causes egg shell thinning in birds Because it inhabits									
	(A)	Magnesium ATPase	(B)	Calcium ATPase						
	(C)	Carbonic anhydrase	(D)	Calmodulin						
90.	Pollution caused by persistent pesticides is relatively more dangerous to which type of organisms?									
	(A)	Herbivores	(B)	Producers						
	(C)	Top-carnivores	(D)	First level carnivores						
91.	Minmata disease is a pollution related disease which results from									
	(A)	Oil spill into sea								
	(B)	Release of human organic waste into	drink	ing water						
	(C)	Accumulation of arsenic into atmosph	ere							
	(D)	Release of industrial waste of mercur	y into	fishing water						
92.	Rele	ease of phosphates and nitrates in wate	r bodi	es likes lakes lead to						
	(A)	Increased growth of decomposers	(B)	Nutrient enrichment						
	(C)	Reduced algal growth	(D)	None of these						

93.	Eutrophication refers to									
	(A)	High production in an aquatic ecosys	tem							
	(B)	Low production in a terrestrial ecosy	stem							
	(C)	Stable production in a terrestrial eco	systen	n						
	(D)	Low production in an aquatic ecosyst	em							
94.	Con	aplete eutrophication of a lake renders	it							
	(A)	Nutrient rich and productive	(B)	Nutrient poor and unproductive						
	(C)	Nutrient rich and unproductive	(D)	Nutrient poor and productive						
95.	BOI	O of a river water is found very high. T	his me	eans water						
	(A)	Is clean	(B)	Is highly polluted						
	(C)	Contain algae	(D)	Contain many dissolved minerals						
96.	Thermal pollution of water bodies due to									
	(A)	A) Discharge of waste from mining								
	(B)	Discharge of agricultural run-off								
	(C)	Discharge of chemicals from industri	es							
	(D)	Discharge of heat (hot water) from po	wer p	lants						
97.	Sounds above what level are considered hazardous noise pollution?									
	(A)	Above 30 db	(B)	Above 80 db						
	(C)	Above 120db	(D)	Above 100db						
98.	The	The most outstanding danger at present for survival of living Beings on earth is								
	(A)	Glaciation	(B)	Deforestation						
	(C)	Radiation hazards	(D)	Desertification						
99.	The	term 'Nuclear winter' is associated wit	th							
	(A)	Nuclear war	(B)	Nuclear disarmament						
	(C)	Nuclear weapon testing	(D)	Aftermath of a nuclear holocaust						
100.	Whi	ch of the following chemicals causes bo	ne ca	ncer and degeneration of tissues?						
	(A)	Iodine-131	(B)	Calcium-40						
	(C)	Iodine-127	(D)	Strontium-90						
				-						
133		12								