Module Name : MSc Bioinformatics-E Exam Date : 18-Sep-2020 Batch : 16:00-18:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
Object	tive Question			
1	1	The approximate number of nucleotides in a microRNA is:	4.0	1.00
		A1 12		
		A2 22		
		A3 32		
		A4 42 :		
Object	tive Question			
2	2	Sertoli cells are present in:	4.0	1.00
		A1 ovarian stroma :		
		A2 prostate glands:		
		A3 germinal epithelium		
		A4 seminiferous tubules :		
Object	tive Question			
3	3	DNA replication and synthesis of histone proteins occur in:	4.0	1.00
		Al G1 phase		
		A2 G2 phase		
		A3 S phase		
		A4 M phase		
01.1	·			
Object 4	tive Question	The rate of synonymous nucleotide substitution is high at:	4.0	1.00
		A1 First codon position		

	A2 Second codon position		
	A3 Third codon position		
	A4 Fourth codon position		
	ective Question		
5	5 The phylogenetic method may generate multiple	trees: 4.0	1.00
	A1 Neighbour joining		
	A2 Maximum parsimony		
	A3 Maximum likelihood		
	A4 UPGMA :		
Object	ective Question		
Object 6	6 Paralogous genes have:	4.0	1.00
	Al Same function in different organisms.		
	A2 Same function in one organism.		
	A3 Different functions in different organisms.		
	A4 Different functions in one organism.		
Object	ective Question		
7	7 During eukaryotic DNA replication, lagging strar	nd is formed by	1.00
	A1 DNA fragments		
	A2 Okazaki fragments		
	A3 RNA fragments		
	A4 Nucleotide fragments		
Object			
Object	ective Question 8 NOR (Nucleolus organizing regions) occurs in the	the region of 4.0	1.00

A2 primary constriction		
A3 telomer		
A4 centromere		
The main control point in glycolysis is:	4.0	1.00
Al Phosphofructokinase		
A2 Hexokinase		
A3 Phosphoglucoisomerase:		
A4 Enolase		
The main control point in citric acid cycle (Krebs cycle) is:	4.0	1.00
A1 Isocitrate dehydrogenase		
A2 Malate dehydrogenase		
A3 Succinic dehydrogenase:		
A4 Aconitase		
If a nucleotide sequence encoding a protein is known and a homologous protein to be identified, which of the following will be the best analysis tool	4.0	1.00
A1 BLASTp		
A2 BLASTn		
A3 BLASTx		
A4 tBLASTn		
	The main control point in glycolysis is: Al Phosphofructokinase: A2 Hexokinase: A3 Phosphoglucoisomerase: A4 Enolase: The main control point in citric acid cycle (Krebs cycle) is: A1 Isocitrate dehydrogenase: A2 Malate dehydrogenase: A3 Succinic dehydrogenase: A4 Aconitase: If a nucleotide sequence enceding a protein is known and a homologous protein to be identified, which of the following will be the best analysis tool A1 BLASTp: A2 BLASTn: A3 BLASTr.	A3 telomer A4 centromere The main control point in glycolysis is: A1 Phosphofructokinase A2 Hexokinase A3 Phosphoglucoisomerase A4 Enolase The main control point in citric acid cycle (Krebs cycle) is: A1 Isocitrate dehydrogenase A2 Malate dehydrogenase A3 Succinic dehydrogenase A4 Aconitase If a nucleotide sequence encoding a protein is known and a homologous protein to be identified, which of the following will be the best analysis tool A1 BLASTp A2 BLASTn A3 BLASTr

12	12	Which is the best annotated database?	4.0	1.00
		A1 Genbank		
		A2 PDB:		
		A3 Prodom		
		A4 Swissprot :		
Object	tive Question			
	13	Which is the default scoring matrix used in BLAST?	4.0	1.00
		A1 PAM62		
		A2 BLOSUM 62		
		A3 BLOSUM 60		
		A4 BLOSUM 80		
	tive Question			
14	14	PAM matrices are derived by noting evolutionary changes in protein sequences that are more than:	4.0	1.00
		A1 80% similar		
		A2 60% similar		
		A3 40% similar :		
		A4 25% similar :		
Object	tive Question			
	15	In Molecular Dynamics simulation, the dependence is on:	4.0	1.00
		A1 only position		
		A2 only momentum		
		A3 both position and momentum		

	ctive Question			
16	16	In Needleman Wunsch algorithm of pairwise alignment of sequences with lengths n and m, the computational time is proportional to: Al n x m	4.0	1.00
		A2 (n+1) x (m+1)		
		A3 n+m		
		A4 nx (m+1)		
Objec	ctive Question			
17	17	In a PHYLIP output, the first line is two numbers, what do they indicate?	4.0	1.00
		Al Number of sequences, length of alignment:		
		A2 Length of alignment, number of sequences		
		A3 Number of gaps, number of sequences		
		A4 Number of sequences, number of gaps		
Objec	ctive Question			
18	18	BLAT is used to find:	4.0	1.00
		A1 regions of higher identity within genomic assemblies		
		A2 regions of higher differences within genomic assemblies		
		A3 folds in a RNA sequence		
		A4 secondary structures in a given protein :		
Objec	ctive Question			
19	19	Homology modeling may be distinguished from ab initio prediction because:	4.0	1.00
		Al Homology modeling requires a model to be built		
		A2 Homology modeling requires alignment of a target to a template		
		A3 Homology modeling is usefully applied to any protein sequence		

		A4 The accuracy of homology modeling is independent of the percent identity between the target and the template :		
Object	tive Question			
20	20	A left handed alpha helix falls in the Ramachandran plot under:	4.0	1.00
		A1 allowed region		
		A2 partially allowed region		
		A3 disallowed region		
		A4 line joining allowed and partially allowed region		
Object	tive Question			
21	21	Enantiomers are:	4.0	1.00
		A1 stereoisomers		
		A2 distinguished by plane polarized light		
		A3 are not superimposible on their mirror images:		
		A4 Are superimposable on their mirror images		
Ohiaat	tive Question			
22	22	The following structure is the amino acid:	4.0	1.00
		соон о		
		C- Cn ₂ - C- Nn ₂		
		NH ₃ ⁺		
		Al asparagine :		
		A2 leucine		
		A3 lysine		
		A4 Glutamate		
01.	tive Question			

	A3 H > C > O : $A4 C > H > O$.		
	$ \begin{array}{c} A1 \\ C > N > C \\ \vdots \\ A2 \\ Na > F > Fe \\ \vdots \end{array} $		
ve Question	A correct sequence(s) of the electro negativities of atoms from greatest to least is (are):	4.0	1.00
	A4 gene duplication, mutation/evolution, protein modules :		
	A3 denaturation, renaturation, saltation		
	A2 inversion, dispersion, concentration		
	Al transcription, translation, transposition		
ve Question	The three "mechanisms" by which existing proteins can be changed over the <u>course of time</u> to produce new proteins:	4.0	1.00
	A4 the space filling dimension of an atom.		
	A3 The distance over which a dipole moment is exhibited.		
	A2 The distance separating the system and its surroundings.		
	Al The radius of gyration for a macromolecule.		
ve Question	The van der Waals radius is:	4.0	1.00
	A4 The ionization of a strong acid.		
	A3 : The use of a liquid bridge in an electrochemical cell.		
	A2 Increasing the solubility of a protein in solution by adding ions.		
	A1 Changes in an amino acid's isoelectric point.		

27	tive Question 27	The local spatial arrangement of a polypeptide's backbone atoms without regard to the conformation of its side chains can	4.0	1.00
		be called?		
		A1 Primary structure		
		A2 Secondary structure		
		A3 Tertiary structure		
		A4 Quaternary structure		
Obiec	tive Question			
28	28	The ionic strength of a 0.015 M solution of CaCl ₂ is:	4.0	1.00
		A1 0.037		
		A2 0.090		
		A3 0.045		
		A4 0.030		
Ohiaa	tive Question			
29	29	What is the correct name for this biochemical functional group?	4.0	1.00
		what is the correct manie for this ordenement ranctional group.		
		- C=NH		
		A1 amino :		
		A2 imidazole :		
		A3 amido :		
		A4 imino :		
Objec	tive Question			
30	30	Clathrate is the name given to:	4.0	1.00
		A1 An ionized amino acid side chain		
		A2 the secondary structure of a membrane-bound protein		

		A3 the physical structure of water molecules around a nonpolar molecule.		
		A4 a plasma membrane structure.		
Ohiec	tive Question			
	31	A stone of mass 500 gram, attached to the end of a string of length 1 m is whirled in a horizontal circle at a speed of 10 m/s. What is the tension in the string?	4.0	1.00
		A1 25 N		
		A2 50 N		
		A3 25,000 N		
		A4 50,000 N		
Objec	tive Question			
32	32	In the case of uniform circular motion, the physical quantity that does not remains constant is	4.0	1.00
		A1 mass:		
		A2 speed:		
		A3 linear momentum		
		A4 kinetic energy		
Object	tive Question			
	33	If $\Phi = x^2 - xyz$, then $\nabla \Phi$ at (4, 3, 2) is	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ 4i - 3j + 2k \end{array} $		
		$ \begin{array}{c} A2 \\ \vdots \\ 16 \text{ i} - 3 \text{ j} + 2 \text{ k} \end{array} $		
		$ \stackrel{\text{A3}}{:} 2 i - 8 j + 12 k $		
		$ \begin{array}{c} A4 \\ \vdots \\ 2 i - 3 j + 2 k \end{array} $		
	tive Question			
Object	five Question	The emissive power of a perfect black body is	4.0	1.00
Object 34	34	The chinssive power of a periodic older body is		

		A2 0.5		
		A3 ₁ :		
		A4 0.75		
Obiec	ctive Question			
35	35	Two thermometers A and B exposed to sunlight. The value of A is painted black but that of B is not painted. The correct statement regarding this case is	4.0	1.00
		Al Temperature of B will rise faster and shows higher than temperature A:		
		A2 Temperature of A will remain more than temperature B		
		A3 Both of A and B show equal rise from the beginning:		
		A4 Temperature of A will rise faster than B but the final temperature will be same in both:		
Objec	ctive Question			
36	36	Speed of three molecules of a gas are 3 ms ⁻¹ , 4 ms ⁻¹ and 5 ms ⁻¹ . The r.m.s. speed of these molecule is,	4.0	1.00
		A1		
		A2 4.08 ms ⁻¹		
		A3 7.1 ms ⁻¹		
		A4 5 ms ⁻¹		
Ohioo	ctive Question			
37	37	When a source is going away from a stationary observer, with a velocity equal to that of sound in air, then the frequency heard by the observer will be	4.0	1.00
		Al Same		
		A2 Half		
		A3 Double:		
		A4 One third		
OF.	ctive Question			

II.		II	11
	A1 300 m/s		
	A2 3.8 x 10 ¹⁰ m/s		
	A3 3 x 10 ⁸ m/s		
	A4 9 x 10 ¹⁹ m/s		
bjective Ques	ion		
39	If a capacitor of capacity C is charged with charge Q at a potential of V, then the potential energy stored in the capacitor is	4.0	1.00
	A1 1/2 QV :		
	A2 1/2 CV		
	A3 _{QV}		
	A4 CV		
jective Ques	ion		
40	Which of the following phenomenon cannot take place with sound wave?	4.0	1.00
	Al Reflection		
	A2 Interference		
	A3 Diffraction		
	A4 Polarization		
jective Ques	ion		
41	Interactions which hold and stabilize sub units in quratnery structure of proteins are	4.0	1.00
	A1 Hydrophilic interactions		
	A2 Hydrophobic interactions		
	A3 Hydrogen bonding		
	A4 Ionic bonding		

	ctive Question			
42	42	Process of folding depends upon the	4.0	1.00
		Al Solvent		
		A2 The concentration of salts		
		: The concentration of saits		
		A3 pH		
		A4 All of these		
		: All of these		
Objec 43	ctive Question		4.0	1.00
43	43	If entropy is increased than overall reaction is	4.0	1.00
		A1 ,		
		A1 non spontaneous		
		A2 spontaneous		
		A3		
		A3 no reaction		
		A4 displacement reaction		
Objec	ctive Question			
44	44	Disulphide bonds are formed between	4.0	1.00
		A1 cysteine residues that are close together		
		A2		
		A2 glycine residues that are close together:		
		A3 proline residues that are close together		
		A4		
		A4 histidine residues that are close together:		
	ctive Question			
45	45	Cleaving of peptide chain is done by	4.0	1.00
		A.1		
		A1 Tyrosine		
		A2 Trypsin		
		:yr		
		A3 Tryptophan		
		A4 Arginine		

	II		II	11
Object	tive Question			
	46	The molecular formula for deoxyribose sugar and ribose sugar respectively are	4.0	1.00
		$^{\mathrm{A1}}_{:}$ $^{\mathrm{C}_5\mathrm{H}_{10}\mathrm{O}_4}$ and $^{\mathrm{C}_5\mathrm{H}_{10}\mathrm{O}_6}$		
		$^{\mathrm{A2}}_{\mathrm{5}}\mathrm{C_{5}H_{10}O_{4}}$ and $\mathrm{C_{5}H_{10}O_{5}}$		
		$^{\mathrm{A3}}_{\mathrm{:}}$ $^{\mathrm{C}_5\mathrm{H}_{10}\mathrm{O}_5}$ and $^{\mathrm{C}_5\mathrm{H}_{10}\mathrm{O}_4}$		
		$^{\rm A4}_{\rm :}$ $\rm C_5H_{10}O_5$ and $\rm C_6H_{10}O_4$:		
Object	etive Question			
	47	Predominant interactions between phospholipids that stabilize a biological membrane include	4.0	1.00
		A1 Hydrogen bonds and covalent interactions.		
		A2 Van der Waal and ionic interactions.		
		A3 Hydrophobic interactions and hydrogen bonding.		
		A4 Covalent and hydrophobic interactions.		
Object	etive Question		<u></u>	
	48	The two amino acids having R groups with a negative net charge at pH 7.0 are	4.0	1.00
		A1 Aspartate and glutamate:		
		A2 Arginine and histidine		
		A3 Cysteine and methionine		
		A4 Proline and valine		
	tive Question			
	49	Two chains of amino acids in an insulin molecule are held together by	4.0	1.00
		A1 Sulfide bridges		
		A2 Disulfide bridges		
		A3 Peptide bond		

		A4 Covalent linkage		
	ive Question			
50	50	Which of the following is first determined as oligomer?	4.0	1.00
		Al Myoglobin		
		A2 Collagen		
		A3 Keratin		
		A4 Hemoglobin		
Object	ive Question	Which of the following is first determined as oligomer? A1 Myoglobin A2 Collagen A3 Keratin A4 Hemoglobin How many dechlorinated isomers would form in presence of light with CH ₃ CH ₂ CH ₃ and Cl ₂ A1 8 A2 6 A3 5 A4 2 ton Halogenation of alkynas generally obey A1 Chargoff's rule A2 Markonikov's rule A3 Anti-Markonikov's rule A4 Newman projection		
	51	How many dechlorinated isomers would form in presence of light with CH ₃ CH ₂ CH ₂ CH ₃ and Cl ₂	4.0	1.00
		A1 8 :		
		A2 6		
		A3 5		
		A4 ₂ :		
Object	ive Question			
52	52	Halogenation of alkynes generally obey	4.0	1.00
		Al Chargoff's rule		
		A2 Markonikov's rule		
		A3 Anti-Markonikov's rule		
		A4 Newman projection		
Object	ive Question			
	53	Which of the following is a balanced equation	4.0	1.00
		A1 CH₃OH +HCl→ CH₃Cl + H₂O		
		A2 Na ₂ CO ₃ + HCl → 2NaCl + CO ₂ + H ₂ O		

	A3 C ₂ H ₆ + 3O ₂ → CO ₂ + 3H ₂ O		
	A4 C ₃ H ₈ +4 O ₂ → 4H ₂ O + 3CO ₂		
Objective Question			
54 54	Natural amino acids found in following conformation	4.0	1.00
	A1 L and D		
	A2 D and R		
	A3 L		
	A4 D and S		
Objective Question			
55 55	Compounds without Chiral center is called	4.0	1.00
	A1 Enantiomer :		
	A2 Diastereoisomer		
	A3 Mesomer :		
	A4 Geometric Isomer		
Objective Question			
56 56	Which one of the following is NOT a keyword in C Language?	4.0	1.00
	A1 for		
	A2 case		
	A3 process		
	A4 break		
Objective Question			
57 57	The size of each atom is determined by	4.0	1.00
	A1 Valence shell		
	A2 Effective nuclear charge		

		A3 Lower atomic weight		
		A4 radiation		
∩Li _{ac}	ctive Question			
Object 58	58	Which of the following are iso electronic species	4.0	1.00
		A1 C2-, Na, C12-		
		A2 Li ⁺ , Be ²⁺ , B ³⁺		
		A3 Mn ²⁺ , Na ⁺ , K ²⁺		
		A4 Cl, Br, I		
	ctive Question			
59	59	Oxygen radical can cause	4.0	1.00
		A1 Removal of toxins from our body		
		A2 Promote oxygen supply to blood cells		
		A3 Tissue damage		
		A4 Removal of kidney stone		
Objec	ctive Question			
	60	The SQL command used to modify existing records of a table is	4.0	1.00
		A1 UPDATE		
		A2 SHOW:		
		A3 CHANGE		
		A4 MODIFY:		
	ctive Question			
61	61	If α , β , γ be the roots of the equation $x^3+px+q=0$ then the value of $\sum \alpha^2\beta$ is	4.0	1.00

	:		
	A2 3p		
	A3 3q		
	A4 3 :		
Objective Question 62 62	The straight lines $x+y=0$, $3x+y-4=0$, and $x+3y-4=0$ form a triangle which is	4.0	1.00
	A1 equilateral :		
	A2 isosceles		
	: Isosceles		
	A3 right angled		
	A4 none of these		
Objective Question 63 63	The state of the s	4.0	1.00
	If the binomial expansion of $(a-b)^n$, $n \ge 5$, the sum of the 5th and 6th terms is zero, then the value of $\frac{a}{b}$ is		
	A1 (n-5)/6		
	$\frac{A2}{:}$ 5/(n-4)		
	A3 6/(n-5)		
	: 6/(n-3)		
	A4 (n-4)/5		
Objective Question 64 64	The state of the second of the	4.0	1.00
04	In how many different ways can the letters of the word 'MATHEMATICS' be arranged so that the vowels always come together?	4.0	1.00
	A1 10080		
	:		
	A2 120960		
	A3 120940		
	A4 4989600 :		

Objec	tive Question			
65	65	A number consists of 3 digits whose sum is 10. The middle digit is equal to the sum of the other two and the number will be increased by 99 if its digits are reversed. The number is	4.0	1.00
		A1 253		
		A2 352 :		
		A3 370		
		A4 145		
Objec	tive Question			
66	66	If $A+B = 45^{\circ}$ then $(1+\tan A)(1+\tan B)$ equals	4.0	1.00
		A1 2		
		A2 _{√3}		
		A3 2/3		
		A4 -2 :		
Objec	tive Question	JI.		
57	67	The equation of the plane passing through the point (2,3,-1) and perpendicular to the vector (3,-4,7) is	4.0	1.00
		$\begin{array}{c} A1 \\ \vdots \\ 3x-4y+7z+13 = 0 \end{array}$		
		$\begin{vmatrix} A3 \\ 3x + 4y - 7z + 13 = 0 \end{vmatrix}$		
		$ \begin{array}{c} A4 \\ : \\ 3x-4y+7z-13 = 0 \end{array} $		
Objec	tive Question			
58	68	In what ratio must a grocer mix two varieties of pulses costing Rs. 15 and Rs. 20 per kg respectively so as to get a mixture worth Rs. 16.50 kg?	4.0	1.00
		A1 7:3		
		A2 3:7		
		A3 5:7		

	A4 7:5		
Objective Question			
69	The coordinates of the points which divide the line segment joining the points (2,-4,3), (-4,5,6) in the ratio 2:1 is	4.0	1.00
	A1 2,2,5		
	A2 -2,2,5		
	A3 2,-2,-5		
	A4 -2,2,-5		
	: -3-7 °		
Objective Question			
70	If $\log a/(b-c) = \log b/(c-a) = \log c/(a-b)$ then the value of abc is	4.0	1.00
	A1 -1		
	A3 ₂		
	A4		
	A4 -2		
Objective Question			
71	A glass rod rubbed with silk acquires a charge of 8 x 10-12C. The number of electrons it has gained or lost	4.0	1.00
	A1 5 x 10 ⁻⁷ (gained)		
	$^{A2}_{:}$ 5 x 10 ⁷ (lost)		
	A3 2 x 10 ⁻⁸ (lost)		
	A4 -8 x 10 ⁻¹² (lost)		
Objective Question			
72 72	The electrostatic force between two point charges kept at a distance d	4.0	1.00
	apart, in a medium ϵr = 6, is 0.3 N. The force between them at the same separation in vacuum is		
	A1 20 N		

		A2 0.5 N		
		A3 1.8 N		
		A4 2 N		
Ohiaa	tive Question			
73	73	Electric field intensity is 400Vm ⁻¹ at a distance of 2m from a point charge. It will be 100 Vm ⁻¹ at a distance?	4.0	1.00
		A1 50 cm		
		A2 4 cm		
		A3 4 m		
		A4 1.5 m		
	tive Question			
74	74	Two point charges +4q and +q are placed 30 cm apart. At what point on the line joining them the electric field is zero?	4.0	1.00
		A1 15cm from the charge q		
		A2 7.5cm from the charge q		
		A3 20cm from the charge 4q		
		A4 5cm from the charge q		
Objec	tive Question			
75	75	A dipole is placed in a uniform electric field with its axis parallel to the field. It experiences	4.0	1.00
		A1 only a net force		
		A2 only a torque		
		A2		
		A3 both a net force and torque		
		both a net force and torque A4 neither a net force nor a torque		
Object	tive Question			

$\begin{bmatrix} A1 \\ \vdots \\ 1/x^2 \end{bmatrix}$		
A2 1/x ³		
$\begin{bmatrix} A_3 \\ \vdots \end{bmatrix} 1/x^4$		
$A4 : 1/x^{3/2}$		
Four charges +q, +q, -q and -q respectively are placed at the corners A, B, C and D of a square of side a. The electric potential at the centre O of the square is	4.0	1.00
A1 1/4πεο(q/a)		
A2 1/4πεο(2q/α)		
A3 1/4πεο(4q/α)		
A4 zero :		
Electric extential anamon (II) of two maint abayroon in	4 0	1.00
Electric potential energy (U) of two point charges is	7.0	1.00
$^{\mathrm{A1}}_{:}$ q1q2/4 π sor ²		
A2 q1q2/4πεοr :		
A3 pEcosθ:		
A4 pEsinθ:		
The work done in moving 500 µC charge between two points on equipotential surface is	4.0	1.00
A1 zero :		
A2 finite positive		
A3 finite negative		
	A2 1/x ³ A3 1/x ⁴ A4 1/x ^{3/2} Four charges +q, +q, -q and -q respectively are placed at the corners A, B, C and D of a square of side a. The electric potential at the centre O of the square is A1 1/4πso(q/q) A2 1/4πso(2q/q) A3 1/4πso(4q/q) A4 zero Electric potential energy (U) of two point charges is A1 qqq2/4πsor ² A2 qqq2/4πsor A3 pEcosθ A4 pEsinθ The work done in moving 500µC charge between two points on equipotential surface is A1 zero	A2 1/x3 A3 1/x4 A4 1/x32 Four charges 1q, 1q, -q and -q respectively are placed at the corners A, B, C and D of a square of side a. The electric potential at the centre O of the square is A1 1/4πεο(Q/Q) A2 1/4πεο(2q/Q) A3 1/4πεο(4q/Q) A4 zero Electric potential energy (U) of two point charges is A1 q1q2/4πεστ² A2 q1q2/4πεστ A3 pEcosθ A4 pEsinθ The work done in moving 500μC charge between two points on equipotential surface is A1 zero A2 finite positive

Obje	ctive Question			
80	80	which of the following quantities is scalar?	4.0	1.00
		A1 dipole moment :		
		A2 finite positive		
		A3 electric field		
		A4 electric potential		
Ohio	ctive Question			
81	81	The difference between mamory and storage is that the mamory is	4.0	1.00
01	01	The difference between memory and storage is that the memory is and storage is	1.0	1.00
		A1 Permanent , Temporary :		
		A2 Temporary, Permanent		
		A3 Slow, Fast		
		A4 Large, Less		
Ohio	ctive Question			
82	82	The background of any word document	4.0	1.00
		The background of any word document		
		A1 : Is always white colour		
		A2 Is the colour you preset under the options menu		
		A3 Is always the same for the entire document:		
		A4 Can have any colour you choose		
Object 83	ctive Question		4.0	1.00
03	0.3	The PC (Personal Computer) and the Apple Macintosh are examples of two different	4.0	1.00
		A1 Platforms		
		A2 Applications		
		A3 Programs:		
		A4 Techniques		

II		II.	II
Objective Question			
84	Terminal is a	4.0	1.00
	Al Device used to give supply to a computer		
	A2 Point at which data may leave or enter the computer		
	A3 Input/Output device		
	A4 p.:		
	A4 Point where wires are interconnected:		
Objective Question			
5 85	Which one of the following programming construct divides the problem into sub problem?	4.0	1.00
	A1 Iteration		
	A2 Selection		
	A3 Modularity		
	: Modularity		
	A4		
	: Sequence		
Dhigativa Quastian			
Objective Question 86	Which one of the following is a commercial Anti-Virus software?	4.0	1.00
	9		
	A1 AVAST! Home edition		
	A2 AVG Anti-Virus		
	A3 : Kaspersky Anti-Virus		
	: Kaspersky Anti-Virus		
	A4 Nortan Anti-Virus		
Objective Question 87	to transmit information on the World Wide Web.	4.0	1.00
	to transmit information on the world wide web.		
	A1 TPPH		
	A2 HTTP		
	A3 HPTT		
	AJ TIDOTE		

	A4 HTPT		
Objective Question			
88 88	Which is the slowest Internet connection service?	4.0	1.00
	Al Cable modem		
	A2 Land line		
	A3 Dial up service		
	A4 Digital subscriber line		
Objective Question			
89 89	Junk E-mail is also called	4.0	1.00
	Al Copple crumbs		
	A2 Sniffer script		
	A3 Spoof		
	A4 Spam :		
Objective Question			
90 90	The concept of electronic cash is to execute payment by	4.0	1.00
	Al Cheque		
	A2 Debit card		
	A3 Credit ard		
	A4 ATM card		
Objective Question			
91 91	The mass number of an atom is equal to	4.0	1.00
	A1 The number of protons:		
	A2 The number of protons and electrons		

		A3 The number of neutrons:		
		A4 The number of nucleons		
Objectiv	ve Question			
	92	The pH of a solution is determined by	4.0	1.00
		A1 concentration of salt		
		A2 relative concentration of acids and bases		
		A3 dielectric constant of the medium		
		A4 : environmental effect		
Objectiv	ve Question			
	93	Among the following, the compound that contains ionic, covalent and coordinate linkage is	4.0	1.00
		Al NaCl		
		A2 CaO		
		A3 NH ₃ :		
		A4 NH ₄ Cl:		
Objectiv	ve Question			
	94	Which compounds are isomers?	4.0	1.00
		A1 methanol and methanal		
		A2 n-propanol and iso-propanol		
		A3 ethane and ethanol		
		A4 ethanol and methanol		
Objectiv	ve Question			
	95	Which of the following amino acid contain an imidazolium moiety?	4.0	1.00
		A1 Alanine		
		A2 Valine		

	:		
	A3 Cysteine		
	A4 Histidine		
Objective Question			
96 96	Chlorophyll is a naturally occurring chelate compound in which central metal is	4.0	1.00
	A1 copper:		
	A2 magnesium		
	A3 iron		
	A4 calcium		
Objective Question			
97 97	Pubchem has information regarding	4.0	1.00
	A1 Chemical structure		
	A2 Bio-activity		
	A3 DNA		
	A4 Both Chemical structure and Bio-activity		
Objective Question			
98 98	Which pair of amino acids absorbs the most UV light at 280 nm?	4.0	1.00
	A1 Threonine & Histidine		
	A2 Trp& Tyrosine		
	A3 Cystein& Asparagine		
	A4 Phenylalnine& Proline		
Objective Ouestion		4.0	1.00
Objective Question 99 99	Protein fluorescence arises primarily from which residue?	4.0	1.00

		A2 Tryptophan:		
		A3 Tyrosine		
		A4 Phenylalanine		
Object	ive Question			
100	100	The sequence of letters 'WYQN' will represent	4.0	1.00
		A1 Tryptophan, tyrosine, glutamic acid, asparagine		
		A2 : Tryptophan, tyrosine, glutamine, asparagine		
		A3 : Tryptophan, glutamine, tryptophan, asparagine		
		A4 Glutamine, tyrosine, tryptophan, aspartic acid		