ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Sc. (BIOINFORMATICS) COURSE CODE: 378

Register Number:		
		Signature of the Invigilator (with date)

COURSE CODE: 378

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Th	e primary action of steroid hormones is	s at the	e level of	
	(A)	replication	(B)	transcription	
	(C)	translation	(D)	post transcriptional mod	lification
2.	The	e protein surface tends to be more —		— than the inner core.	
	(A)	hydrophilic	(B)	hydrophobic	
	(C)	aromatic	(D)	acidic	
3.	The	e first complete genome to be sequence	d was		
	(A)	Saccharomyces cerevisiae chromosor	ne III		
	(B)	Haemophilus influenza			
	(C)	PhiX174			
	(D)	The human mitochondrial genome			
4.	The	e rate of the first order reaction depend	s on th	ne	
	(A)	Concentration of the reactant	(B)	Concentration of the prod	luct
	(C)	Time	(D)	Temperature	
5.	Mos	st microarray consists of a solid suppor	t on w	hich is immobilized	
	(A)	DNA (B) RNA	(C)	Genes (D) Tra	anscripts
6.	Chit	tin is a			
	(A)	Homopolysaccharide	(B)	Heteropolysaccharide	
	(C)	Mucopolysaccharide	(D)	Conjugated protein	
7.	Spid	ler webs are made of the strong and pl	iable p	rotein called	
	(A)	Fibroin (B) Keratin	(C)	Chitin (D) Fla	gellin
G.	The	major plant hormone auxin causes			
	(A)	Shoot growth and shoot initiation	(B)	Splitting of the internode	
	(C)	Cell expansion	(D)	Internodal elongation	
9.	Whe	n ΔG of a reaction is negative, the reac	ction is	3	
	(A)	At equilibrium			
	(B)	Endergonic and tends to go towards for	orward	reaction	
	(C)	Endergonic and tends to go toward co	mpleti	on	
	(D)	Exergonic and tends to go toward com	pletion	n	

10.	Ana	alogous structures are those whose similarity comes from
	(A)	their performing a similar function, rather than their arising from a common ancestor
	(B)	their being derived from a common ancestral structure
	(C)	the wing of a bird and the forelimb of a human
	(D)	their performing a dissimilar function, rather than their arising from a common ancestor
11.	RN	As that catalyze biological reactions, such as self-splicing introns, are known as:
	(A)	spliceosomes (B) ribozymes (C) ribonucleases (D) m RNAs
12.	Whi	ch scientists first gave experimental evidence that DNA is the genetic material?
	(A)	Beadle and Tatum, who used a mutational and biochemical analysis of the bread mold Neurospora to establish a direct link between genes and enzymes
	(B)	Meselson and Stahl who showed that DNA is replicated semiconservatively
	(C)	Watson and Crick who gave a model for the structure of DNA
	(D)	Avery, MacLeod, and McCarty who repeated the transformation experiments of Griffith
13.	Acti	n filaments are found in all of the following except the
	(A)	Flagella of bacteria (B) Sarcomeres of skeletal muscles cells
	(C)	Stress fibers of fibroblasts (D) Microvilli of intestinal brush border
14.	How	does a bacterial cell protect its own DNA from restriction enzymes?
	(A)	by adding methyl groups to adenines and cytosines
	(B)	by reinforcing bacterial DNA structure with covalent phosphodiester bonds
	(C)	adding histones to protect the double-stranded DNA
	(D)	by forming 'sticky ends' of bacterial DNA to prevent the enzyme from attaching
5.	The	peptide bond is planar
	(A)	due to restriction caused by rotation around $c_{lpha}-N$ bond
	(B)	due to restriction around $c_{\alpha} - c'$ bond
	(C)	due to delocalization of the lone pair of electrons of the nitrogen onto carbonyl oxygen
	(D)	because amide protons and carbonyl oxygen are involved in hydrogen bonding.

16.	Ну	drogen bond length will NOT be
	(A)	independent of the nature of donor and acceptor atoms.
	(B)	dependent on donor and acceptor atoms.
	(C)	dependent on the solvent in which the molecule is dissolved.
	(D)	dependent on the other atoms bonded with the donor and acceptor
17.	Hor	mone used in the detection of pregnancy in humans is
	(A)	FSH (B) Chorionic gonadotropin
	(C)	Estrogen (D) Progesteron
18.	Enz	ymes differ from other catalysts in those only enzymes
	(A)	Are not consumed in the reaction.
	(B)	Display specificity toward a single reactant
	(C)	Fail to influence the equilibrium point of the reaction.
	(D)	Form an activated complex with the reactants.
19.		en a muscle is stimulated to contract aerobically, less lactic acid is formed than n it contracts anaerobically because
	(A)	glycolysis does not occur to significant extent under aerobic conditions.
	(B)	muscle is metabolically less active under aerobic than anaerobic conditions.
	(C)	the lactic acid generated is rapidly incorporated into lipids under aerobic conditions.
	(D)	under aerobic conditions most of the pyruvate generated as a result of glycolysis is oxidized by the citric acid cycle rather than reduced to lactate.
20.		e from maintaining the integrity of its hereditary material, the most important ral metabolic concern of a cell is
	(A)	Keeping its glucose levels high.
	(B)	Maintaining a constant supply and concentration of ATP.
	(C)	Preserving its ability to carry out oxidative phosphorylation.
	(D)	Protecting its enzymes from rapid degradation
21.	The	protection against smallpox afforded by prior infection with cowpox represents
	(A)	antigenic specificity (B) antigenic cross-reactivity
	(C)	enhanced viral uptake by macrophages (D) passive protection

22.	Wh	at is the difference bet	ween RefSeq an	d Gen	Bank?	
	(A)	RefSeq includes publ	licly available D	NA se	quences	,
	(B)	GenBank includes no	on-redundant cu	irated	data	
	(C)	GenBank sequences	are derived from	n RefS	deq	
	(D)	RefSeq sequences are	e derived from (GenBa	nk	
23.	The	two main features of a	any phylogenetic	tree :	are the	
	(A)	clades and the nodes		(B)	topology and the branch len	gths
	(C)	clades and the root		(D)	alignment and the bootstrap	o
24.		approach that can be ectable sequence simila			O structure of a protein which e templates is	n has no
	(A)	homology modeling		(B)	comparative modeling	
	(C)	fold recognition		(D)	ab initio modeling	
25.		hese were a smaller g ergo a change?	gravitation effec	t, the	n which of the following for	ces will
	(A)	Viscous force		(B)	Electrostatic force	
	(C)	Magnetic force		(D)	Archimedes uplift	
26.		omb at rest suddenly dises will move in	isintegrates into	two j	pieces of equal mass. The frag	mented
	(A)	opposite directions wi	th equal speeds			
	(B)	opposite directions wi	th equal velocit	ies		
	(C)	opposite directions wi	th unequal velo	cities		
	(D)	same direction with s	ame velocity			
27.		stance is plotted again te graph so obtained is		inetic	energy against y-axis, then the	ne slope
	(A)	distance (B)	kinetic energy	(C)	velocity (D) accele	ration
28.	Whi	ch among the following	sequences are s	stop co	odons?	
	(A)	UAA, UGG, UGA		(B)	UUU, UGA, UAA	
	(C)	UGA, UAA, UAG		(D)	UAG, UAA, AAG	
29.		population frequency otype frequency will be		and A	2 is 0.25. After one generat	ion the
	(A)	0.5625; 0.375; 0.0625		(B)	0.5625; 0.0625; 0.375	
	(C)	0.750; 0.250; 0.350		(D)	0.5625; 0.1525; 0.0625	

30.		group of 212 college stu non-tasters. What is th				e were	149 tasters and
	(A)	0.55; 0.45 (B)	0.25; 0.20	(C)	0.045; 0.055	(D)	0.020; 0.025
31.		ifle bullet weighing 7 g e recoils with a velocity				ocity of	300 m/s. If the
	(A)	5.3 kg (B)	2.1 kg	(C)	8.1 kg	(D)	10 kg
32.	Wh	at happens when the li	ght intensity in	cident	on a photoelect	ric surf	ace is doubled?
	(A)	the frequency of emi	tted photons is d	loubled	ł		
	(B)	the number of photon	ns is doubled				
	(C)	the number of photor	ns becomes four	times			
	(D)	there is no effect at a	.11				
33.	The	units of the rate const	ant for the first	order	reaction could b	е	
	(A)	M-1 min-1 (B)	M	(C)	M min-1	(D)	min ⁻¹
34.	The	strength of an acid is					
	(A)	directly proportional	to the value of t	he pKa	a of the acid		
	(B)	inversely proportions	l to pKa				
	(C)	not related to pKa					
	(D)	equal to 1/pKa					
35.	Hyd	rophobic molecules are					
	(A)	generally nonpolar ar	nd relatively ins	oluble	in aqueous solu	itions	
	(B)	generally polar and re	elatively insolub	le in a	queous solutior	ns	
	(C)	generally nonpolar ar	nd relatively solu	ıble in	aqueous soluti	ons	
	(D)	generally polar and re	elatively soluble	in aqu	eous solutions		
36.	Whi	ch one of the following	statements is N	OT TR	UE?		
	(A)	Trypsin is an endoper	otidase				
	(B)	Trypsin cleaves n-term	minus to lysine	and arg	ginine		
	(C)	Trypsin exhibits auto	catalytic activity	7			
	(D)	Trypsin is synthesized	d as inactive zyn	nogen	precursor		

37.		ich chromatography m cificity?	ethod is bas	sed on re	versible chemical in	teractions of high
	(A)	reversed phase chron	natography			
	(B)	hydrophobic interact	ion chromate	ography	ve 1	
	(C)	gel permeation chron	natography			
	(D)	affinity chromatograp	ohy			
38.	Inte	le is downloaded to a ernet Service Provider kimum size of data dow	. If the dov			
	(A)	3.75 Kb (B)	3.75 MB	(C)	3.75 Mb (I	O) 3.75 KB
39.	Insu	ılin promotes				
	(A)	gluconeogenesis		(B)	glycogenolysis	
	(C)	lipogenesis		(D)	lipolysis	
40.		ong the following which v under longer light du		an induc	e flowering in short	day plants when
	(A)	Gibberillic acid		(B)	Cytokinins	
	(C)	Auxins		(D)	Acetoactic acid	
41.	Sma on	ll non-polar molecules	can diffuse a	cross the	membrane and do r	not mostly depend
	(A)	Concentration gradier	ıt	(B)	Partition coefficier	it
	(C)	Size of the molecules		(D)	Membrane potenti	al
12.	Whi	ch is the first step of Gl	ycolysis in v	vhich ATI	P is produced?	
	(A)	Conversion of fructose	to fructose-	1, 6-bisph	nosphate	
	(B)	Conversion of 1,3-bisp	hosphoglyce	rate to 3-	phosphoglycerate	
	(C)	Conversion of phospho	enol pyruva	te to pyri	ıvate	
	(D)	Conversion of Glucose	to glucose-6	-phospha	te	
13.	The	coefficient of correlation	n between tv	vo variab	les is -0.65. This ind	icates that
	(A)	a very good direct corr	elation	(B)	a fairly good direct	correlation
	(C)	a very good indirect co	rrelation	(D)	a fairly good indire	ct correlation

44.	str	hough multiple disulfide bonds are pout ucture of some secretory proteins, only duct. This is primarily due to the fact t	y the	
	(A)	incorrectly folded proteins are degra	ded b	y lysosomes
	(B)	processing and folding is continued i	n the	endosomes
	(C)	protein facilitates the formation of reticulum	corre	ct disulfide bonds in the endoplasmic
	(D)	only correctly folded proteins are tra	nslate	ed in the endoplasmic reticulum
45.	Try	ptophan structure contains which of th	ne follo	owing group
	(A)	Phenol group	(B)	Guanidium group
	(C)	Indole group	(D)	Imidazole group
46.		ich of the following hormones initianbrane and then binding to receptor?	tes b	iological actions by crossing plasma
	(A)	AGlucagon	(B)	Estradiol
	(C)	Insulin	(D)	Norepinephrine
47.	The	most likely cause for the numerical ab	errati	ions of Down's, Turner's and
	(A)	Klienfielter's syndromes is the fusio extra set of paternal chromosomes	n of t	wo sperm with one egg to provide an
	(B)	The occurrence of nondisjunction of h	omolo	ogous chromosomes during meiosis
	(C)	The selective loss of particular chrom the mature gamete	osome	es from the sex cells after formation of
	(D)	The abnormal pairing of nonhomo meiosis	logous	s chromosomes during prophase of
48.	How	autophagy necrosis and apoptosis are	differ	ent?
	(A)	Autophagy and necrosis are reversible	e and	apoptosis is irreversible
	(B)	Autophagy necrosis and apoptosis are	rever	rsible
	(C)	Autophagy and necrosis are irreversib	ole an	d apoptosis is reversible
	(D)	Autophagy is reversible and necrosis/	apopto	osis are irreversible
49.	Posit	tion-specific scoring matrix represents		
	(A)	ungapped alignment	(B)	gapped alignment
	(C)	multiple sequence alignment	(D)	local sequence alignment
378		8		

50.	fem	elass contains l nale students l ndom is a male	have blu	e eyes. Wha					
	(A)	1/6	(B)	2/3	(C)	1/3	()	D) 5/6	
51.	Chi	romosomal rep	lication	in eukaryote	s is				
	(A)	Unidirection	nal .		(B)	Bi direc	tional		
	(C)	Continuous			(D)	Conserv	ative type		
52.	Yea	ast cannot ferm	ent this	carbohydrat	е				
	(A)	Sucrose	(B)	Glucose	(C)	Lactose	(I	D) Malt	ose
53.	Fat	s and Phospho	lipids ar	e synthesized	d from				
	(A)	Acetyl CoA &	& glycero	1	(B)	DNA &	RNA		
	(C)	Protein & Ar	nino acio	ls	(D)	Carbohy	drates & \	Vitamins	
54.	The	type of enzym	e known	as a phosph	oribosyl t	ransferas	e is involv	ed in	
	(A)	salvage of pu	irine and	pyrimidine	bases		- 4.5		
	(B)	the de novo s	ynthesis	of fatty acid	S				
	(C)	as a carrier o	of uridine	e diphosphat	е				
	(D)	the de novo s	ynthesis	of bile acids					
55.	Ара	alindrome is a	sequence	of nucleotid	les in DN	A that			
	(A)	is highly reit	erated						
	(B)	is part of the	introns	of eukaryotic	genes				
	(C)	is a structura	al gene						
	(D)	has local sym	metry a	nd may serve	e as a rec	ognition si	te for vari	ous prote	eins
56.		stance is plott te graph so obt				energy ag	ainst y-axi	is, then t	he slope
	(A)	distance			(B)	kinetic e	nergy		
	(C)	velocity			(D)	accelerat	ion		
57.	Heat	t is transmitted	d from h	igher to lowe	r temper	ature thro	ugh molec	ular colli	sions in
	(A)	viscosity			(B)	radiation			
	(C)	convention			(D)	conductio	n		

58.	Whic	ch one of the fo	ollowing	operating syst	ems is r	ot a Multi user	opera	ting system?
		Windows XP		LINUX	(C)	DOS	(D)	UNIX
59.	The	System softw Machine code	are that	converts the s	source c	ode written in	High	level Language
		Assembler			(C)	Compiler	(D)	Loader
60.	Whi	ch data struct	ure is ca	lled as FIFO?				
	(A)	Graph	(B)	Неар	(C)	Stack	(D)	Queue
61.	Whi	ch of the follow	ving is a	service not su	pported	by the operatir	ng syst	em?
	(A)	Protection	(B)	Accounting	(C)	Compilation	(D)	I/O operation
62.	Whi	ch of the follow	wing lan	guage is case s	ensitive	?		
	(A)	BASIC	(B)	COBOL	(C)		(D)	VB
63.	The	language whi	ch is bot	h a compiler a	nd inter	preter is		
	(A)	Perl	(B)	~	(C)	Java	(D)	VB
64.	Cw	as primarily d	evelope	d as a				
	(A)	systems pro			(B)	general purpo	ose lan	guage
	(C)	data process	ing lang	guage	(D)	simulation la		
65.	The	minimum nu	ımber o	f temporary va	ariables	needed to swa	ip the	contents of two
	(A)		(B)	0	(C)	2	(D)	3
66.	Lite	eral means						
	(A)		(B)			a character	(D)	
67.	Th	e concept of si	multane	eous execution	of many	tasks in java i	s know	n as
	(A)				(B)	marshalling		
	(C)	multithread	ling		(D)			
68.	Wh	nich of the ogramming?	followin	g programmir	ng lang	uage is well	suital	ole for network
	(A)	~	(B)	Java	(C)	XML	(D) HTML

69.	Data members and member functions of	f a class	by default is res	spectiv	rely	
	(A) private and public	(B)	public			
	(C) public and private	(D)	private			
70.	Which of the following file retrieval met	hods use	hypermedia?			
	(A) HTML (B) Veronica	(C)	WAIS	(D)	HTTP	
71.	A process known as ———— is used	d by larg	e retailers to st	udy tr	ends	
	(A) Data Selection	(B)	Data Conversi	ion		
	(C) Data mining	(D.)	Data integrati	.on		
72.	A messenger RNA is 669 nucleotides le codons. The number of amino acids in th					
	(A) 1998 (B) 222	(C)	223	(D)	333	
73.	The human genome consists of					
	(A) more than 45% repeated sequences	(B)	less than 10%	repea	ted sequer	nces
	(C) more than 70% repeated sequences	(D)	less than 30%	repea	ted sequer	ice
74.	Which type of genomics studies the trans	scripts a	nd proteins exp	ressed	by a geno	ome?
	(A) comparative genomics	(B)	functional gen	omics		
	(C) subtractive genomics	(D)	structural gen	omics		
75.	The process of changing the form in order	r to carr	y out a specializ	ed fur	action is ca	alled
	(A) differentiation	(B)	cell division			
	(C) growth	(D)	cell elongation			
76.	The state of a quantum mechanical syste	m is des	cribed by			
	(A) Wave function	(B)	Radial function	1		
	(C) Angular function	(D)	Time function			
77.	One atomic unit of length is equal to					
	(A) 0.52918 A° (B) 0.36182 A°	(C)	0.24683 A°	(D)	0.28971	Α°
78.	A — Connection provides a dec	dicated li	nk between two	o devic	ces	
	(A) Point-to-point (B) Multipoint			(D)	Secondar	y

7		hich of the following is not true about		drogen receptor?	,	
	(A)			offinity than to	ataataw	
	(C)				stoster	one
	(D)				timula	tion
	. (2)	, and the state of	TOIL 1116	ilouv ullul ogoli c	, 01111 0110	
80). Ins	sulin promotes				
	(A)	gluconeogenesis	(B)	glycogenolysi	S	
	(C)	lipogenesis	(D)	lipolysis		
81	(2)	eukaryotes, transcription of mRNA initiated by binding of transcription of mRNA initiated by binding of transcription of transcription initiated by binding of transcription in the binding of t				
	(A)	RNA polymerase IV; TATA box				
	(B)	RNA polymerase I; Goldberg-Hogn	ess box			
	(C)	RNA polymerase II; TATA box				
	(D)	RNA polymerase III; Goldberg-Hog	ness bo	X		
00	Цо	w many domains are there in an imm	unoglob	ulin hoove chai	n const	ant ragion?
82						
	(A)	(B) 3	(C)	6	(D)	Đ .
83	Wh	at is the approximate size (in Mb) of t	the Cae	rnorhabditis eleį	<i>gans</i> ge	nome?
	(A)	100 Mb (B) 235 Mb	(C)	540 Mb	(D)	1000 Mb
84.	Wh	at reagent is used in the Edman degr	adation	of a peptide?		
	(A)	Mercaptoethanol	(B)	Phenylisothio	yanate	
	(C)	Trifluoroacetic acid	(D)	Trichloroacetic	c acid	
85.	Whi	ich of the following is the principal bu	ffer in	interstitial fluid	?	
	(A)	Hemoglobin	(B)	Albumin		
	(C)	Carbonic acid	(D)	$H_2 PO_4$		
86.		ong the following components of chlor ucing agent?	roplast	membrane whic	h one i	s the strongest
	(A)	reduced cytochrome b ₆	(B)	PQR2		
	(C)	NADPH	(D)	reduced ferred	oxin	
378	3	12				

87.	 The growth kinetic that result from metabolizing one sugar before another is refet to as 						ferred		
	(A)	exponential growth		(B)	diphasic grow	th		,	
	(C)	diauxic growth		(D)	chemotaxis				
88.	Nucleosome is the functional and structural unit of all chromosomes, it is made up of								
	(A)	RNA + proteins		(B)	DNA + protein	ns			
	(C)	DNA + histone prote	eins	(D)	DNA + RNA +	histo	ne protein	S	
89.	. When used in a search query the words AND, OR and NOT are capitalized becau								
	(A)	Common words		(B)	Short and easi	ly mis	ssed		
	(C)	Boolean operators		(D)	Stop words				
90.	Which of the following is a derived unit?								
	(A)	Mass (B)	Length	(C)	Time	(D)	Speed		
91.	When a planet moves around the sun,								
	(A) the angular momentum remains conserved								
	(B)	the angular speed re	mains constant						
	(C)	the linear velocity re	mains constant						
	(D)	(D) the linear momentum remains constant							
92.	Distance between two parallel planes, $2x + y + 2z = 8$ and $4x + 2y + 4z + 5 = 0$, is								
	(A)	3/2 (B)	5/2	(C)	7/2	(D)	9/2		
93.	A child is born with an extra chromosome in each of its cells. This condition is usually the result of								
	(A)	Non-disjunction		(B)	Crossing over				
	(C)	Segregation		(D)	Hybridization				
94.	A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is and when he retires 40 meter away from the tree the angle of elevation becomes. The breadth of the river is								
	(A)	20 m (B)	30 m	(C)	40 m	(D)	60 m		

95.	slid	A solid iron sphere A rolls down an inclined plane, while an identical hollow sphere lides down the plane in a frictionless manner. At the bottom of the inclined plan he total kinetic energy of sphere A is							
	(A)	less than that of B							
	(B)	equal to that of B							
	(C)	more than that of B							
	(D)	sometimes more and sometimes less							
96.	Whe	en did Watson and Crick publish the hel	ical s	structure of DNA?					
	(A)	In 1953 (B) In 1954	(C)	In 1957 (D) In 1952					
97.	X-ra	X-ray crystallography is used to study							
	(A)	structure of lipids							
	(B)	composition of proteins and nucleic aci	ds						
	(C)	(C) arrangement of proteins							
	(D)	three dimensional structure of proteins	3						
98.	Whe	When pH falls by 1 unit, what is the change in the hydrogen ion concentration?							
	(A)	Increases by 10 times	(B)	Decreases by 10 times					
	(C)	Increases by 100 times	(D)	Decreases by 100 times					
99.		bodies of mass m and 3m are thrown v coming back to earth	ertic	cally upward with the same velocity.					
	(A)	they will have zero velocity							
	(B)	they will have same velocity							
	(C)	the body of mass 3m will have three time	nes r	more velocity than that of mass m					
	(D)	the body of mass 3m will have one-thir	d vel	ocity of that of mass m					
100.	A die	esel cycle works at							
	(A)	constant volume	(B)	constant pressure					
	(C)	constant temperature	(D)	none of the above					
		-							