ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Sc. (BIOINFORMATICS) COURSE CODE: 378 | Register Number: | | | |------------------|--|--| | | | | | | | Signature of the Invigilator (with date) | | | | | COURSE CODE: 378 Time: 2 Hours Max: 400 Marks ## Instructions to Candidates: - 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen. - Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification. - 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil. - 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks. - 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works. - 6. Do not open the question paper until the start signal is given. - 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature. - 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them. - 9. Use of Calculators, Tables, etc. are prohibited. | 1. | Th | e primary action of steroid hormones is | s at the | e level of | | |----|------|--|----------|----------------------------|------------| | | (A) | replication | (B) | transcription | | | | (C) | translation | (D) | post transcriptional mod | lification | | 2. | The | e protein surface tends to be more — | | — than the inner core. | | | | (A) | hydrophilic | (B) | hydrophobic | | | | (C) | aromatic | (D) | acidic | | | 3. | The | e first complete genome to be sequence | d was | | | | | (A) | Saccharomyces cerevisiae chromosor | ne III | | | | | (B) | Haemophilus influenza | | | | | | (C) | PhiX174 | | | | | | (D) | The human mitochondrial genome | | | | | 4. | The | e rate of the first order reaction depend | s on th | ne | | | | (A) | Concentration of the reactant | (B) | Concentration of the prod | luct | | | (C) | Time | (D) | Temperature | | | 5. | Mos | st microarray consists of a solid suppor | t on w | hich is immobilized | | | | (A) | DNA (B) RNA | (C) | Genes (D) Tra | anscripts | | 6. | Chit | tin is a | | | | | | (A) | Homopolysaccharide | (B) | Heteropolysaccharide | | | | (C) | Mucopolysaccharide | (D) | Conjugated protein | | | 7. | Spid | ler webs are made of the strong and pl | iable p | rotein called | | | | (A) | Fibroin (B) Keratin | (C) | Chitin (D) Fla | gellin | | G. | The | major plant hormone auxin causes | | | | | | (A) | Shoot growth and shoot initiation | (B) | Splitting of the internode | | | | (C) | Cell expansion | (D) | Internodal elongation | | | 9. | Whe | n ΔG of a reaction is negative, the reac | ction is | 3 | | | | (A) | At equilibrium | | | | | | (B) | Endergonic and tends to go towards for | orward | reaction | | | | (C) | Endergonic and tends to go toward co | mpleti | on | | | | (D) | Exergonic and tends to go toward com | pletion | n | | | | | | | | | | 10. | Ana | alogous structures are those whose similarity comes from | |-----|------|--| | | (A) | their performing a similar function, rather than their arising from a common ancestor | | | (B) | their being derived from a common ancestral structure | | | (C) | the wing of a bird and the forelimb of a human | | | (D) | their performing a dissimilar function, rather than their arising from a common ancestor | | 11. | RN | As that catalyze biological reactions, such as self-splicing introns, are known as: | | | (A) | spliceosomes (B) ribozymes (C) ribonucleases (D) m RNAs | | 12. | Whi | ch scientists first gave experimental evidence that DNA is the genetic material? | | | (A) | Beadle and Tatum, who used a mutational and biochemical analysis of the bread mold Neurospora to establish a direct link between genes and enzymes | | | (B) | Meselson and Stahl who showed that DNA is replicated semiconservatively | | | (C) | Watson and Crick who gave a model for the structure of DNA | | | (D) | Avery, MacLeod, and McCarty who repeated the transformation experiments of Griffith | | 13. | Acti | n filaments are found in all of the following except the | | | (A) | Flagella of bacteria (B) Sarcomeres of skeletal muscles cells | | | (C) | Stress fibers of fibroblasts (D) Microvilli of intestinal brush border | | 14. | How | does a bacterial cell protect its own DNA from restriction enzymes? | | | (A) | by adding methyl groups to adenines and cytosines | | | (B) | by reinforcing bacterial DNA structure with covalent phosphodiester bonds | | | (C) | adding histones to protect the double-stranded DNA | | | (D) | by forming 'sticky ends' of bacterial DNA to prevent the enzyme from attaching | | 5. | The | peptide bond is planar | | | (A) | due to restriction caused by rotation around $c_{lpha}-N$ bond | | | (B) | due to restriction around $c_{\alpha} - c'$ bond | | | (C) | due to delocalization of the lone pair of electrons of the nitrogen onto carbonyl oxygen | | | (D) | because amide protons and carbonyl oxygen are involved in hydrogen bonding. | | | | | | 16. | Ну | drogen bond length will NOT be | |-----|-----|--| | | (A) | independent of the nature of donor and acceptor atoms. | | | (B) | dependent on donor and acceptor atoms. | | | (C) | dependent on the solvent in which the molecule is dissolved. | | | (D) | dependent on the other atoms bonded with the donor and acceptor | | 17. | Hor | mone used in the detection of pregnancy in humans is | | | (A) | FSH (B) Chorionic gonadotropin | | | (C) | Estrogen (D) Progesteron | | 18. | Enz | ymes differ from other catalysts in those only enzymes | | | (A) | Are not consumed in the reaction. | | | (B) | Display specificity toward a single reactant | | | (C) | Fail to influence the equilibrium point of the reaction. | | | (D) | Form an activated complex with the reactants. | | 19. | | en a muscle is stimulated to contract aerobically, less lactic acid is formed than
n it contracts anaerobically because | | | (A) | glycolysis does not occur to significant extent under aerobic conditions. | | | (B) | muscle is metabolically less active under aerobic than anaerobic conditions. | | | (C) | the lactic acid generated is rapidly incorporated into lipids under aerobic conditions. | | | (D) | under aerobic conditions most of the pyruvate generated as a result of glycolysis is oxidized by the citric acid cycle rather than reduced to lactate. | | 20. | | e from maintaining the integrity of its hereditary material, the most important
ral metabolic concern of a cell is | | | (A) | Keeping its glucose levels high. | | | (B) | Maintaining a constant supply and concentration of ATP. | | | (C) | Preserving its ability to carry out oxidative phosphorylation. | | | (D) | Protecting its enzymes from rapid degradation | | 21. | The | protection against smallpox afforded by prior infection with cowpox represents | | | (A) | antigenic specificity (B) antigenic cross-reactivity | | | (C) | enhanced viral uptake by macrophages (D) passive protection | | | | | | 22. | Wh | at is the difference bet | ween RefSeq an | d Gen | Bank? | | |-----|-----|--|-------------------|---------|--|----------| | | (A) | RefSeq includes publ | licly available D | NA se | quences | , | | | (B) | GenBank includes no | on-redundant cu | irated | data | | | | (C) | GenBank sequences | are derived from | n RefS | deq | | | | (D) | RefSeq sequences are | e derived from (| GenBa | nk | | | 23. | The | two main features of a | any phylogenetic | tree : | are the | | | | (A) | clades and the nodes | | (B) | topology and the branch len | gths | | | (C) | clades and the root | | (D) | alignment and the bootstrap | o | | 24. | | approach that can be
ectable sequence simila | | | O structure of a protein which
e templates is | n has no | | | (A) | homology modeling | | (B) | comparative modeling | | | | (C) | fold recognition | | (D) | ab initio modeling | | | 25. | | hese were a smaller g
ergo a change? | gravitation effec | t, the | n which of the following for | ces will | | | (A) | Viscous force | | (B) | Electrostatic force | | | | (C) | Magnetic force | | (D) | Archimedes uplift | | | 26. | | omb at rest suddenly dises will move in | isintegrates into | two j | pieces of equal mass. The frag | mented | | | (A) | opposite directions wi | th equal speeds | | | | | | (B) | opposite directions wi | th equal velocit | ies | | | | | (C) | opposite directions wi | th unequal velo | cities | | | | | (D) | same direction with s | ame velocity | | | | | 27. | | stance is plotted again
te graph so obtained is | | inetic | energy against y-axis, then the | ne slope | | | (A) | distance (B) | kinetic energy | (C) | velocity (D) accele | ration | | 28. | Whi | ch among the following | sequences are s | stop co | odons? | | | | (A) | UAA, UGG, UGA | | (B) | UUU, UGA, UAA | | | | (C) | UGA, UAA, UAG | | (D) | UAG, UAA, AAG | | | 29. | | population frequency
otype frequency will be | | and A | 2 is 0.25. After one generat | ion the | | | (A) | 0.5625; 0.375; 0.0625 | | (B) | 0.5625; 0.0625; 0.375 | | | | (C) | 0.750; 0.250; 0.350 | | (D) | 0.5625; 0.1525; 0.0625 | | | | | | | | | | | 30. | | group of 212 college stu
non-tasters. What is th | | | | e were | 149 tasters and | |-----|-----|---|--------------------|---------|------------------|----------|-------------------| | | (A) | 0.55; 0.45 (B) | 0.25; 0.20 | (C) | 0.045; 0.055 | (D) | 0.020; 0.025 | | 31. | | ifle bullet weighing 7 g
e recoils with a velocity | | | | ocity of | 300 m/s. If the | | | (A) | 5.3 kg (B) | 2.1 kg | (C) | 8.1 kg | (D) | 10 kg | | 32. | Wh | at happens when the li | ght intensity in | cident | on a photoelect | ric surf | ace is doubled? | | | (A) | the frequency of emi | tted photons is d | loubled | ł | | | | | (B) | the number of photon | ns is doubled | | | | | | | (C) | the number of photor | ns becomes four | times | | | | | | (D) | there is no effect at a | .11 | | | | | | 33. | The | units of the rate const | ant for the first | order | reaction could b | е | | | | (A) | M-1 min-1 (B) | M | (C) | M min-1 | (D) | min ⁻¹ | | 34. | The | strength of an acid is | | | | | | | | (A) | directly proportional | to the value of t | he pKa | a of the acid | | | | | (B) | inversely proportions | l to pKa | | | | | | | (C) | not related to pKa | | | | | | | | (D) | equal to 1/pKa | | | | | | | 35. | Hyd | rophobic molecules are | | | | | | | | (A) | generally nonpolar ar | nd relatively ins | oluble | in aqueous solu | itions | | | | (B) | generally polar and re | elatively insolub | le in a | queous solutior | ns | | | | (C) | generally nonpolar ar | nd relatively solu | ıble in | aqueous soluti | ons | | | | (D) | generally polar and re | elatively soluble | in aqu | eous solutions | | | | 36. | Whi | ch one of the following | statements is N | OT TR | UE? | | | | | (A) | Trypsin is an endoper | otidase | | | | | | | (B) | Trypsin cleaves n-term | minus to lysine | and arg | ginine | | | | | (C) | Trypsin exhibits auto | catalytic activity | 7 | | | | | | (D) | Trypsin is synthesized | d as inactive zyn | nogen | precursor | | | | 37. | | ich chromatography m
cificity? | ethod is bas | sed on re | versible chemical in | teractions of high | |-----|-----------|---|---------------|------------|------------------------|--------------------| | | (A) | reversed phase chron | natography | | | | | | (B) | hydrophobic interact | ion chromate | ography | ve 1 | | | | (C) | gel permeation chron | natography | | | | | | (D) | affinity chromatograp | ohy | | | | | 38. | Inte | le is downloaded to a
ernet Service Provider
kimum size of data dow | . If the dov | | | | | | (A) | 3.75 Kb (B) | 3.75 MB | (C) | 3.75 Mb (I | O) 3.75 KB | | 39. | Insu | ılin promotes | | | | | | | (A) | gluconeogenesis | | (B) | glycogenolysis | | | | (C) | lipogenesis | | (D) | lipolysis | | | 40. | | ong the following which
v under longer light du | | an induc | e flowering in short | day plants when | | | (A) | Gibberillic acid | | (B) | Cytokinins | | | | (C) | Auxins | | (D) | Acetoactic acid | | | 41. | Sma
on | ll non-polar molecules | can diffuse a | cross the | membrane and do r | not mostly depend | | | (A) | Concentration gradier | ıt | (B) | Partition coefficier | it | | | (C) | Size of the molecules | | (D) | Membrane potenti | al | | 12. | Whi | ch is the first step of Gl | ycolysis in v | vhich ATI | P is produced? | | | | (A) | Conversion of fructose | to fructose- | 1, 6-bisph | nosphate | | | | (B) | Conversion of 1,3-bisp | hosphoglyce | rate to 3- | phosphoglycerate | | | | (C) | Conversion of phospho | enol pyruva | te to pyri | ıvate | | | | (D) | Conversion of Glucose | to glucose-6 | -phospha | te | | | 13. | The | coefficient of correlation | n between tv | vo variab | les is -0.65. This ind | icates that | | | (A) | a very good direct corr | elation | (B) | a fairly good direct | correlation | | | (C) | a very good indirect co | rrelation | (D) | a fairly good indire | ct correlation | | 44. | str | hough multiple disulfide bonds are pout
ucture of some secretory proteins, only
duct. This is primarily due to the fact t | y the | | |-----|-------|---|----------|--| | | (A) | incorrectly folded proteins are degra | ded b | y lysosomes | | | (B) | processing and folding is continued i | n the | endosomes | | | (C) | protein facilitates the formation of reticulum | corre | ct disulfide bonds in the endoplasmic | | | (D) | only correctly folded proteins are tra | nslate | ed in the endoplasmic reticulum | | 45. | Try | ptophan structure contains which of th | ne follo | owing group | | | (A) | Phenol group | (B) | Guanidium group | | | (C) | Indole group | (D) | Imidazole group | | 46. | | ich of the following hormones initianbrane and then binding to receptor? | tes b | iological actions by crossing plasma | | | (A) | AGlucagon | (B) | Estradiol | | | (C) | Insulin | (D) | Norepinephrine | | 47. | The | most likely cause for the numerical ab | errati | ions of Down's, Turner's and | | | (A) | Klienfielter's syndromes is the fusio
extra set of paternal chromosomes | n of t | wo sperm with one egg to provide an | | | (B) | The occurrence of nondisjunction of h | omolo | ogous chromosomes during meiosis | | | (C) | The selective loss of particular chrom the mature gamete | osome | es from the sex cells after formation of | | | (D) | The abnormal pairing of nonhomo meiosis | logous | s chromosomes during prophase of | | 48. | How | autophagy necrosis and apoptosis are | differ | ent? | | | (A) | Autophagy and necrosis are reversible | e and | apoptosis is irreversible | | | (B) | Autophagy necrosis and apoptosis are | rever | rsible | | | (C) | Autophagy and necrosis are irreversib | ole an | d apoptosis is reversible | | | (D) | Autophagy is reversible and necrosis/ | apopto | osis are irreversible | | 49. | Posit | tion-specific scoring matrix represents | | | | | (A) | ungapped alignment | (B) | gapped alignment | | | (C) | multiple sequence alignment | (D) | local sequence alignment | | 378 | | 8 | | | | 50. | fem | elass contains l
nale students l
ndom is a male | have blu | e eyes. Wha | | | | | | |-----|------|---|------------|---------------|------------|-------------|-------------|------------|----------| | | (A) | 1/6 | (B) | 2/3 | (C) | 1/3 | () | D) 5/6 | | | 51. | Chi | romosomal rep | lication | in eukaryote | s is | | | | | | | (A) | Unidirection | nal . | | (B) | Bi direc | tional | | | | | (C) | Continuous | | | (D) | Conserv | ative type | | | | 52. | Yea | ast cannot ferm | ent this | carbohydrat | е | | | | | | | (A) | Sucrose | (B) | Glucose | (C) | Lactose | (I | D) Malt | ose | | 53. | Fat | s and Phospho | lipids ar | e synthesized | d from | | | | | | | (A) | Acetyl CoA & | & glycero | 1 | (B) | DNA & | RNA | | | | | (C) | Protein & Ar | nino acio | ls | (D) | Carbohy | drates & \ | Vitamins | | | 54. | The | type of enzym | e known | as a phosph | oribosyl t | ransferas | e is involv | ed in | | | | (A) | salvage of pu | irine and | pyrimidine | bases | | - 4.5 | | | | | (B) | the de novo s | ynthesis | of fatty acid | S | | | | | | | (C) | as a carrier o | of uridine | e diphosphat | е | | | | | | | (D) | the de novo s | ynthesis | of bile acids | | | | | | | 55. | Ара | alindrome is a | sequence | of nucleotid | les in DN | A that | | | | | | (A) | is highly reit | erated | | | | | | | | | (B) | is part of the | introns | of eukaryotic | genes | | | | | | | (C) | is a structura | al gene | | | | | | | | | (D) | has local sym | metry a | nd may serve | e as a rec | ognition si | te for vari | ous prote | eins | | 56. | | stance is plott
te graph so obt | | | | energy ag | ainst y-axi | is, then t | he slope | | | (A) | distance | | | (B) | kinetic e | nergy | | | | | (C) | velocity | | | (D) | accelerat | ion | | | | 57. | Heat | t is transmitted | d from h | igher to lowe | r temper | ature thro | ugh molec | ular colli | sions in | | | (A) | viscosity | | | (B) | radiation | | | | | | (C) | convention | | | (D) | conductio | n | | | | | | | | | | | | | | | 58. | Whic | ch one of the fo | ollowing | operating syst | ems is r | ot a Multi user | opera | ting system? | |-----|------|------------------------------|-----------|-----------------|----------|-----------------|---------|-----------------| | | | Windows XP | | LINUX | (C) | DOS | (D) | UNIX | | 59. | The | System softw
Machine code | are that | converts the s | source c | ode written in | High | level Language | | | | Assembler | | | (C) | Compiler | (D) | Loader | | 60. | Whi | ch data struct | ure is ca | lled as FIFO? | | | | | | | (A) | Graph | (B) | Неар | (C) | Stack | (D) | Queue | | 61. | Whi | ch of the follow | ving is a | service not su | pported | by the operatir | ng syst | em? | | | (A) | Protection | (B) | Accounting | (C) | Compilation | (D) | I/O operation | | 62. | Whi | ch of the follow | wing lan | guage is case s | ensitive | ? | | | | | (A) | BASIC | (B) | COBOL | (C) | | (D) | VB | | 63. | The | language whi | ch is bot | h a compiler a | nd inter | preter is | | | | | (A) | Perl | (B) | ~ | (C) | Java | (D) | VB | | 64. | Cw | as primarily d | evelope | d as a | | | | | | | (A) | systems pro | | | (B) | general purpo | ose lan | guage | | | (C) | data process | ing lang | guage | (D) | simulation la | | | | 65. | The | minimum nu | ımber o | f temporary va | ariables | needed to swa | ip the | contents of two | | | (A) | | (B) | 0 | (C) | 2 | (D) | 3 | | 66. | Lite | eral means | | | | | | | | | (A) | | (B) | | | a character | (D) | | | 67. | Th | e concept of si | multane | eous execution | of many | tasks in java i | s know | n as | | | (A) | | | | (B) | marshalling | | | | | (C) | multithread | ling | | (D) | | | | | 68. | Wh | nich of the ogramming? | followin | g programmir | ng lang | uage is well | suital | ole for network | | | (A) | ~ | (B) | Java | (C) | XML | (D |) HTML | | 69. | Data members and member functions of | f a class | by default is res | spectiv | rely | | |-----|--|------------|-------------------|---------|--------------|-------| | | (A) private and public | (B) | public | | | | | | (C) public and private | (D) | private | | | | | 70. | Which of the following file retrieval met | hods use | hypermedia? | | | | | | (A) HTML (B) Veronica | (C) | WAIS | (D) | HTTP | | | 71. | A process known as ———— is used | d by larg | e retailers to st | udy tr | ends | | | | (A) Data Selection | (B) | Data Conversi | ion | | | | | (C) Data mining | (D.) | Data integrati | .on | | | | 72. | A messenger RNA is 669 nucleotides le
codons. The number of amino acids in th | | | | | | | | (A) 1998 (B) 222 | (C) | 223 | (D) | 333 | | | 73. | The human genome consists of | | | | | | | | (A) more than 45% repeated sequences | (B) | less than 10% | repea | ted sequer | nces | | | (C) more than 70% repeated sequences | (D) | less than 30% | repea | ted sequer | ice | | 74. | Which type of genomics studies the trans | scripts a | nd proteins exp | ressed | by a geno | ome? | | | (A) comparative genomics | (B) | functional gen | omics | | | | | (C) subtractive genomics | (D) | structural gen | omics | | | | 75. | The process of changing the form in order | r to carr | y out a specializ | ed fur | action is ca | alled | | | (A) differentiation | (B) | cell division | | | | | | (C) growth | (D) | cell elongation | | | | | 76. | The state of a quantum mechanical syste | m is des | cribed by | | | | | | (A) Wave function | (B) | Radial function | 1 | | | | | (C) Angular function | (D) | Time function | | | | | 77. | One atomic unit of length is equal to | | | | | | | | (A) 0.52918 A° (B) 0.36182 A° | (C) | 0.24683 A° | (D) | 0.28971 | Α° | | 78. | A — Connection provides a dec | dicated li | nk between two | o devic | ces | | | | (A) Point-to-point (B) Multipoint | | | (D) | Secondar | y | | | | | | | | | | 7 | | hich of the following is not true about | | drogen receptor? | , | | |-----|--------|--|-----------|---------------------|----------------|-----------------| | | (A) | | | offinity than to | ataataw | | | | (C) | | | | stoster | one | | | (D) | | | | timula | tion | | | . (2) | , and the state of | TOIL 1116 | ilouv ullul ogoli c | , 01111 0110 | | | 80 |). Ins | sulin promotes | | | | | | | (A) | gluconeogenesis | (B) | glycogenolysi | S | | | | (C) | lipogenesis | (D) | lipolysis | | | | 81 | (2) | eukaryotes, transcription of mRNA initiated by binding of transcription mRNA initiated by binding transcription initiated by binding of transcription in the t | | | | | | | (A) | RNA polymerase IV; TATA box | | | | | | | (B) | RNA polymerase I; Goldberg-Hogn | ess box | | | | | | (C) | RNA polymerase II; TATA box | | | | | | | (D) | RNA polymerase III; Goldberg-Hog | ness bo | X | | | | 00 | Цо | w many domains are there in an imm | unoglob | ulin hoove chai | n const | ant ragion? | | 82 | | | | | | | | | (A) | (B) 3 | (C) | 6 | (D) | Đ . | | 83 | Wh | at is the approximate size (in Mb) of t | the Cae | rnorhabditis eleį | <i>gans</i> ge | nome? | | | (A) | 100 Mb (B) 235 Mb | (C) | 540 Mb | (D) | 1000 Mb | | 84. | Wh | at reagent is used in the Edman degr | adation | of a peptide? | | | | | (A) | Mercaptoethanol | (B) | Phenylisothio | yanate | | | | (C) | Trifluoroacetic acid | (D) | Trichloroacetic | c acid | | | 85. | Whi | ich of the following is the principal bu | ffer in | interstitial fluid | ? | | | | (A) | Hemoglobin | (B) | Albumin | | | | | (C) | Carbonic acid | (D) | $H_2 PO_4$ | | | | 86. | | ong the following components of chlor
ucing agent? | roplast | membrane whic | h one i | s the strongest | | | (A) | reduced cytochrome b ₆ | (B) | PQR2 | | | | | (C) | NADPH | (D) | reduced ferred | oxin | | | 378 | 3 | 12 | | | | | | | | | | | | | | 87. | The growth kinetic that result from metabolizing one sugar before another is refet
to as | | | | | | ferred | | | |-----|---|--|----------------|-----|----------------|--------|------------|---|--| | | (A) | exponential growth | | (B) | diphasic grow | th | | , | | | | (C) | diauxic growth | | (D) | chemotaxis | | | | | | 88. | Nucleosome is the functional and structural unit of all chromosomes, it is made up of | | | | | | | | | | | (A) | RNA + proteins | | (B) | DNA + protein | ns | | | | | | (C) | DNA + histone prote | eins | (D) | DNA + RNA + | histo | ne protein | S | | | 89. | . When used in a search query the words AND, OR and NOT are capitalized becau | | | | | | | | | | | (A) | Common words | | (B) | Short and easi | ly mis | ssed | | | | | (C) | Boolean operators | | (D) | Stop words | | | | | | 90. | Which of the following is a derived unit? | | | | | | | | | | | (A) | Mass (B) | Length | (C) | Time | (D) | Speed | | | | 91. | When a planet moves around the sun, | | | | | | | | | | | (A) the angular momentum remains conserved | | | | | | | | | | | (B) | the angular speed re | mains constant | | | | | | | | | (C) | the linear velocity re | mains constant | | | | | | | | | (D) | (D) the linear momentum remains constant | | | | | | | | | 92. | Distance between two parallel planes, $2x + y + 2z = 8$ and $4x + 2y + 4z + 5 = 0$, is | | | | | | | | | | | (A) | 3/2 (B) | 5/2 | (C) | 7/2 | (D) | 9/2 | | | | 93. | A child is born with an extra chromosome in each of its cells. This condition is usually the result of | | | | | | | | | | | (A) | Non-disjunction | | (B) | Crossing over | | | | | | | (C) | Segregation | | (D) | Hybridization | | | | | | 94. | A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is and when he retires 40 meter away from the tree the angle of elevation becomes. The breadth of the river is | | | | | | | | | | | (A) | 20 m (B) | 30 m | (C) | 40 m | (D) | 60 m | | | | | | | | | | | | | | | 95. | slid | A solid iron sphere A rolls down an inclined plane, while an identical hollow sphere lides down the plane in a frictionless manner. At the bottom of the inclined plan he total kinetic energy of sphere A is | | | | | | | | |------|-------|---|--------|--------------------------------------|--|--|--|--|--| | | (A) | less than that of B | | | | | | | | | | (B) | equal to that of B | | | | | | | | | | (C) | more than that of B | | | | | | | | | | (D) | sometimes more and sometimes less | | | | | | | | | 96. | Whe | en did Watson and Crick publish the hel | ical s | structure of DNA? | | | | | | | | (A) | In 1953 (B) In 1954 | (C) | In 1957 (D) In 1952 | | | | | | | 97. | X-ra | X-ray crystallography is used to study | | | | | | | | | | (A) | structure of lipids | | | | | | | | | | (B) | composition of proteins and nucleic aci | ds | | | | | | | | | (C) | (C) arrangement of proteins | | | | | | | | | | (D) | three dimensional structure of proteins | 3 | | | | | | | | 98. | Whe | When pH falls by 1 unit, what is the change in the hydrogen ion concentration? | | | | | | | | | | (A) | Increases by 10 times | (B) | Decreases by 10 times | | | | | | | | (C) | Increases by 100 times | (D) | Decreases by 100 times | | | | | | | 99. | | bodies of mass m and 3m are thrown v
coming back to earth | ertic | cally upward with the same velocity. | | | | | | | | (A) | they will have zero velocity | | | | | | | | | | (B) | they will have same velocity | | | | | | | | | | (C) | the body of mass 3m will have three time | nes r | more velocity than that of mass m | | | | | | | | (D) | the body of mass 3m will have one-thir | d vel | ocity of that of mass m | | | | | | | 100. | A die | esel cycle works at | | | | | | | | | | (A) | constant volume | (B) | constant pressure | | | | | | | | (C) | constant temperature | (D) | none of the above | | | | | | | | | - | | | | | | | |