1.	The lattice energy of ionic solids is								
	(A)	directly proportional to inter ionic distance							
	(B)	inversely proportional to inter ionic distance							
	(C)	directly proportional to the square of the inter ionic distance							
	(D)	inversely proportional to the square	of the	inter ionic distance					
2.	The	names Allred and Rochow are associa	ted wi	th					
	(A)	Electronegativity	(B)	Electron affinity					
	(C)	Ionization potential	(D)	Lattice energy					
3.	The	ionic mobility of alkali metal ions in a	queou	s solutions follows the order					
	(A)	$Li^+ > Na^+ > K^+$	(B)	$Na^{\scriptscriptstyle +} > K^{\scriptscriptstyle +} > Li^{\scriptscriptstyle +}$					
	(C)	$K^+ > Li^+ > Na^+$	(D)	$K^{\scriptscriptstyle +}\!>Na^{\scriptscriptstyle +}\!>Li^{\scriptscriptstyle +}$					
4.	Whi	ch one of the following statements is r	ot tru	ne?					
	(A)	Be salts are extensively hydrolyzed							
	(B)	(B) Be forms Be ₂ C, which yields methane on hydrolysis							
	(C)	(C) Be is basic like the other metals of its group							
	(D)	$Be(OH)_2$ is amphoteric							
5.	The order of Lewis acidity of boron halides is								
	(A)	$BF_3 > BCl_3 > BBr_3 > Bl_3$	(B)	$Bl_3>BBr_3>BCl_3>BF_3$					
	(C)	$BCl_3 > BF_3 > BBr_3 > Bl_3$	(D)	$BBr_3>Bl_3>BCl_3>BF_3$					
6.	Hyd	rolysis of CaC ₂ gives							
	(A)	CH ₄	(B)	C_2H_2					
	(C)	CH ₃ COOH	(D)	CH ₃ CH ₂ OH					
7.	Trip	Triple superphosphate is							
	(A)	$B(H_2PO_4)_3$	(B)	$Al(H_2PO_4)_3$					
	(C)	$Ca(H_2PO_4)_2$	(D)	K_3PO_4					
8.	PbC) is							
	(A)	a base	(B)	an acid					
	(C)	a salt	(D)	an amphoteric substance					

9.	Cl ₂	can be prepared in laboratory by			
	(A)	treating MgCl ₂ with NaOH	(B)	treating MnO ₂	with HCl
	(C)	treating NaCl with H ₂ SO ₄	(D)	treating NaCl	with H ₃ PO ₄
10.	Wha	at is calculated spin only magnetic mor	nent o	f Fe ²⁺ ?	
	(A)	3.87 BM	(B)	2.83 BM	
	(C)	4.90 BM	(D)	5.92 BM	
11.	In w	which of the following complexes Fe is r	ot pr	esent?	
	(A)	Ferredoxins	(B)	Cytochromes	
	(C)	Vitamin B_{12}	(D)	Hemoglobin	
12.	Whi	ch one of the following is an important	comp	onent of Ziegler-	Natta catalyst?
	(A)	TiCl ₃	(B)	FeCl ₃	
	(C)	PtCl ₄	(D)	MnCl ₂	
13.	[Re ₂	Cl ₈] ²⁻ contains			
	(A)	an Re-Re single bond	(B)	an Re-Re doubl	le bond
	(C)	an Re-Re triple bond	(D)	an Re-Re quad	ruple bond
14.	The	color of KMnO ₄ is due to			
	(A)	d-d transitions			
	(B)	charge transfer			
	(C)	the formation of $[K(H_2O)_6]^+$ in solution	n		
	(D)	the formation of $[Mn(H_2O)_6]^{2+}$ in solution	tion		
15.	The	ground state free ion term symbol for	Fe(III) ion is	
	(A)	${}^{2}P_{2}$ (B) ${}^{2}D_{2}$	(C)	6S _{5/2}	(D) ⁶ F _{5/2}
16.	The	IUPAC nomenclature of Li[AlH4] is			
	(A)	lithium tetrahydridoaluminum (III)			
	(B)	$tetrahydridoaluminum\ (III)\ lithium$			
	(C)	$lithium\ tetrahydridoaluminate\ (III)$			
	(D)	lithium tetrahydridoaluminate (IV)			
17.	CFS	SE of high-spin Fe(III) in octahedral fie	ld is		
	(A)	$0.4 \ \Delta_o$ (B) $2.4 \ \Delta_o$	(C)	$0\Delta_o$	(D) 1.8 Δ ₀

18.	Whi	ch of the follow	ing ter	ms refers to a r	naterial	which slows	neutrons	?
	(A)	retarder			(B)	moderator		
	(C)	buffer			(D)	diffractor		
19.	For	which of the fol	llowing	classes of salts	s are all	of its compou	nds solul	ble in water?
	(A)	Chlorides			(B)	Sulfates		
	(C)	Hydroxides			(D)	Nitrates		
20.	Δ ₀ (i	n coordination	comple	xes) does not	depend	upon	el misto	
	(A)	geometry arou	and the	central metal	ion(B)	atomic weigh	ht of the	metal ion
	(C)	nature of the	metal i	on	(D)	oxidation sta	ate of the	metal ion
21.	Stru	acture of ClF3 is	3					
	(A)	Trigonal plan	ar					
	(B)	Trigonal pyra	midal					
	(C)	T - shaped						
	(D)	Octahedral w	ith thre	ee lone pairs oc	cupying	a face		
22.	Stru	cture of XeOF4	is					
	(A)	square pyram	idal		(B)	tetrahedral		
	(C)	planar			(D)	trigonal bipy	ramidal	
23.	IUP	AC nomenclatu	re of th	ne complex [Co	Cl ₂ (CN)	(NH ₃) ₃] is		
	(A)	cyanodichloro	triamn	ninecobalt (III)				
	(B)	dichlorocyano	triamn	ninecobalt (III)				
	(C)	cyanotriammi	inecoba	lt (III) chloride				
	(D)	triamminedic	hlorocy	anocobalt (III)				
24.	Whi		followir	ng compounds	is pyrop	ohoric (catche	es fire wl	nen exposed to
	(A)	$SiMe_3$	(B)	NMe ₃	(C)	CMe ₃	(D)	PMe ₃
25.	Whi	ch one of the fo	llowing	compounds ha	as larger	dipole mome	nt?	
	(A)	NH_3	(B)	NF ₃	(C)	BCl ₃	(D)	CCl ₄
26.	The	conjugate base	of [H ₂ I	PO ₄]- is				
	(A)	[PO ₄]3-	(B)	[HPO ₄]2-	(C)	H_3PO_4	(D)	[H ₃ P ₂ O ₇]-

27.	" $Zn(II)$ complexes are atypical of d -block complexes in general." Which answer below is correct and supports this statement?					
	(A) Zn(II) complexes are paramagn	etic				
	(B) Zn(II) complexes tend to be colo	purless				
	(C) Zn(II) complexes are always oct	ahedral				
	(D) Zn(II) is one of several oxidation	n states of Zn				
28.	How many isomers are there of [NiCl2(py)2]+?	of octahedral [CrCl ₂ (H ₂ O) ₄]+ and tetrahedral				
	(A) 2 for [CrCl ₂ (H ₂ O) ₄]+; 2 for [Ni	$\operatorname{Cl}_2(\operatorname{py})_2]^+$				
	(B) 2 for [CrCl ₂ (H ₂ O) ₄]+; 1 for [Ni	$\operatorname{Cl}_2(\operatorname{py})_2]^+$				
	(C) 3 for [CrCl ₂ (H ₂ O) ₄]+; 1 for [Ni	$\text{Cl}_2(\text{py})_2]^+$				
	(D) 3 for [CrCl ₂ (H ₂ O) ₄]+; 2 for[Ni($\operatorname{Cl}_2(\mathrm{py})_2]^+$				
29.	The number of radial nodes possessed	d by a 4f atomic orbital is				
	(A) 0 (B) 1	(C) 2 (D) 3				
30.	In which of the following is the metal	reduced? (These are not balanced equations).				
	(A) $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-}$	(B) $[MnO_4] \rightarrow MnO_2$				
	${\rm (C)} [MnO_4]^{2-} \rightarrow \ [MnO_4]^{-}$	(D) $[Cr_2O_7]^{2-} \rightarrow [CrO_4]^{2-}$				
31.	IUPAC name for					
	но	COOEt is				
	(A) ethyl 6-hydroxyhexanoate	(B) ethyl 1-hydroxy-6-hexanoate				
	(C) 5-Ethoxycarbonyl-1-pentanol	(D) 1-Ethoxycarbonyl-5-pentanol				
32.	In the stable conformation of ethylene	e glycol dihedral angle in degrees would be				
	(A) 0 (B) 60	(C) 120 (D) 180				
33.	In TLC (SiO ₂) the order of R_T in 9:1 h	exane: ethylacetate would be				
	i. anthracene ii. β – nap	othol iii. Octane				
	(A) $iii > i > ii$ (B) $i > iii > ii$	(C) $ii > i > iii$ (D) $i > ii > iii$				
34.	The reaction of phenylmagnesium bro	omide with acetylene provides				
	(A) 1-phenylacetylene	(B) 1,2-diphenylacetylene				
	(C) ethylene	(D) benzene				

35.	Whi	ch one of the foll	owing	g compounds rea	dily di	issolves in aqueous 0.1 N Na ₂ Co	O ₃ ?
	(A)	α – Naphthol			(B)	Pyrene	
	(C)	2,4-Dinitropher	nol		(D)	1-Octanol	
36.	The	order of reactivity	ty of t	the following olef	fins wi	ith HBr is	
	i.	cyclohexene					
	ii.	1-methyl-1-cycl	ohexe	ene .			
	iii.	3,3-dimethyl-1-	cyclol	nexene			
	(A)	ii > iii > i	(B)	ii > i > iii	(C)	iii > ii > i (D) $iii > i >$	ii
37.		the four compou zamide reduction				phenylacetic acid, iii. aniline a ved easily for	and iv.
	(A)	i	(B)	ii	(C)	iii (D) iv	
38.	Nitr	ration of β – napt	thol p	rovides			
	(A)	1-nitro-2-hydro	xynaj	othalene	(B)	3-nitro-2-hydroxynapthalene	
	(C)	4-nitro-2-hydro	xynaj	othalene	(D)	5-nitro-2-hydroxynapthalene	
39.	Rate	e of the reactiviti	es of	the following allo	otropes	s of carbon	
	i. di	amond		ii. Fullerenes		iii. Graphite	
	(A)	i > ii > iii -	(B)	i > iii > ii	(C)	ii > i > iii (D) $ii > iii$	> i
40.		mental analysis on ber of double bo				realed C: 40%, H: 60% and MW blecules is	V = 90.
	(A)	one	(B)	two	(C)	three (D) four	
41.						C to generate product X wh	ich on
	(A)	cyclohexene an	d epo	xycyclohexane			
	(B)	cyclohexanone	and 1	,2-dihydroxycycl	ohexai	ne	
	(C)	1,3-cyclohexadi	ene a	nd benzene			
	(D)	dicyclohexyl eth	ner ar	nd cyclohexene			
42.	Whe	en cyclohexyl met	hano	l was heated wit	h H ₂ S	O ₄ one of the product is	
	(A)	1-methyl-1-cycl	ohexe	ene	(B)	2-methylcyclohexanone	
	(C)	cycloheptene			(D)	1-ethyl-1-cyclopentene	

45.	Correct bond length	n of carbon-carbon do	uble bon	d in ethylene	IS	
	(A) 120 pm	(B) 134 pm	(C)	154 pm	(D)	168 pm
44.	The ¹ H NMR spect. The compound coul	rum of an organic con	pound o	of MF: C ₄ H ₉ Br	exhibite	ed a single line
	(A) 1-bromobutar	ne	(B)	2-bromobuta	ne	
	(C) 1-bromo-2-me	thylpropane	(D)	2-bromo-2-m	ethylpro	pane
45.	Kolbe's electrolysis	of sodium butanoate	provides	3		
	(A) propane	(B) butane	(C)	hexane	(D)	octane
46.	Reaction of 1-hexer	ne with HCl is expecte	ed to pro	vide		
	(A) 1-chlorohexan	ie .	(B)	2-chlorohexa	ne	
	(C) 3-chlorohexar	ie	(D)	2,2-dichloroh	nexane	
47.	Reaction of 1-butyr	ne with NaNH ₂ follow	ed by rea	action with 1-k	oromobu	tane provides
	(A) 1-octyne	(B) 2-octyne	(C)	3-octyne	(D)	4-octyne
48.	The reaction of ace	tophenone with iodine	and Na	OH provides		
	(A) benzaldehyde	and iodoform	(B)	benzoic acid	and acet	cic acid
	(C) benzyl alcohol	l and sodium iodate	(D)	sodium benz	oate and	iodoform
49.	2-Butanol reacts w	ith SOCl ₂ , pyridine to	provide	mainly		
	(A) 1-butene		(B)	2-butene		
	(C) di-butyl ether		(D)	1,2-dichlorob	outane	
50.	Reaction of butyl li	thium with ethyl forn	nate pro	vides		
	(A) 1-butanol	(B) 5-nonanol	(C)	3-nonanol	(D)	1-nonanol
51.	The reaction of Z -3	-hexene with i. OsO4,	ii. H ₃ O+	provides		
	(A) 3-hexanes		(B)	erythro-3,4-d	lihydrox	yhexane
	(C) threo-3,4-dihy	droxyhexane	(D)	meso-3,4-dih	ydroxyh	exane
52.	Configuration at Ca	2 and C3 in the follow	ing com	pound is		
		COO HO—H D—H COO				
	(A) R,R	(B) R,S	(C)	S,R	(D)	S,S

53. Reactive intermediate in the following conversion is

$$HO \longrightarrow H_2SO_4 \longrightarrow CH_4$$

- (A) cyclopropyl carbocation
- (B) secondary carbocation

(C) carbanion

- (D) free radical
- 54. Which one of the following is a good diene?
 - (A) 1,3-butadiene

(B) 1,2-butadiene

(C) 2,4-hexadiene

- (D) furan
- 55. 4-Bromotoluene was reacted with i. Mg ii. D2O. Product of the reaction is
 - (A) benzyl alcohol

(B) 4-deuterobenzyl alcohol

(C) 4-methylphenol

- (D) 4-deuterotoluene
- 56. When glycerol is treated with conc. HNO3 and H2SO4, it gets converted to
 - (A) nitroethane

(B) 1-nitropropane

(C) nitroglycerine

- (D) 2-nitropropane
- Silver acetate reacts with Br₂ to form methylbromide, carbondioxide and AgBr. This
 reaction is an example of
 - (A) Wurtz reaction

(B) Etard reaction

(C) Hunsdiecker reaction

- (D) Perkin reaction
- 58. Butanoic acid was treated sequentially with i. SOCl₂ ii. AlCl₃ iii. benzene. The product formed was
 - (A) 1-phenyl-1-butanone

(B) 1-phenyl-2-butanone

(C) 3-phenyl-2-butanone

(D) 4-phenyl-1-butanol

- 59. Natural fats are
 - (A) monoesters of glycerol

(B) diesters of glycerol

(C) triesters of glycerol

- (D) diesters of glycol
- 60. The product formed on heating hydrazobenzene with dil. H₂SO₄ is
 - (A) diazonium salt

(B) aniline

(C) benzidine

(D) 1,4-diaminobenzene

61.	Representing solvent and solute in a binary solution by subscripts 1 and 2, respectively, the conversion expression for molarity in to molality is
	(A) $m = \frac{M}{\rho - MM_2}$ (B) $m = \frac{mM_1}{\rho + MM_2}$
	(C) $m = \frac{\rho - MM_2}{M}$ (D) $m = \frac{1 + \rho M_1}{M_2}$
62.	A solution containing sodium hydroxide and sodium carbonate is titrated against 0.1 M HCl using methyl orange indicator. At the equivalence point
	(A) both sodium hydroxide and sodium carbonate are completely neutralized
	(B) only sodium hydroxide is completely neutralized
	(C) only sodium carbonate is completely neutralized
	(D) sodium hydroxide completely and sodium carbonate completely converted to sodium bicarbonate
63.	The expression of most probable speed of molecules of a gas is given as
	(A) $\sqrt{\frac{2RT}{M}}$ (B) $\sqrt{\frac{3RT}{M}}$ (C) $\sqrt{\frac{8RT}{\pi M}}$ (D) $\sqrt{\frac{8RT}{M}}$

(A) Boyle temperature

(B) Critical temperature

(C) Inversion temperature

(D) Consolute temperature

- (A) Viscosity of ethanol is smaller than that of glycol
- (B) Viscosity of a liquid increases with impurities
- (C) The variation of viscosity is given by $\gamma = A \exp(-E/RT)$
- (D) Capillary action is due to surface tension of a liquid
- 66. If the anions (A) from hexagonal closest packing and cations (C) occupy only 2/3 octahedral voids in it, then the general of the compound is
 - (A) CA
- (B) CA₂
- (C) C₂A₃
- (D) C₃A₂

61.	Representing solvent and solute in a binary solution by subscripts 1 and 2, respectively, the conversion expression for molarity in to molality is
	(A) $m = \frac{M}{\rho - MM_2}$ (B) $m = \frac{mM_1}{\rho + MM_2}$
	(C) $m = \frac{\rho - MM_2}{M}$ (D) $m = \frac{1 + \rho M_1}{M_2}$
62.	A solution containing sodium hydroxide and sodium carbonate is titrated against 0.1 M HCl using methyl orange indicator. At the equivalence point
	(A) both sodium hydroxide and sodium carbonate are completely neutralized
	(B) only sodium hydroxide is completely neutralized
	(C) only sodium carbonate is completely neutralized
	(D) sodium hydroxide completely and sodium carbonate completely converted to sodium bicarbonate
63.	The expression of most probable speed of molecules of a gas is given as
	(A) $\sqrt{\frac{2RT}{M}}$ (B) $\sqrt{\frac{3RT}{M}}$ (C) $\sqrt{\frac{8RT}{\pi M}}$ (D) $\sqrt{\frac{8RT}{M}}$

(A) Boyle temperature

(B) Critical temperature

(C) Inversion temperature

- (D) Consolute temperature
- 65. Which of the following statements is NOT correct?
 - (A) Viscosity of ethanol is smaller than that of glycol
 - (B) Viscosity of a liquid increases with impurities
 - (C) The variation of viscosity is given by $\gamma = A \exp(-E/RT)$
 - (D) Capillary action is due to surface tension of a liquid
- 66. If the anions (A) from hexagonal closest packing and cations (C) occupy only 2/3 octahedral voids in it, then the general of the compound is
 - (A) CA
- (B) CA2
- (C) C₂A₃
- (D) C₃A₂

In a Rock-salt structure, with edge length = a, which of the following expressions is correct?

(A) $r_a = \sqrt{2}a$

(B) $r_a = a/2$ (C) $r_a = a/2\sqrt{2}$ (D) $r_a = \sqrt{3} a/2$

A 4: 1 mixture of He and CH4 is contained in a vessel at 20 bar pressure. Due to a hole in the vessel gas mixture leaks out. The composition of the mixture, effusing out initially is about

(A) He: CH₄:: 1:1

He: CH4:: 2:1

(C) He: CH4:: 4:1 (D) He: CH4::8:1

The expression of velocity of an electron in a Bohr orbit of a hydrogen-like species is 69.

 $v = \frac{2\pi \left(Ze^2 / 4\pi \varepsilon_0\right)}{nh}$

(B) $v = \frac{2\pi nh}{\left(Ze^2 / 4\pi \varepsilon_0\right)}$

(C) $v = \frac{nh}{2\pi \left(Ze^2 / 4\pi\varepsilon_0\right)}$

(D) $v = \frac{\left(Ze^2 / 4\pi\varepsilon_0\right)}{2\pi n^b}$

70. Which of the following species will produce the shortest wavelength for the transition n = 2 to n = 1?

Hydrogen atom

(B) Singly ionized helium atom

(C) Deuterium atom

Doubly ionized lithium atom (D)

For 2s orbital of hydrogen atom, the nodal surface exists at a distance

ao from the nucleus

(B) 2a₀ from the nucleus

(C) 2.5ao from the nucleus 4.0ao from the nucleus

72. For a linear triatomic gas, the value of the ratio of heat capacities is

(A) 5/3 (B) 7/5

(C) 9/7

Which of the following statements regarding the entropy is NOT correct? 73.

S(monoclinic) > S(rhombic)

(B) C(diamond) > C(graphite)

 $H_2O(g) > H_2O(l)$

(D) $O_3(g) > O_2(g)$

74.		the reaction $2NO(g) = N_2(g) + O_2(g)$ following facts does not hold good?	, the enth	alpy change is -180 kJ/mol. Which of					
	(A)	(A) The pressure changes at constant temperature do not affect the equilibrium constant							
	(B)	The volume changes at constant	t tempera	ature do not affect the equilibrium					
	(C)	The dissociation of NO is favoured	l less at h	igh temperature					
	(D)	The dissociation of NO is favoured	l more at	high temperature					
75.		equilibrium constant Kc of the rea and 2 mol of B2 are mixed, the amo		$(g) + B_2(g) = 2AB(g)$ is 50. If 1 mol of at equilibrium would be					
	(A)	0.467 mol	(B)	0.934 mol					
	(C)	1.401 mol	(D)	1.866 mol					
76.	is he			container under one atmosphere. It decomposes to NO ₂ (g). The resultant					
	(A)	1.2 atm	(B)	2.4 atm					
	(C)	2.0 atm	(D)	1.0 atm					
77.	The	number of H+ ions present in 1 mL	of a solut	ion having pH = 13 is					
	(A)	6.023×10^{23}	(B)	6.023×10^{13}					
	(C)	6.023×10^7	(D)	6.023×10^{10}					
78.	silve			cm ² with 5 x 10 ⁻³ cm thick layer of assage of 3 A current through a silver					
	(A)	1150 s	(B)	1250 s					
	(C)	1350 s	(D)	1450 s					
79.	The	unit of molar conductivity is							
	(A)	Ω^{-1}	(B)	$\Omega^{-1}cm^{-1}$					
	(C)	$\Omega^{-1}cm^{-1}mol^{-1}$	(D)	$\Omega^{-1}cm^2mol^{-1}$					
			11	369					

80.		For the electrochemical cell M M+X- X- X, E ⁰ (M+/M) = 0.44 V and $E_0(X/X-) = 0.33$ V. From this data one can deduce that							
	(A)	(A) oxidation of M and reduction of X are spontaneous reaction							
	(B)	(B) reduction of M+ and oxidation of X- are spontaneous							
	(C)	cell potential = 0.77 V							
	(D)	cell potential = -0.77 V							
81.	The	time taken to decompose electrolytic	ally 18	g water by 2A current is about					
	(A)	24.8 h	(B)	26.8 h					
	(C)	28.8 h	(D)	30.8 h					
82.		ich of the following plot correctly repution?	resents	the behavior of an ideal binary liquid					
	(A)	Plot of x_A versus y_A is linear	(B)	Plot of xA versus yB is linear					
	(C)	Plot of $1/X_A$ versus $1/y_A$ is linear	(D)	Plot of 1/xA versus 1/yB is linear					
83.	Rao	ult's law is obeyed by each constituer	nt of a bi	nary liquid solution when					
	(A)	the forces of attractions between li unlike molecules	ke mole	cules are greater than those between					
	(B)	the forces of attractions between lib unlike molecules	ke mole	cules are smaller than those between					
	(C)	the forces of attractions between li	ke mole	cules are more or less identical with					
	(D)	the volume occupied by unlike mole	cules ar	re different					
84.	For	a first-order reaction, the plot of log	A] _t vers	sus t is linear with a					
	(A)	positive slope and zero intercept							
	(B)	positive slope and nonzero intercep	t						
	(C)	negative slope and zero intercept							
	(D)	negative slope and nonzero intercep	ot						
85.	Whi	ch of the following statements is NO	Γ correc	t?					
	(A)	A colloidal solution is a heterogeneous	us two-	phase system					
	(B)	Silver sol in water is an example of	lyophili	c sol					
	(C)	Metal hydroxides in water are exam	nples of	lyophobic sol					
	(D)	Liquid-liquid colloidal solution is no	t stable	system					

86.	The	The number of EPR hyperfine lines expected for methyl radical are						
	(A)	two	(B)	three				
	(C)	four	(D)	none				
87.	Nuc	lear quadrupolar effect is due to						
	(A)	electron spin value equal to zero	(B)	nuclear spin value equal to zero				
	(C)	electron spin value greater than 1/2	(D)	nuclear spin value greater than $\frac{1}{2}$				
88.	For	a molecule to be Raman active, the con	dition	ı is				
	(A)	change in dipole moment	(B)	change in electron spin value				
	(C)	change in polarizability	(D)	change in nuclear spin value				
89.	The	number of normal modes of vibration	for wa	ter and carbon dioxide are				
	(A)	3 and 4	(B)	4 and 3				
	(C)	3 and 3	(D)	4 and 4				
90.	In a	system, $a = b = c$; $\alpha = \beta = \gamma \neq 90$ degree	es, the	en it belongs to				
	(A)	cubic	(B)	triclinic				
	(C)	monoclinic	(D)	rhombohedral				
91.	If th	e radius of Ist Bohr's orbit is a0 then t	he rad	lius of 3 rd Bohr's orbit is				
	(A)	3a0	(B)	6a0				
	(C)	9a0	(D)	19a0				
92.	The	spiliting of spectral lines under the inf	luenc	e of magnetic field is known as				
18	(A)	Staric effect	(B)	Zeeman effect				
	(C)	Photoelectric effect	(D)	Crompton effect				
93.	In h	ydrogen spectrum, the series of lines a	ppear	ing in visible region are known as				
	(A)	Lyman	(B)	Paschen				
	(C)	P fund	(D)	Balmer				

94.	Azimuthai quantum number determines the						
	(A)	spin	(B)	angular momentum of orbitals			
	(C)	size	(D)	orientation			
95.	The	spectrum of He+is expected to be simil	ar to	that of			
	(A)	Hydrogen atom	(B)	Не			
	(C)	Li+	(D)	Li			
96.	1 ev	energy is equivalent to a photon with	a wav	elength about			
	(A)	30000 Å	(B)	3000 Å			
	(C)	12000 Å	(D)	1200 Å			
97.	Amo	ong the following, conjugate pair of vari	able i	s			
	(A)	momentum and energy	(B)	potential energy and position			
	(C)	linear momentum and distance	(D)	time and energy			
98.	The	maximum extent of hydrogen bonding	is sho	own by			
	(A)	H_2O	(B)	HF			
	(C)	H ₂ Se	(D)	H_2S			
99.	Whi	ch of the following property does not ha	ave an	y unit?			
	(A)	Ionisation potential	(B)	Electronegativity			
	(C)	Atomic radii	(D)	Electron affinity			
100.	Amo	ong the following radiations, the largest	frequ	uency is of			
	(A)	radio wave	(B)	micro wave			
	(C)	X-rays	(D)	IR			