ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. Ph.D. (BIOINFORMATICS) COURSE CODE: 104

Register Nu	imber:		
			Signature of the Invigilator (with date)
		7	

COURSE CODE: 104

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	X-1	ray crystallography is used to study		
	(A)	structure of lipids		
	(B)	composition of proteins and nucleic	c acids	
	(C)	arrangement of proteins		
	(D)	three dimensional structure of pro	teins	
2.	Ele	ectric current may be expressed in wh	ich one	of the following units?
	(A)	coulombs/volt	(B)	joules/coulomb
	(C)	coulombs/second	(D)	ohms/second
3.		constant potential difference is ap acitor. Neglecting any edge effects, th	-	cross the plates of a parallel-plate ic field inside the capacitor is
	(A)	constant		
	(B)	varying as one over r squared		
	(C)	decreasing as one moves from the p	ositive	to the negative plate
	(D)	zero		
4.		en a physical property such as charg tinuous amounts, the property is said		in discrete "packets" rather than in
	(A)	discontinuous	(B)	abrupt
	(C)	quantized	(D)	noncontinuous
5.	The	Tesla and the Gauss are units of mea	asure of	
	(A)	conductance	(B)	magnetic field strength
	(C)	magnetic flux	(D)	electrical current
6.		an pushes against a 100 kilogram resn't move. The force the rock exerts or		a a force of 5 Newtons, but the rock is
	(A)	0 Newtons	(B)	5 Newtons
	(C)	20 Newtons	(D)	100 Newtons
7.		all is thrown horizontally from the to leration of the ball while it is in flight		eliff. Assuming no air resistance, the
	(A)	in the vertical direction only		
	(B)	in the horizontal direction only		
	(C)	in the vertical and horizontal directi	ons	
	(D)			

8.	A wavelength is commonly measur	red in which one of the following units?
	(A) radians	(B) angstroms
	(C) electron volts	(D) seconds
9.	Planck's constant was first intr prediction of	oduced in order to obtain a correct theoretical
	(A) the distribution of frequencie	s occurring in black body radiation.
	(B) the energy produced by the tr	ransformation of mass into energy.
	(C) the speed of light.	
	(D) lifetime of the neutron	
10.	Of the following, the most energetic	c form of NON-IONIZING radiation is:
	(A) ultra-violet light	(B) infra-red light
	(C) radar	(D) microwaves
11.	crossing at the same instant and	the other westbound, reach an over and under each proceed at 40 kilometers per hour on their how far apart are the lead cars two hours later, to
	(A) 80 (B) 113	(C) 136 (D) 160
12.	A vehicle is traveling along unbanand tyres suddenly disappears then	ked curved path. If the friction between the road a the vehicle
	(A) moves along tangential direct	ion
	(B) moves along radially outward	direction
	(C) moves along a direction between	en tangential and radially outward direction
	(D) moves along the same curved	path
13.	Velocity of a projectile in its flight	
	(A) remains constant	
	(B) first decreases, becomes zero a	and then increases
	(C) first decreases, reaches minim	um and then increases
	(D) first increases, reaches maxim	um and then decreases

14.		cording to the t		of relativity, p	eople w	ho travel at 1	relativistic velo	ocities and
	(A)	shorter than	if they	had not made	the trip			
	(B)	taller than if	they ha	ad not made th	ne trip.			
	(C)	younger than	if they	had not made	the trip).		
	(D)	older than if	they ha	d not made th	e trip.			
15.	At	what point is th	e temp	erature the sa	me on th	ne Celsius and	d Fahrenheit s	cales?
	(A)	Absolute zero			-(B)	Zero		
	(C)	Negative 40 d	legrees		(D)	Never		
16.		ar-sighted perso e clearly in brig						by objects
	(A)	bright light p	rovides	better illumin	ation.			
	(B)	the pupil of th	ne eye n	arrows which	increase	es the depth o	of focus.	
	(C)	the pupil of the eye widens which increases the depth of focus.						
	(D)	the bright lig correct the far		100 OT 10	which	flattens the	eyeball which	tends to
17.	A ty	pical microwav	e oven j	oroduces micro	owave ra	adiation with	a wavelength	of
	(A)	a) 3 meters						
	(B)	3×10^{-2} meters (read: 3 times 10 to the minus 2 meters)						
	(C)	3×10^{-6} meters (read: 3 times 10 to the minus 6 meters)						
	(D)	3×10^{-9} meters	s (read:	3 times 10 to	the min	us 9 meters)		
18.	A sp	here which has	half th	e radius but t	wice the	density of an	other sphere h	as
	(A)	more mass			(B)	less mass		
	(C)	the same mass	3		(D)	the same we	eight	
19.	Whic	ch of the followi	ng is N	OT one of the	fundam	ental quantit	ies in physics?	
	(A)	time	(B)	length	(C)	weight	(D) mass	3
20.		lement has the wing is true? Th			felectro	ns in its shell	s: 2-8-8-2. Whi	ch of the
	(A)	is a non-metal			(B)	can accept to	wo electrons	
	(C)	forms a negativ	ve ion .		(D)	forms an ion	with a charge	of +2

21.	mo		on of carbon		respect to the concentration of car oxide is doubled, with everything	
	(A)	remain unchanged		(B)	triple	
	(C)	increase by a factor of 4		(D)	double	
22.	met				ends of chemical reactivity of the al f these statements gives the cor	
	(A)	The reactivity decreases increase in atomic numb			als but increases in the halogens v	vith
	(B)	In both the alkali meta with increase in atomic r			ens the chemical reactivity decrea	ises
	(C)	Chemical reactivity increboth the alkali metals ar		ncrease	e in atomic number down the group	p in
	(D)	In alkali metals the real increase in atomic number			out in the halogens it decreases w	vith
23.	Whi	ch one of the following typ	es of drugs	reduce	es fever?	
	(A)	Analgesic		(B)	Antipyretic	
	(C)	Antibiotic		(D)	Tranquiliser	
24.	Due	to the presence of an unpa	aired electro	n, free	e radicals are	
	(A)	Chemically reactive		(B)	Chemically inactive	
	(C)	Anions		(D)	Cations	
25.	The	pyrimidine bases present i	in DNA are			
	(A)	cytosine and adenine		(B)	cytosine and guanine	
	(C)	cytosine and thymine		(D)	cytosine and uracil	
26.	A hi		desirable fo	or com	pounds used as primary standar	rds
	(A)	such compounds are gene	rally easier	to pur	rify	
	(B)	such compounds are gene	rally hygros	copic		
	(C)	such compounds generally	y react with	1:1 ste	oichiometry	
	(D)	waighing appear are minimum	minod			

27.		iven that a certain organic compound abso	rbs	light in the visible region, it CANNOT				
	be	e true that it						
	(A)) is aromatic	(B)	is an alkane				
	(C)) is colored	(D)	contains a nitro group				
28.		the elementary step $A \rightarrow B$ has a reactive ergy of 10 kJ, the activation energy for the						
	(A)) 10 kJ	(B)	40 kJ				
	(C)) 50 kJ	(D)	60 kJ				
29.	Wh	hich of the following hydrogen molecules h	as t	the highest vibrational frequency?				
	(D -	- deuterium; T - tritium)						
	(A)) H ₂	(B)	HD				
	(C)) D ₂	(D)	HT				
30.		weak acid, HA, has a Ka of 1.00 x 10"5. If er of water, the percentage of acid dissocia						
	(A)	0.100%	(B)	1.00%				
	(C)	99.0 %	(D)	99.9 %				
31.	An of	α -helix can be recognized in the 3-dimension.	sion	nal structure of a protein on the basis				
	(A)	hydrogen bonding between consecutive	resi	idues				
	(B)	ϕ , ψ angles of alternate residues						
	(C)	hydrogen bonding pattern (n to $n+4$) an	dφ,	, ψ angles of a stretch of residues				
32.	(D) An e	the absence of β – sheet in the structur expressed sequence tag is a	е					
-	(A)		A					
	(B)							
	(C)	long strand of DNA which is a part of a						
	(D)	1000-1500 nucleotide sequence that can						
33.	Tho	e peptide bond is planar						
ω.			und	d a N hand				
	(A)	due to restriction caused by rotation aro	una	$c_{\alpha} - N$ bond				
	(B)	due to restriction around $c_{\alpha} - c'$ bond						
	(C)	due to delocalization of the lone pair of oxygen	ele	ectrons of the nitrogen onto carbonyl				
	(D)	because amide protons and carbonyl oxy	gen	are involved in hydrogen bonding.				

34.	The	e whole-genome shotgun sequencing a	proac	h depends primarily on			
	(A)	rapidly sequencing thousands of small randomly cloned fragments					
	(B)	methodical sequencing a few large c	loned i	fragments of DNA			
	(C)	sequencing the bacterial chromosom	e whil	le it is still intact			
	(D)	use of the gene-gun technology					
35.	Wh	at would be a likely explanation for th	e exist	tence of pseudogenes?			
	(A)						
	(B)	gene duplication and mutation even	ts				
	(C)	mutation events					
	(D)	unequal crossing over					
36.	Whi	ich type of genomics studies the transc	ripts a	and proteins expressed by a genome?			
	(A)		(B)				
	(C)	functional genomics	(D)	subtractive genomics			
37.	Poly	yphyletic grouping in a phylogenetic tr	ee is				
	(A)	a group in which all members are de		from a unique common ancestor			
	(B)			red from a unique common ancestor			
	(C)	a group of distantly related members	mixed	d randomly			
	(D).	a group of closely related members in	nheriti	ing a set of unique common traits			
38.		ich of the following method is consider ies drastically among branches?	red app	propriate when the evolutionary rate			
	(A)	Maximum-likelihood					
	(B)	Minimum-evolution					
	(C)	Neighbor-joining					
	(D)	Unweighted Pair Group Method					
39.	Wha	at is the difference between Swiss-Prot	and tr	rEMBL?			
	(A)	Swiss-Prot is a computer annotated p	rotein	sequence database			
	(B)	trEMBL is an annotated protein sequ	tence d	database			
	(C)	Swiss-Prot contains all the translatintegrated in trEMBL	tions o	of EMBL nucleotide entries not yet			
	(D)	trEMBL contains all the translation integrated in Swiss-Prot	ons of	EMBL nucleotide entries not yet			

40.	Ger	neMark, a gene finding tool, uses spe	cies spec	rific				
	(A)	inhomogeneous Markov chain mod	lels of pr	otein-coding DNA sequence				
	(B)	inhomogeneous Markov chain mod	lels of no	n-coding DNA				
	(C)	homogeneous Markov chain model	s of prot	ein-coding DNA sequence				
	(D)	inhomogeneous and homogeneous	Markov	chain models of non-coding DNA				
41.	The	e uncharged polar amino acids are						
	(A)	Ala, Gln, Val, Ser, Phe	(B)	Asn, Gln, Ser, Thr, Tyr				
	(C)	Phe, Met, Trp, Pro, Asn	(D)	Leu, Gln, Ser, Thr, Tyr				
12.	The	genes are tightly packed in						
	(A)	Bacterial and archeal genome	(B)	Plant genome				
	(C)	Saccharomyces cerevisiae	(D)	Drosophila genome				
13.	Koz	ak consensus is						
	(A)	the nucleotide sequences surround	ing the i	nitiation codon of a eukaryotic mRNA				
	(B)	the nucleotide sequences surrour mRNA	nding th	e initiation codon of a prokaryotic				
	(C)	located in the promoter region of pr	rokaryot	ic genomes				
	(D)	located in the promoter region of ev	ıkaryoti	genomes				
4.		A messenger RNA is 339 nucleotide long, including the initiation and termination codons. The number of amino acids in the protein translated from this mRNA is						
	(A)	113 (B) 111	(C)	112 (D) 110				
5.	CpG	islands and codon bias are tolls use	d in euk	aryotic genomics to				
	(A)	find repetitive sequences						
	(B)	identify open reading frames						
	(C)	find regulatory sequences						
	(D)	look for DNA-binding domains						
6.	Low	-complexity regions within protein se	equences	have				
	(A)	biased amino-acid composition	(B)	transposable elements				
	(C)	Alu repeats only	(D)	regulatory sites only				

47.	Ge	neParser is a program that predicts
	(A)	promoter region
	(B)	miRNA
	(C)	tRNA
	(D)	exons and introns in a genomic sequence
48.	Wh	ich one of the following phenomena is not true for lateral gene transfer (LGT)?
	(A)	LGT is a process in which an organism incorporates genetic material from another organism
	(B)	The mechanisms for LGT are transformation transduction and conjugation
	(C)	LGT is common among bacteria, even amongst very distantly-related ones
	(D)	There is no evidence for LGT of mitochondrial genes to plant parasites
49.	Smi	ith-Waterman process varies from the BLAST method in
	(A)	accuracy (B) speed
	(C)	accuracy and speed both (D) sensitivity
50.	Whi	ch one of the following statements is not true for Microsatellites
	(A)	Repeating sequences of 1-6 base pairs of DNA
	(B)	Loci where short sequences of DNA are repeated in tandem arrays
	(C)	A polymorphic sequence of DNA consisting of tandemly repeated units of DNA
	(D)	Regions are inherently stable and not susceptible to mutations.
51.	The	orthologous sequences are
	(A)	homologous sequences in different species
	(B)	homologous sequences within a single species
	(C)	the result of gene duplication
	(D)	non-homologous sequences in different species
52.	Alter	rnative splicing occurs frequently in
	(A)	plant (B) bacteria
	(C)	yeast (D) human

53.	Wh	ich one of the following staten	ents is not tru	ue for Leucir	ne zipper ?		
	(A)	Protein motif which binds D	NA				
	(B)	Protein motif which binds D	NA in which	4-5 Leucines	are found		
	(C)	Protein motif which binds p	rotein in whicl	1 4-5 Leucin	es are four	nd	
	(D)	Protein motif is present typi	cally in transc	ription facto	ors that bir	nd DNA.	
54.	Prin	nary protein structure is form	ed by				
	(A)	hydrophobic interactions					
	(B)	hydrogen bonds					
	(C)	bonds between amino acids					
	(D)	covalent linkages between ca	arbon and oxyg	gen			
55.	In a	truly normal frequency distri	bution				
	(A)	the mean is never the same	as the mode				
	(B)	the mode is never the same a	as the median				
	(C)	the mean always is the same	as the media	n			
	(D)	the mean always is the same	as the standa	rd deviation			
56.		tter is taken out from the wability that both the letters ch		ICS and M.	ATHEMAT	FICS. Find th	е
	(A)	1/55 · (B) 1/50	(C)	2/21	(D)	3/21	
57.	The	equation of a circle which pass	ses through (-	7,1) and has	centre (-4,	-3) is	
	(A)	x2 + y2 + 8x + 6y = 0	(B)	x2 + y2 + 4	x + 3y = 0		
	(C)	x2 + y2 + 2x + 3y = 0	(D)	x2 + y2 + 7	$f_X + 5y = 0$		
58.	When	n two dices are thrown, find th	ne probability	of getting eq	ual numbe	ers.	
,	(A)	1/2 (B) 1/6	(C)	1/12	(D)	1/4	
59.	What	t is the probability for a leap y	ear to have 52	Mondays a	nd 53 Sun	days?	
	(A)	1/7 (B) 1/3	(C)	1/14	(D)	1/21	
60.	Inap	protein, hydrophobic amino ac	ids are more l	ikely to be lo	ocated in th	ne	
	(A)	protein interior	(B)	protein sur	face		
	(C)	aqueous environment	(D)	transmemb	rane regio	ens	

01.	IW	o amino acids whose K groups contai	n sullur	atom are
	(A)	Cysteine and Methionine	(B)	Cysteine and Proline
	(C)	Methionine and Histidine	(D)	Metheonine and lysine
62.	The	cosmic ray intensity is minimum at		
	(A)	South pole	(B)	North pole'
63.	(C) Lyn	Equator and monocytes are	(D)	A height of 20 km
	(A)	Agranulocytes	(B)	Granulocytes
	(C)	Thrombocytes	(D)	Erythrocytes
64.	Wha	at is the output of following C langua	ige state	ement 7.5 % 3?
	(A)	1.5	(B)	1
	(C)	No output	(D)	2
65.		oftware development strategy that t contain both data structure and bel Software engineering		Object oriented
	(C)	Data structure	(D)	Program development
66.	In C	++, by default, the members of a class	ss are	
	(A)	Public	(B)	Private
	(C)	Protected	(D)	Both public and private
67.	In th	ne relational database, the set of valu	ues for a	n attribute or a column is called as
	(A)	Tuples	(B)	Fields
	(C)	Attributes	(D)	Domain
38.		nentication mechanisms, which are biological characteristics, are known		n user's behavioral characteristics or
	(A)	Access matrix technique	(B)	Biometric technique
	(C)	Artifact technique	(D)	Password
69.	Whic	ch of the following is not a text editor	?	
	(A)	vi	(B)	Notepad
	(C)	Edit window in DOS	(D)	Word 97

70.	W	nich of the following is not a type of pro-	cessin	g?	
	(A)	Serial	(B)	Network	9
	(C)	Batch	(D)	Multiprogramming	
71.		nich of the following hormones initiate mbrane and then binding to a receptor		ogical actions by crossing the	ne plasma
	(A)	Glucagon			
	(B)	Estradiol			
	(C)	Insulin			
	(D)	Adrenocorticotropic hormone			
72.		e major mechanism of turnover of mole urs through	cular	components of the plasma n	nembrane
	(A)	endocytosis of patches of membrane			
	(B)	diffusion of individual molecules into	the cy	rtoplasm	
	(C)	recovery of specific components by se	lective	receptors	
	(D)	expulsion of integral molecules into t	he ext	racellular medium	
73.		us-mediated transfer of cellular genetic means of virus particles is called	mate	rial from one bacterial cell t	o another
	(A)	Transfection	(B)	transformation	
	(C)	transposition	(D)	transduction	
74.		ich of the following is true about a circ ermined by chemical means to be 21 per			ne that is
	(A)	The genome is 10.5% guanosine			
	(B)	The genome is 21% guanosine			
	(C)	The genome is 29% guanosine			
	(D)	The genome is 58% guanosine			
75.	"Zin	c fingers" are important in cellular reg	ulation	because they are:	
	(A)	at the catalytic site of many kinases			
	(B)	a structural motif in many DNA-bindi	ing pro	oteins	
	(C)	characteristic of palindromic stretches	s of un	ique-sequence DNA	
	(D)	restricted to the cytoplasmic domain of	of grow	th-factor receptors	

10.		the ratio of the four possible phenotypes of the offspring will be:								
	(A)	3:2:2:1	(B)	4:2:2:1	(C)	9:3:3:1	(D)	9:7:3:	1	
77.	Common lesions found in DNA after exposure to ultraviolet light are									
	(A)	pyrimidine din	ners		(B)	single strand	breaks			
	(C)	base deletions			(D)	purine dimers	3			
78.		a first order cheme of the reaction i		reaction, if the c	oncen	tration of the re	actant	is doubled	l, th	
	(A)	unaltered			(B)	halved				
	(C)	changed by a n	egligi	ble amount	(D)	doubled				
79.	Mat	rix A is of order	2×3	and B is of order	3 × 2,	then the order	of the	matrix BA	is	
	(A)	2 × 3	(B)	3×2	(C)	3 × 3	(D)	2×2		
80.	If n	$Pr = 120 \ nCr$, th	en th	e value of r is						
	(A)	10	(B)	5	(C)	120	(D)	12		
81.	If α,	b, c are in arith	netic	progression, the	n 3ª, 3	3 ^b , 3 ^c are in				
	(A)	arithmetic prog	ressi	on						
	(B)	geometric progr	ressio	n						
	(C)	harmonic progr	essio	n						
	(D)	arithmetic and	geom	etric progression	1					
82.	Equ	ation of two para	allel s	traight lines diff	fer by					
	(A)	x term	(B)	y term	(C)	constant term	(D)	xy term		
83.	The	graph of xy = 0 is	3							
	(A)	a point			(B)	a line				
	(C)	a pair of interse	cting	lines	(D)	a pair of parall	el line	3		
84.	The	function $f(x) = $	x is							
	(A)	continuous at x	= 0		(B)	discontinuous	at x = ()		
	(C)	not continuous f	from t	the right at x=0	(D)	not continuous	from t	he left at x	=0	

85.	If A and B are two events such that $P(A) = 0.16$, $P(B) = 0.24$ and $P(A \cap B) = 0.11$, then the probability of obtaining only of the two events is
	(A) 0.29 (B) 0.71 (C) 0.82 (D) 0.18
86.	X speaks truth in 95 percent of the cases and Y in 80 percent of cases. The percentage of cases they likely to contradict each other in stating same fact is
	(A) 14 % (B) 86 % (C) 23 % (D) 85.5 %
87.	Which of the following types of bonds or interactions are LEAST likely to be involved in stabilizing the three-dimensional folding of most proteins?
	(A) Hydrogen bonds (B) Hydrophobic interactions
	(C) Disulfide bonds (D) Ester bonds
88.	In animals, an enzyme unique to gluconeogenesis is:
	(A) phosphoglyceromutase
	(B) glyceraldehyde 3-phosphate dehydrogenase
	(C) aldolase
	(D) fructose 1,6-bisphosphatase
89.	Approximately how many moles of ATP will be generated as a result of the oxidation of one mole of FADH2 in an actively respiring mitochondrion?
	(A) 0 (B) 2.0 (C) 3.0 (D) 4.5
90.	All of the following components of a retrovirus are encoded by the viral genome EXCEPT
	(A) matrix proteins (B) viral RNA's
	(C) capsid proteins (D) envelope lipids
91.	Some viruses have increased the coding potential of their genome by
	(A) integrating into the host genome (B) using host ribosomes for translation
	(C) using alternative splicing sites (D) using a degenerate triplet code

92.	Which of the following is most likely to lead to a loss of gene function?					
	(A)	A missense mutation in the open reading frame				
	(B)	A change from a TAA codon to a TAG codon in the coding region				
	(C)	A change from T to C in the promoter region				
	(D)	A frameshift mutation in the coding region				
93.	All	of the following processes occur in the mitochondria of mammalian cells EXCEPT				
	(A)	fatty acid biosynthesis (B) protein synthesis				
	(C)	DNA synthesis (D) beta oxidation of fatty acids				
94.	Which of the following is meant by the statement that glucose and mannose are epimers?					
	(A)	One is an aldose and the other is a ketose.				
	(B)	They are mirror images of each other.				
	(C)	They rotate the plane of light in opposite directions.				
	(D)	They differ only in the configuration about one carbon atom.				
95.	and	plution contains DNA polymerase I, Mg2+ salts of dATP, dGTP, dCTP, and dTTP, an appropriate buffer. Which of the following DNA molecules would serve as a plate for DNA synthesis when added to this solution?				
	(A)	A single-stranded closed circle				
	(B) A single-stranded closed circle base-paired to a shorter linear strand with a 3'-terminal hydroxyl					
	(C)	A single-stranded closed circle base-paired to a shorter linear strand with a 3'-terminal phosphate				
	(D)	A double-stranded closed circle				
96.	Which of the following enzymes plays a direct role in the biosynthesis of collagen?					
	(A)	Prolyl hydroxylase (B) Tyrosine hydroxylase				
	(C)	Choline oxidase (D) Monoamine oxidase				

97.		ich of the following intermediate compounds is involved when a peptide is lrolyzed by chymotrypsin?
	(A)	An ester between the substrate's acyl carbon and the serine of the active site
	(B)	A thioester between the substrate's acyl carbon and the cysteine of the active site
	(C)	An amide between the substrate's acyl carbon and the lysine of the active site
	(D)	An amide between the substrate's acyl carbon and the asparagine of the active site
98.	A m	ammalian zygote resulted from the fusion of a normal gamete with a gamete that
	forn	ned after a nondisjunction event in one chromosome during meiosis II. Which of
	the	following best describes the zygote?
	(A)	Diploid (B) Aneuploid (C) Polyploid (D) Polysomic
99.	The	specialized structures located at the ends of eukaryotic chromosomes are called
	(A)	terminators (B) telomeres
	(C)	long terminal repeats (LTR's) (D) centromeres
.00	Alth	ough multiple disulfide bonds are possible during the formation of the tertiary
	stru	cture of some secretory proteins, only the "correct" ones are found in the secreted
	prod	uct. This is primarily due to the fact that
	(A)	incorrectly folded proteins are degraded by lysosomes
	(B)	processing and folding is continued in the endosomes
	(C)	a protein facilitates the formation of correct disulfide bonds in the endoplasmic
		reticulum
	(D)	only correctly folded proteins are translated in the endoplasmic reticulum