ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (BIOINFORMATICS)

COURSE CODE: 104

Register Number:	
	Signature of the Invigilator (with date)
The Conversalment worked begrowth 1600 per	

COURSE CODE: 104

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

			_		_						
1.		at is the differe									
	(A)			icly available I		-					
	(B)			nredundant cu							
	(C)			are derived fro							
	(D)	RefSeq seque	nces are	derived from	GenBa	nk					
2.	The	tool for identif	ication o	of motif is							
	(A)	COPIA			(B)	Patternhunte	r				
	(C)	PROSPECT			(D)	BLAST					
3.	In P	erl, scalar vari	ables ca	n contain							
	(A)	Strings or nu			(B)	Strings, lists	or numb	ers			
	(C)	Strings, num		references	(D)	Numbers, has					
4.	The	one aspect tha	t is a pa	rt of the cataly	vtic rea	ction mechanis	sm of all	enzymes is			
	(A)	General acid			, 0.0 2 0 0		Jan 02 021	01110, 11100 10			
		(B) Substrate strain									
	(C)	Binding the t		n state							
	(D) Covalent catalysis										
5.	The	electrophoretic	a mobili	ty shift assay o	lotovni	noc					
0.	(A)			olymorphism i							
	(B)			orphism is pres							
	(C)			a specific DNA							
	(D)	The T _M of a I		a specific DIVE	i seque	nce					
0	CIL			0.0 D	. ,			11111			
6.	Syst		for gro	ups of four B	inary I	Digits is called		Number			
	(A)	Unicode	(B)	Decimal	(C)	Binary	(D)	Hexadecimal			
7.	Whi	ch of the follow	ving pro	tocol is not use	ed in th	e Internet?					
	(A)		(B)	WIRL		HTTP	(D)	Gopher			
8.		ich one of the f ral network?	collowing	g protein secon	ıdary s	tructure predic	ction ser	ver is based on			
	(A)	MZEF	(B)	NNPredict	(C)	Consurf	(D)	DAS			
9.	Allo	steric enzymes	are con	amonly found i	n what	metabolic reg	ulatory s	vstem?			
	(A)	Competitive			(B)	Enzyme indu		Journ.			
	(C)	Feedback inh		/11	(D)	Regulatory in					
	(0)	r ceanack IIII	110101011		(D)	negulatory II	HIDITIOH				

10.	given probe and an organism to be identified is measured by											
	(A) turbidity read in a spectrophotometer											
	(B) color intensity of an image produced by scanning with a laser beam											
	(C)											
	(D)	degree of agglu										
11.	The	Lennard-Jones	notent	ial is commonly	v usod	to describe						
***		Van der Waals		au is common,	(B)	Aromaticity						
	100	Hydrogen bond				Stacking						
12.		version of a cher format conversio		structure from	*.mol	format to SMII	LES is "	"t	ype of			
	(A)	3D to string			(B)	3D to 2D						
	(C)	2D to 3D			(D)	1D to 3D						
13.	Whi	ch of the following	ar io n	ot an Innut Do	vice?							
10.	(A)	Touch Screen	ng is ii	ot an input De		Optical Scann						
		Touch Pad			(B)	-						
	(C)	Touch Pad			(D)	Mouse Pad						
14.	The	protein surface	tends	to be more		than the inner	core.					
	(A)	Hydrophobic	(B)	Hydrophilic	(C)	Acidic	(D)	Basic				
15.	Wha	at is the probabil	ity of	getting at least	4 hea	ds in 6 tosses of	f a fair c	coin?				
	(A)	11/32	(B)	11/12	(C)	13/32	(D)	1/4 -				
16.	In h	ow many ways c	an a c	ommittee of 5 p	people	can be chosen o	ut of 9	people?				
	(A)	124	(B)	126	(C)	128		122				
17.		airplane must h way of 1000 m lo							For a			
	(A)	$5~\mathrm{ms^{-2}}$	(B)	10 ms ⁻²	(C)	$50~\mathrm{ms^{-2}}$	(D)	100 ms	2			
18.		ar moving at a ve ne car is	elocity	of 20 ms ⁻¹ slov	vs dow	n to 10 ms ⁻¹ in	10 s. T	he accele	ration			
	(A)	2 m s^{-2}	(B)	$-2~\mathrm{ms^{-2}}$	(C)	$1~\mathrm{m~s^{-2}}$	(D)	-1 m s^{-2}				
19.	axis	oiled egg and a ra . If I _b and I _r are	mome	ents of inertia o	f boile	d egg and raw e	egg resp	ectively, t				
	(A)	$I_b = I_r$	(B)	$I_b > I_r$	(C)	$I_b < I_r$	(D)	$I_b = 2 I_r$				

20.	A ca		e movir	ng with same	momer	ntum. If san	ne brake f	orce is applied
	(A)		rest in s	horter distanc	e			
	(B)			shorter distan				
	(C)			distance befo		ing to rost		
				raw any concli		ing to rest		
	(D)	insumeient a	ata to di	raw any concit	usion			
21.	If a	stationary bom	b explo	des into two pi	ieces of	unequal mas	sses, then	
	(A)	both will hav	e the sa	me kinetic ene	ergy			
	(B)	bigger piece v	vill have	greater kinet	ic ener	gy		
	(C)	smaller piece	will hav	ve greater kine	etic ene	ergy		
	(D)	bigger piece v	vill have	greater mom	entum			
22.	slee		s use o	f fat and wate				al development, on of the brain.
	(A)	hypothalamu	S		(B)	midbrain		
	(C)	corpus callos	um		(D)	cerebellum		
23.	From		lparent	or grandparer	nts did	you inherit	your mito	chondria? Is it
	(A)	mother's pare	ents		(B)	paternal gr	andfather	
	(C)	grand mother	rs		(D)	maternal g	randmothe	er
24.	Whi	ch of these sug	ora doo	not normally	woodt w	with Bonodiat	ta waa cant	9
24.		Fructose		*				
	(A)	Fructose	(D)	Galactose	(C)	Glucose	(D)	Sucrose
25.		Lineweaver-b		of a simple en	nzymat	ic reaction, w	vhat is the	value of the x-
	(A)	Km	(B)	1/Km	(C)	-Km	(D)	-1/Km
9.0	XX71- :	ala of the faller			41-	1C		·
26.		cal eukaryotic		operty describ	es the	order of ever	its in the	processing of a
	(A)	Capping, Slic	ing and	Polyadenylati	ion			
	(B)	Capping, Poly	yadenyla	ation and Slici	ing			
	(C)	Polyadenylat	ion, cap	ping and slicir	ng			
	(D)	Slicing, Ploya	idenylat	ion andCappii	ng			
27.	420		s loaded	onto a gel filt	tration	column that	has a size	7, B: 66000, C: exclusion limit

(A) A,B,C,D (B) D,B,C,A (C) A,C,B,D (D) D,A,B,C

28.	a ce	ell-free protein s t protein synthe roducts would y one protein, co three proteins two proteins,	sis can you exponsisting, each consisting	izing system begin withou ect to occur a ag of a single consisting of a the an alterna	like the at the need fter protesting amino ac a different ating seq	one used by N ed for an initiat ein synthesis?	irenberg or codor o acid fferent a	
29.	com	he Meselson-St posed of one lig containing grow	ht stra	nd and one h	n experi leavy str	ment, what pe and after one g	rcent of generation	the DNA was on of growth in
		100	(B)		(C)	50	(D)	75
30.	be c	oded for by the	followin	ng mRNA?			id, wha	t protein would
	5'-C (A) (B) (C) (D)	pro his met ar met arg his ty met arg his ty met pro his m	g his ty r lys cy r lys	r lys cys his s his thr	thr	CA-3'		
31.	Wha	at is the next nu	mber i	n the series 1	4 10 22	*****		
	(A)	46	(B)	54	(C)	36	(D)	44
32.	In w	hat distribution	n mean	median and	mode ar	e equal?		
	(A)	Poisson	(B)	Binomial	(C)	Normal	(D)	Geometric
33.		study of relatio					ed	_
	(A) (C)	Association Correlation						
	(0)	Correlation			(D)	Histogram		
34.	Wha	at is the test use	ed to tes	st the equalit	y of seve	ral means		
	(A)	t-test	(B)	$Z-\mathrm{test}$	(C)	Anova	(D)	Chi-Square
35.	α-he	elix in coiled coil	has	per turn				
	(A)	3.5 residue			(B)	3.6 residue		
	(C)	3 residue			(D)	3.4 residue		
36.	Ran	nachandran plot	discus	ses about				
	(A)	Phi-Psi scatter	r diagra	ım	(B)	Phi-Psi correla	ation dia	agram
	(C) Phi-Psi steric contour diagram					Phi-Psi energy	diagra	m

37.	Tryp	osin does not	digest aft	er Lys/Arg	when the	following resid	due is			
	(A)	Ala	(B)	His	(C)	Trp	(D) Pro			
38.	Nob	el prize award	led for ar	n Indian to	the new fir	ndings in				
	(A) Change in nuclear spin									
	(B) Ultraviolet-Visible radiation									
	(C)	Difference in	n light sc	attering th	an incident	radiation				
	(D)	X-radiation	for collag	gen						
39.	If 4-	3-14-14 denot	es BALL	then what	does 13-11	-22-7 denote				
	(A)	KITE	(B)	JACK	(C)	KILL	(D) TAIL			
40.		nol, when it			concentra	ated sulphuri	c acid and the	n with		
	(A)	2,4,6-trinitre	obenzene		(B)	o-nitropheno	ol			
	(C)	p-nitrophen	ol		(D)	nitrobenzene	е			
41.	α-D-	-(+)-glucose an	nd D-D-(+)-glucose a	re					
	(A)	conformers			(B)	epimers				
	(C)	anomers			(D)	enantiomers				
42.	KM		in the pr	resence of	H ₂ SO ₄ . The	e titration giv	ned by its titration			
	(A)	gets oxidise								
	(B)	furnishes H				n oxalic acid				
	(C)	reduces per	mangana	te to Mn2+						
	(D)	oxidises oxa	lic acid t	o carbon di	oxide and v	water				
43.	Whi	ch one of the	following	types of d	rugs reduce	es fever?				
	(A)	Analgesic			(B)	Antipyretic				
	(C)	Antibiotic			(D)	Tranquiliser				
44.	Due	to the preser	nce of an	unpaired e	lectron, fre	e radicals are				
	(A)	Chemically	reactive		(B)	Chemically i	inactive			
	(C)	Anions			(D)	Cations				
45.	The	highest elect	rical con	ductivity of	the follow	ing aqueous s	olutions is of			
	(A)	0.1M acetic			(B)	0.1M chloros				
	(C)	0.1M fluoro		id	(D)	0.1M difluor	oacetic acid			
104					6					
					-					

Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution + 520 mL of 1.2 M second solution. What is the molarity of the final mixture? (A) 1.20 M (B) 1.50 M (C) 1.344 M (D) 2.70 M 47. If we consider that 1/6 in place of 1/12 mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will (A) Decrease twice (B) Increase two fold (C) Remain unchanged (D) Be a function of the molecular mass of the substance Based on lattice energy and other considerations which one of the following alkali metal chlorides is expected to have the highest melting point? (B) NaCl (A) LiCl (C) KCl (D) RbCl 49. Enthalphy is the (A) change of electrical energy (B) change of magnetic energy (C) change of heat energy (D) change of magnetic energy and heat energy Use the following diagram to answer question. Neglect the affect of resistance forces. 50. As the object moves from point A to point D across the surface, the sum of its gravitational potential and kinetic energies (A) decreases only (B) decreases and then increases (C) remains the same (D) increases and then decreases 51. Quantity electric potential is defined as the amount of (B) force acting upon a charge (A) electric potential energy (C) potential energy per charge (D) force per charge The process in which DNA is constantly read out into a particular set of mRNA is 52. called (B) protein synthesis (A) translation (C) DNA duplication (D) Transcription

7

The group of biologically important transfer of information is	organic co	mpounds responsib	ole for storage and
(A) Proteins	(B)	Nuceic acids	
(C) Polysaccharides	(D)	Phospholipids	
Which one of the following have high	nest energy	transition?	
(A) n to σ^* (B) σ to σ^*	(C)	n to Π*	(D) Π to Π*
Who solved the structure of collagen	?		
(A) Venki Ramakrishnan	(B)	G.N. Ramachandr	an
(C) Sir. C.V. Raman	(D)	Wim Hole	
Pentide mass finger printing gener	rally uses t	he following techn	ique to purify the
protein component	dily dibbb c	io ionoming comm	aque to purity un
(A) HPLC technique	(B)	TLC technique	
(C) 2D- gel electrophoresis	(D)	Hybridization	
Proline is known as helix breaker. C	ause		
(A) Proline is rigid in structure	(B)	Lack of amide hyd	drogen
Which of the following hybrid is mor	e stable		
		AATGGC	
	(2)		
	(D)		
TATCCC	(2)	CTGACT	
The goose flesh is formed due to the	contraction	of	
(C) trapezius muscle			
The process of changing the form in	order to car	rv out a enecializad	function is called
			runcion is caned
(C) cell division	(D)		
'Dead', non-functional copies of gene	s present el		ome, but no longer
of any use, are called as	-		
(A) Pseudogenes	(B)	Selfish genes	
(C) Jumping genes	(D)	Holandric genes	
Human genome contains approxima	tely		
(A) one lakh genes	(B)	sixty thousand ge	nes
(C) five thousand genes	(D)	twenty-five thous	
	transfer of information is (A) Proteins (C) Polysaccharides Which one of the following have high (A) n to o* (B) o to o* Who solved the structure of collagen (A) Venki Ramakrishnan (C) Sir. C.V. Raman Peptide mass finger printing gener protein component (A) HPLC technique (C) 2D- gel electrophoresis Proline is known as helix breaker. C (A) Proline is rigid in structure (C) Proline is a hydrophilic residue Which of the following hybrid is mor (A) GATCGC CTAGCG (C) ATAGGG TATCCC The goose flesh is formed due to the (A) diaphragm (C) trapezius muscle The process of changing the form in (A) differentiation (C) cell division 'Dead', non-functional copies of general of any use, are called as (A) Pseudogenes (C) Jumping genes Human genome contains approxima (A) one lakh genes	transfer of information is (A) Proteins (B) (C) Polysaccharides (D) Which one of the following have highest energy: (A) n to \(\sigma^* \) (B) \(\sigma \text{to } \sigma^* \) (C) Who solved the structure of collagen? (A) Venki Ramakrishnan (B) (C) Sir. C.V. Raman (D) Peptide mass finger printing generally uses the protein component (A) HPLC technique (B) (C) 2D-gel electrophoresis (D) Proline is known as helix breaker. Cause (A) Proline is rigid in structure (B) (C) Proline is a hydrophilic residue (D) Which of the following hybrid is more stable (A) GATCGC (C) ATAGGG (C) ATAGGG (C) ATAGGG (D) The goose flesh is formed due to the contraction (A) diaphragm (B) (C) trapezius muscle (D) The process of changing the form in order to car (A) differentiation (B) (C) cell division (D) 'Dead', non-functional copies of genes present elefany use, are called as (A) Pseudogenes (B) (C) Jumping genes (B) (C) Jumping genes (B) Human genome contains approximately (A) one lakh genes (B)	(A) Proteins (B) Nuceic acids (C) Polysaccharides (D) Phospholipids Which one of the following have highest energy transition? (A) n to σ* (B) σ to σ* (C) n to Π* Who solved the structure of collagen? (A) Venki Ramakrishnan (B) G.N. Ramachandr (C) Sir. C.V. Raman (D) Wim Hole Peptide mass finger printing generally uses the following techn protein component (A) HPLC technique (B) TLC technique (C) 2D- gel electrophoresis (D) Hybridization Proline is known as helix breaker. Cause (A) Proline is rigid in structure (B) Lack of amide hyc (C) Proline is a hydrophilic residue (D) Proline is similar Which of the following hybrid is more stable (A) GATCGC (B) AATGGC CTAGCG (D) GACTGA TATCCC (TAGCG) (C) ATAGGG (D) GACTGA CTGACT The goose flesh is formed due to the contraction of (A) diaphragm (B) errector pili (C) trapezius muscle (D) gluteus maximus The process of changing the form in order to carry out a specialized (A) differentiation (B) growth (C) cell division (D) cell elongation 'Dead', non-functional copies of genes present elsewhere in the gen of any use, are called as (A) Pseudogenes (B) Selfish genes (C) Jumping genes (D) Holandric genes Human genome contains approximately (A) one lakh genes (B) sixty thousand ge

63.			odification seen in secreted protein	a?
	(A) Phosphorylation		Signal peptide	
	(C) Glycosylation	(D)	Acetylation	
64.	The primary action of ste	roid hormones is at the	e level of	
	(A) replication	(B)	transcription	
	(C) translation	(D)	post transcriptional modification	1
65.	The first researcher to se	quence a genome, in 1	977, was	
	(A) Todd Golub	(B)	Frederick Sanger	
	(C) Craig Venter	(D)	Stephen Fodor	
66.	Genes for typical single-c	haracter Mendelian tr	aits are called	
	(A) segmental duplicati	ions (B)	multigene families	
	(C) tandem clusters	(D)	single-copy genes	
67.	The median of the following	ing data		
	5, 8, 11, 8, 10, 16, 13, 8, 1	10, 7	the light of the l	
	(A) 10 (B)) 9 (C)	8 (D) 7	
68.	If three quartiles of a var	riable x are 5, 12, 17 th	en the value of Quartile Deviation	is
	(A) 5 (B)) 6 (C)	11.3 (D) 12	
69.	In Maxam and Gilberts the use of	DNA sequencing meth	nod, cleavage of purine takes plac	e by
	(A) phosphoric acid	(B)	dimethyl oxalate	
	(C) dimethyl sulphate	(D)	dimethyl phosphate	
70.	You have two closely rechoose to compare them?		BLOSUM or PAM matrix would	you
	(A) BLOSUM 80 or PAI	M1 (B)	BLOSUM60 or PAM120	
	(C) BLOSUM60 or PAN	M1 (D)	BLOSUM45 or PAM250	
71.	ClustalW is based on			
	(A) Iterative method	(B)	Hidden Markov model	
	(C) Progressive method	(D)	Dot matrix method	
72.	TAIR is a database of			
	(A) Genetic and molecu	lar biology data for Are	abidopsis thaliana	
		lar biology data for Alp		
	(C) Drosophila genome			
	(D) Puotoin accurances			

 73. GeneMark is a gene prediction software that is based on (A) Interpolated Markov model (B) Fifth order Markov model (C) Sixth order Markov model (D) Fourth order Markov mode 74. Rosetta is a web server that (A) predicts protein three-dimensional conformations using the extrinsic a 	pproach
(C) Sixth order Markov model (D) Fourth order Markov model 74. Rosetta is a web server that	pproach
74. Rosetta is a web server that	pproach
(A) predicts protein three-dimensional conformations using the extrinsic a	
Y / A	
(B) predicts protein three-dimensional conformations using the ab initio m	
(C) predicts protein coding genes using the ab initio method	
(D) predicts promoter regions using the ab initio method	
75. Twilight zone of protein sequence alignment has	
(A) 20-30 % sequence identity (B) above 60% sequence identity	ty
(C) less than 20% sequence identity (D) above 80% sequence identity	ty
76. In how many ways can a committee of 5 people can be chosen out of 9 people	?
(A) 124 (B) 126 (C) 128 (D) 162	
77. Arithmetic mean of a group of 100 items is 50 and another group of 150 item. What will be the mean of all the items?	ms is 100.
(A) 78 (B) 80 (C) 85 (D) 80.5	
78. In how many ways can the letters of the word 'bioinformatics' be arranged?	
(A) 14! / (3! x 2!) (B) 14! / (14-2)!	
(C) 14! / 3! (D) 14! / (14-1)!	
79. In a moderately skewed distribution, the mean and the mode are 30 respectively. What is the median of the distribution?	and 27,
(A) 28 (B) 29 (C) 31 (D) 32	
80. What reagent is used in the Edman degradation of a peptide?	
(A) Mercaptoethanol (B) Phenylisothiocyanate	
(C) Trifluoroacetic acid (D) Trichloroacetic acid	
81. How many domains are there in an immunoglobulin heavy chain constant re	egion?
(A) 2 (B) 3 (C) 6 (D) 5	
82. In eukaryotes, transcription of mRNA is 1)catalyzed by what type of einitiated by binding of transcription factors to which important promoter see (A) RNA polymerase IV; TATA box	
(B) RNA polymerase I; Goldberg-Hogness box	
(C) RNA polymerase II; TATA box	
(D) RNA polymerase III; Goldberg-Hogness box	
104	

83.		en used in a se are:	earch qu	ery the w	ords AND,	OR and NO	Γ are capitalize	d because	
	(A)	common wor	ds		(B)	short and e	asily missed		
	(C)	Boolean oper	ators.		(D)	stop words			
84.	kne hit	w that there with our seque	vere 165 nce. Wh	sequence at is the va	s in the da alue of sens	tabase which itivity of Bla	ere false positive a should have r st in this instan	eturned a	
	(A)	0.16	(D)	0.50	(C)	0.82	(D) 83		
85.		independent p ulation is:	rocess th	at produc	es random	changes in th	ne frequency of	traits in a	
	(A)	Genetic drift			(B)	Genetic cod	e		
	(C)	Genetic usag	e		(D)	Genetic rec	ombination		
86.	Whe	en a planet mo	ves arou	nd the sur	1,				
	(A)	the angular				d			
	(B) the angular speed remains constant								
	(C)	-							
	(D)	the linear me	and the same						
87.	Dist	ance between	two para	allel plane	s. $2x + v + 2$	2z = 8 and 4x	+2y + 4z + 5 =	0. is	
	(A)			5/2		7/2	(D) 9/2	0,10	
88.		hild is born wally the result		extra chro	mosome in	each of its	cells. This co	ndition is	
	(A)	Non-disjunct	ion		(B)	Crossing ov	er		
	(C)	Segregation			(D)	Hybridizati			
89.	top		e opposi	te bank of	the river i	s and when	angle of elevat he retires 40 m the river is		
	(A)	20 m	(B)	30 m	(C)	40 m	(D) 60m		
90.	slide		lane in a	frictionle	ss manner.		identical hollow com of the inclir		
	(A)	less than tha	t of B						
	(B)	equal to that	of B						
	(C)	more than th	at of B						
	(D)	sometimes m	ore and	sometime	s less				

91.	Whe	n did Watson	and Cric	k publish the	e helical	structure of D	NA?	
	(A)	In 1953			(B)	In 1954		
	(C)	In 1957			(D)	In 1952		
92.	Wha	t is the appro	ximate s	ize (in Mb) of	the Cae	rnorhabditis e	legans ge	enome?
	(A)	100 Mb				235 Mb		
	(C)	540 Mb						
93.	The	time – indepe	ndent Sc	hrodinger eg	nation is	given by		
00.	(A)	Ψ=ЕΨ	TIMOTE NO	inounger eq	(B)	НЧ=ЕЧ		
	(C)	E= HΨ			, ,	Н= ЕΨ		
	(0)	13-111			(D)	11-131		
94.	Allo	of the followin	g are exa	mples of inpu	at device	s EXCEPT a:		
	(A)	Scanner			(B)	Mouse		
	(C)	Keyboard			(D)	Printer		
95.		ch one of the files?	following	functions is	used to c	earry out the b	oth read	ing and writing
		open(FH," <f< td=""><td>ilename"</td><td>):</td><td>(B)</td><td>open(FH,">fi</td><td>lename")</td><td></td></f<>	ilename"):	(B)	open(FH,">fi	lename")	
		open(FH,">>			(D)	open(FH,"+>		
96.	Whi	ch one of the	following	is not a lymp	phocyte?			
	(A)	B-cell	(B)	T-cell	(C)	NK-cell	(D)	Mast-cell
97.	Poss	sible combinat	tion of ga	metes which	can be f	ormed by gene	otype Aal	BbCcDdEeFfGg
	(A)	16	(B)	32	(C)	64	(D)	128
98.	The		resulting	g from the a	pplicatio	n of numerica	al taxono	mical methods
	(A)	Evolutionary	y relation	ship	(B)	Phylogenetic	relation	ship
	(C)	Overall simi	larity		(D)	Genetic relat	tionship	
99.	Whi	ch one of the	following	is the full for	rm of SA	RF:		
	(A)	Structural A	Rrangen	nent of backb	one Frag	gments		
	(B)	Similar ARr	angemen	t of backbone	Fragme	ents		
	(C)	Spartial AR	rangeme	nt of backbon	e Fragm	ents		
	(D)	Sequence Al	Rrangem	ent of backbo	ne Fragr	ments		
100	Wha	ch of the follo	wing ie n	ot a neogram	ming lar	10112007		
100.	(A)	UNIX	(B)	PASCAL	(C)	FORTRAN	(D)	BASIC
	(11)	OTHER	(D)	LABOAL	(0)	TOMME	(1)	DADIO