ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (CHEMISTRY)

COURSE CODE: 107

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 107

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The violet colour of $[Ti(H_2O)_6]^{3+}$ is due to		
	(A) ligand to metal charge transfer trans	ion	
	(B) metal to ligand charge transfer trans	ion	
	(C) d-d transition		
	(D) f-f transition		
2.	Among the following pair of metal ions, the agent and the second one catalyzes the hyd		
	(A) Fe and Zn (B) Mg and Fe	C) Co and Mo	(D) Ca and Cu
3.	The crystal systems having the highest and	lowest symmet	ries are
	(A) cubic and rhombohedral	B) cubic and	monoclinic
	(C) rhombohedral and monoclinic	D) cubic and	triclinic
4.	The magnetic moment of an octahedral configuration of Co(II) is	Co(II) complex	is $4.0 \mu_B$. The d electron
	(A) $t_{2g}^4 e_g^{3}$ (B) $t_{2g}^5 e_g^2$	C) $t_{2g}^6 e_g^1$	(D) $t_{2g}^3 e_g^4$
5.	[CoCl ₄] ² is a blue coloured complex. Contr generates two isomeric light pink coloure The point groups for [CoCl ₄] ² - and two isom	complexes of	composition [$Co(H_2O)_4Cl_2$]
	(A) D _{4h} and (C _{2v} and C _{2h})	B) T _d and (C ₂	_{tv} and D _{4h})
	(C) D _{4h} and (C _{2v} and D _{4h})	D) T _d and (C ₂	w and C _{4v})
6.	The reaction between [PdCl ₄] ²⁻ and C ₂ F compound. This reaction is an example for	in presence	of water produces a new
	(A) hydrogenation of alkene	B) oxidation	of olefin
	(C) hydroformyltion of alkene	D) reduction	of olefin
7.	The square planar complex, [IrCl(PPh ₃) ₃] two products, which are	ndergoes oxida	tive addition of Cl ₂ to give
	(A) fac- and mer- isomers	(B) cis- and tr	ans- isomers
	(C) linkage isomers	D) optical iso	mers

8.	Nature has chosen Zn(II) ion at the active site of many hydrolytic enzymes because
	(A) Zn(II) is a poor Lewis acid
	(B) Zn(II) does not have chemically accessible redox states
	(C) Zn(II) forms both four and higher coordination complexes
	(D) Zn(II) forms weak complexes with oxygen donor ligands
9.	The mechanism of the reaction between [Fe(CN) ₆] ⁴⁻ and (Fe(2,2'-bipyridine) ₃] ³⁺ is
	(A) outer-sphere electron transfer
	(B) inner-sphere electron transfer
	(C) self-exchange reaction
	(D) ligand-exchange followed by electron-transfer
10.	The most suitable route to prepare the trans isomer of [PtCl2(NH3)(PPh3)] is
	(A) [PtCl ₄] ² - with PPh ₃ followed by reaction with NH ₃
	(B) [PtCl ₄] ²⁻ with NH ₃ followed by reaction with PPh ₃
	(C) [Pt(NH ₃) ₄] ²⁺ with HCl followed by reaction with PPh ₃
	(D) [Pt(NH ₃) ₄] ²⁺ with PPh ₃ followed by reaction with HCl
11.	The d-d absorption band of [Fe(H ₂ O) ₆] ²⁺ is split due to
	(A) presence of octahedral geometry
	(B) static Jahn-Teller distortion
	(C) dynamic Jahn-Teller distortion
	(D) presence of trigonal bipyramidal geometry
12.	Structurally nickelocene is similar to ferrocene. Nickelocene attains stability due the formation of
	(A) a monocation (B) a dication (C) a monoanion (D) a dianion
13.	Rare earth ions are good NMR shift reagents because
	(A) they have large magnetic moments arising from the presence of f electrons
	(B) they have short electron spin-lattice relaxation times
	(C) they have long electron spin-lattice relaxation times
	(D) they have short nuclear spin-lattice relaxation times
14.	The zero magnetic moment of octahedral K ₂ NiF ₆ is due to
	(A) low spin d ⁶ Ni(IV) complex
	(B) low spin d ⁸ Ni(II) complex
	(C) high spin d ⁸ Ni(II) complex
	(D) high spin d ⁶ Ni(IV) complex

15.	The	Monsanto cataly	st for	Name and the second				
	(A)	[Rh(PPh ₃) ₃ Cl]	(B)	[Rh(CO) ₂ l ₂]-	(C)	[HCo(CO) ₄]	(D)	PdCl ₄] ²⁻
16.		structures of th	e com	plexes [Cu(NF	I ₃) ₄](Cl	O ₄) ₂ and [Cu(N	NH3)4](ClO	4) in solution
	(A)	tetrahedral and	l squa	re planar	(B)	octahedral an	id square j	oyramidal
	(C)	square planar a	and te	trahedral	(D)	octahedral ar	d trigonal	bipyramidal
17.	The	number of frame	work	electron pairs	presen	t in the borane	cluster [E	3 ₁₂ H ₁₂] ²⁻ is
	(A)	ten	(B)	eleven	(C)	twelve	(D) t	hirteen
18.	2059 at 1	d Co ₂ (CO) ₈ show 9, 2071 and 2112 857 and 1886 cr	cm^{-1} .	When Co ₂ (CO) ₈ is di	ssolved in hexa	ane, the ca	rbonyl bands
	(A)	loss of terminal	CO					
	(B)	dissociation of		O)s to Co(CO)4				
	(C)	structural chan			sion of	terminal CO t	o bridging	CO
	(D)	structural chan						
19.	The	neutral complex	which	follows the 18	3-electr	on rule is		
	(A)	$(\eta^5 - C_5 H_5) Fe(C$	$O)_2$		(B)	$(\eta^5 - C_5 H_5) M \alpha$	$o(CO)_3$	
	(C)	$\left(\eta^{5}-C_{5}H_{5}\right)_{2}CC$) .		(D)	$\left(\!\eta^5\!-\!C_5H_5\right)\!\mathrm{Re}$	$(\eta^6 - C_6 H_6)$)
20.		ix coordinate tr						active. The
	(A)	$[Mn(H_2O)_6]^{2+}$	(B)	$[Fe(H_2O)_6]^{2+}$	(C)	$[Fe(H_2O)_6]^{3+} \\$	(D) [Fe(CN) ₆] ³ -
21.		2,2'-bipyridyl) ₃] ² ucing agent due t			452 n	m, is a very go	ood oxidizi	ng as well as
	(A)	[Ru ^I (2,2'-bipyri	dyl)3]+					
	(B)	[Ru ^I (2,2'-bipyri	dyl) ₂ (2	,2'-bipyridyl+)]	2+			
	(C)	[Ru ^{III} (2,2'-bipyr	idyl)3]	3+				
	(D)	[Ru ^{III} (2,2'-bipyr	idyl)2(2, 2'-bipyridyl)]2+			

	(C)	electron spin resonance (D) fluorescence spectroscopy					
23.		ong, RO-, AsMe3, ROR, CN-, RCO $_2$, SCN-, the set of ligands with good π -acceptor ure are					
	(A)	RO-, RCO ₂ , SCN- (B) RO-, RCO ₂ , AsMe ₃					
	(C)	AsMe ₃ , CN-, SCN- (D) RO-, ROR', RCO ₂					
24.		IF_3 were to be stereochemically rigid, its ^{19}F NMR spectrum (I for $^{19}F=1/2$) would assume Cl is not NMR active)					
	(A)	a doublet and a triplet (B) a singlet					
	(C)	a doublet and a singlet (D) two singlets					
25.	The	bonding in Cp in Fe(Cp)2(CO)2 is such that					
	(A)	both Cp rings are pentahapto					
	(B) one Cp ring is pentahapto and other Cp ring is monohapto						
	(C)	both Cp rings are monohapto					
	(D)	both Cp rings are ionically bonded					
26.	In tl	he transformation of deoxyhemoglobin to oxyhemoglobin,					
	(A)	Fe(II) in the high spin state changes to Fe(II) in the low spin state					
	(B)	Fe(II) in the high spin state changes to Fe(III) in the high spin state					
	(C)	Fe(II) in the low spin state changes to Fe(II) in the high spin state					
	(D)	Fe(II) in the low spin state changes to $Fe(III)$ in the low spin state					
27.		correct order of υ_{CO} for the compounds [Mo(CO)3(NMe3)3], [Mo(CO)3(P(OPh)3)3],					
		(CO) ₃ (PMe ₃) ₃] and [Mo(CO) ₃ (PCl ₃) ₃] in the IR spectrum is					
	(A)	$[Mo(CO)_3(NMe_3)_3] > [Mo(CO)_3(P(OPh)_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(PCl_3)_3]$					
	(B)	$[Mo(CO)_3(PCl_3)_3] > [Mo(CO)_3(NMe_3)_3] > [Mo(CO)_3(P(OPh)_3)_3] > [Mo(CO)_3(PMe_3)_3]$					
	(C)	$[Mo(CO)_3(PCl_3)_3] > [Mo(CO)_3(P(OPh)_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(NMe_3)_3]$					
	(D)	$[Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(NMe_3)_3] > [Mo(CO)_3(PCl_3)_3) \ [Mo(CO)_3(P(OPh)_3)_3] > [Mo(CO)_3(POPh)_3)_3] > [Mo(CO)_3(POPh)_3)_3] > [Mo(CO)_3(POPh)_3)_3 > [Mo(CO)_3(POPh)_3)_3] > [Mo(CO)_3(POPh)_3)_3 > [Mo(CO)_3(POPh)_3(POPh)_3 > [Mo(CO)_3(POPh)_3)_3 > [Mo(CO)_3(POPh)_3(POPh)_3 > [Mo(CO)_3(POPh)_3)_3 > [Mo(CO)_3(POPh)_3 > [Mo(CO)_3(POPh)_3)_3 > [Mo(CO)_3(POPh)_3 > [Mo(CO)_3(POPh)_3)_3 > [Mo(CO)_3(POPh)_3 > [Mo(CO)_3(POPh)_3)_3 > [Mo(CO)_3(POPh)_3 > [Mo(CO)_3($					
		5 107					

An iron complex $[FeL_6]^{2+}$ (L = neutral monodentate ligand) catalyses the oxidation of

(CH₃)₂S by perbenzoic acid. The formation of the organic product in the above reaction can be monitored by

(B) cyclic voltammetry

22.

(A) gas chromatography

28.	The absorption spectra of rare earth complexes are not much affected by the ligands and this is due to					
	(A)	4f orbitals are inner-lying and shield	ded by	outer electronic shells		
	(B)	the f orbitals have $l = 3$	*			
	(C)	the rare earths are more electroposi	tive			
	(D)	the rare earths complexes are more	stable			
29.	Alui		er tem	perature than that of sodium chloride		
	(A)	the Al-Cl bond is more ionic than the	at of N	Va-Cl		
	(B)	aluminium chloride is dimeric				
	(C)	Al-Cl bond is highly covalent while l	NaCl i	s ionic		
	(D)	aluminium chloride is polymeric				
30.	com	pound M. Reaction of M with glacial a	cetic a	a(C ₅ H ₅) in THF solution gives the ionic acid results in product N. The ¹ H NMR ntensity 5:1. The compounds M and N,		
	(A)	$[(C_5H_5)W(CO)_3]$ Na and $[(C_5H_5)W(CO)_3]$) ₄ H]			
^	(B)	$[(C_5H_5)W(CO)_3]\mbox{Na}$ and $[(C_5H_5)W(CO)_3]\mbox{Na}$) ₃ H]			
	(C)	$[(C_5H_5)W(CO)_4]$ Na and $[(C_5H_5)W(CO)_4]$) ₄ H]			
	(D)	$[(C_5H_5)W(CO)_4]$ Na and $[(C_5H_5)W(CO)_4]$) ₃ H]			
31.	Opt	ically active diol among the following	is			
	(A)	cis-1,4-dihydroxycyclohexanediol	(B)	trans-1, 4-dihydroxycylohexanediol		
	(C)	cis-1, 3-dihydroxycyclohexanediol	(D)	trans-1, 3-cyclohexanediol		
32.	Maj	or product formed in the nitration of t	oluene	with HNO3/conc. H2SO4 is		
	(A)	2-nitrotolune	(B)	3-nitrotoluene		
	(C)	4-nitrotoluene	(D)	2,4-dinitrotoluene		
33.	A ca	arbohydrate molecule that reacts with	pheny	olhydrazine to form an osazone is		
	(A)	lpha -D-glucopyranose				
	(B)	α -D-glucopyranosepentaacetate				
	(C)	methyl α -D-glucopyranoside				
	(D)	methyl 2,3,4,6-tetra-O-methyl- α -D-	glucop	pyranoside		
34.	Rea	ction of glucose with nitric acid provid	les			
	(A)	1 -nitroglucose (B) Glucaric acid		glucofuranoside (D) glucitol		
107		6				

		*						
35.	Elec	trophiles among	the fo	ollowing are				
	(i)	EtSH			(ii)	PhOH		
	(iii)	$\mathrm{BH_{3}.SMe_{2}}$			(iv)	CH ₃ COCHN;	aCOCH ₃	
	(v)	$Hg(OAc)_2$						
	(A)	(i) and (ii)	(B)	(i) and (iv)	(C)	(iii) only	(D)	(iii) and (v)
36.	The	order of water so	olubili	ty among the	followin	g alcohols is		
	i.	ethanol			ii.	octanol		
	iii	2-methyl-3-pen	tanol		iv.	n-butanol		
	(A)	i>ii>iii>iv	(B)	i>iv>iii>ii	(C)	i>iii>iv>ii	(D)	iv>ii>iii>i
37.	Mos	t acidic hydroger	(B)	e following mo	C)	s H CN C3'H	(D)	C4'H
38.	The	major product of	the fo	ollowing reacti	ion is			
				γ	I. pyrrolic 2. Mel 3. H ₃ O*	line, PTSA		
	(A)	2,2-diemthylcyc	lohex	anone				
	(B)	cis-2,6-dimethy	lcyclo	hexanone				
	(C)	trans-2,6-dimet	hylcy	clohexanone				
	(D)	1, 2dimethyl-1-	cycloh	exanol				

- 39. The reaction of 1-heptyne with $Hg(OAc)_2$ followed by treatment with dil. H_2SO_4 provides
 - (A) 1-heptanol
- (B) 2-heptanol
- (C) 1-heptanal
- (D) 2-heptanone
- 40. Number of ¹³C NMR signals in the ¹H decoupled NMR spectrum of the following compound will be

- (A) nine
- (B) six
- (C) five
- (D) four

The following ester displayed two singlet signals in its ¹H NMR spectrum at δ 2.3 and 3.9 ppm. The signals can be assigned respectively to

(A) CH(1) and CH(2)

(B) CH(1) and CH(3)

(C) CH(1)andCH(4)

- (D) CH(4) and CH(1)
- Match the following compounds with most intense and characteristic bands found in 42. their IR spectra

- (A) i—a; ii—b; iii—c

(B) i-b;ii-a; iii-c

(C) i-b; ii-c; iii-a

- (D) i-c; ii-b; iii-a
- The λ_{\max} (nm) for the following compound is likely to be at 43.

- (A) 275 nm
- (B) 300 nm
- (C) 325 nm
- (D) 350 nm
- An organic compound displayed following spectral data: 44.

¹H NMR δ : 0.92 (d, J = 7.1 Hz, 6H), 1.71-1.84 (m, 3H), 3.43 (b, J = 7.1 Hz, 2H); ¹³C NMR δ : 21, 28, 32, 42; MS m/z: 150/152 (M+), 71, 43 (100%). The compound is

(A) 1 -bromopentane

- (B) 2-bromopentane
- (C) 2-bromo-3-methylbutane
- (D) 2-bromo-3-methylbutane
- The product obtained in the following thermal reaction is 45.

.COOMe

46. In the stable conformation of the following molecule the i) hydroxyl, ii) methyl and iii) t-butyl groups respectively occupy

- (A) equatorial, axial, equatorial
- (B) axial, equatorial, equatorial
- (C) equatorial, axial, axial
- (D) equatorial, equatorial, equatorial
- 47. The reagent systems that can be used for the following conversion is

- (A) i) benzoic acid, CHCl3 ii) KOH, MeOH, iii. H3O+
- (B) i) H2O2, NaOH ii).H3O+
- (C) i) perbenzoic acid, CHCl3 ii) KOH, MeOH, iii. H3O+
- (D) i) F₃B.OEt₂, CHCl₃ ii) H₃O+
- 48. Major product formed in the following reaction is

49. The following photochemical ring contraction goes through

(A) Wolff-rearrangement

- (B) Paterno-Buchi reaction
- (C) Norrish Type-I reaction
- (D) Norrish Type-Il reaction

- 50. The reagent that can be used for the conversion of 3-hexyne to cis-3-hexene is
 - (A) Li, NH₃

(B) i. disamylborane, THF; ii. AcOH

(C) H2, PtO2

- (D) Sn, HCl
- 51. Reaction of indole with acetyl chloride and ZnCl2 at 0°C provides
 - (A) 2-acetylindole

(B) 3-acetylindole

(C) 5-acetylindole

- (D) 6-acetylindole
- 52. The major product formed in the following reaction is

- 53. Ring opening of cis-3,4-dimethylcyclobut-1 -ene to (2E,4E)-hexa-2,4-diene goes through
 - (A) CON rotation under photochemical conditions
 - (B) DIS rotation under photochemical conditions
 - (C) CON rotation under thermal conditions
 - (D) DIS rotation under thermal conditions
- 54. Reaction of bromobenzene with i. Mg, Et2O, ii. ethylene oxide provides
 - (A) 1-phenylethanol

(B) 2-phenylethanol

(C) 1,2-diphenylethane

- (D) 1, 1-dipehnylethane
- 55. An organic compound dissolves in dil NaOH solution. It gives effervescence with aqueous sodium carbonate solution. It forms a product with fruity smell when reacted with dry ethanol in presence of catalytic amount of conc. H₂SO₄. The compound could be
 - (A) cholesterol

(B) 4-cyanotoluene

(C) picric acid

(D) 2-naphthoic acid

56.	The reaction of 3-methylthiophene dibenzoylperoxide will provide the following		V-bromosuccinimide in presence of a major product
	(A) 2-bromothiophene	(B)	4-bromothiophene
	(C) 5-bromothiophene	(D)	3-(bromomethyl)thiophene
57.	Following reaction is an example of		
	+	1. CF ₃ COC 2. NH ₃	OA9
	(A) $2\pi_s + 2\pi_a$ cycloaddition	(B)	$4\pi_s + 2\pi_a$ cycloaddition
	(C) $4\pi_a + 4\pi_s$ cycloaddition	(D)	$6\pi_s + 4\pi_a$ cycloaddition
58.	Conversion of 1-pehenoxy2-butene to	2-(but-3-er	n-2-yl) phenol goes through
	(A) 2,3-sigmatropic rearrangement	(B)	1,5-sigmatropic rearrangement
	(C) 3,3-sigmatropic rearrangement	(D)	1 3-sigmatropic rearrangement
59.	An organic compound A of MF CoHo	O under	roes isomerisation to provide B when

- 59. An organic compound A of MF C₈H₈O₂ undergoes isomerisation to provide B when heated with anhydrous aluminum chloride. While A is insoluble in dilute NaOH solution, B is soluble. Moreover, the IR spectrum of B does not show dependence on dilution. A and B respectively
 - (A) phenylacetic acid and 2-hydroxy-1-phenylethanone
 - (B) phenyl acetate and 2-hydroxyacetophenone
 - (C) phenyl acetate and 4-hydroxyacetophenone
 - (D) phenyl acetic acid and phenyl acetate
- A hydrocarbon of MF C₁₀H₈ is intensely blue colored solid. It undergoes substitution reactions rather than addition reactions. The hydrocarbon could be
 - (A) naphtalene

- (B) azulene
- (C) 1 -ethynyl-4-vinylbenzene
- (D) 1 -ethynyl-2-vinylbenzene
- 61. Consider the partial derivatives of Maxwell relations (i) $(\delta T/\delta V)_S = (\delta P/\delta S)_V$ and
 - (ii) $(\delta T/\delta P)_S = (\delta V/\delta S)_P$, pick out the correct statement from the following
 - (A) (i) is true and (ii) is false
- (B) (i) is false and (ii) is true

(C) both are true

(D) both are false

	(A) $y = 23$ (B) $y = 2.3$	(C) $y = 0.23$ (D) $y = 0.023$	
63.	The compound that can not undergo r	nicellization process is	
	$(A) C_{17}H_{35}COONa (B) (R_1R_2R_3R_4R_4R_5R_5R_5R_5R_5R_5R_5R_5R_5R_5R_5R_5R_5R$)NBr (C) Triton-x 100 (D) Acryl amic	de
64.	Raman spectroscopy discusses ——————————————————————————————————	———— is an anisotropic quantity and its va c field relative to the molecular axis	alue
	(A) polarizability	(B) relative permittivity	
	(C) dipole moment	(D) paramagnetism	
65.	In an alkaline cell, the cathode read proceeds, when E° is	etion $2MnO_{2(s)} + H_2O_{(I)} + 2e = Mn_2O_{3(s)} + 20H_2O_{3(s)}$	I-(aq
	(A) -0.76 V (B) 0.76 V	(C) 0 V (D) -7.6 V	
66.		ion of the pressure than freezing point, which l-gas coexistence is ———————————————————————————————————	
	(A) small	(B) high	
	(C) much smaller than	(D) much higher than	
67.	The possible quantum states for a car	bon atom with the configuration 1s ² 2s ² 2p ² is	
	(A) 6 (B) 2	(C) 15 (D) 234	
68.	The distribution of energy associated	with the dominant configuration is known a	as
	(A) Boltzmann distribution	(B) Einstein distribution	
	(C) Bose distribution	(D) Dirac distribution	
69.	The steric effects on molecular ord Therefore, molar entropies for the cry	dering of the following crystals are minimustals are (i) same; (ii) different	mal

(B) (ii) is true

12

(D) (i) and (ii) are false

20 g of a nonvolatile solute of molecular weight 241 gmol⁻¹ is dissolved in 200 g of water. Freezing point of depression was observed to be 0.178° C. The activity

coefficient (y) of the solute is

(A) (i) is true

107

(C) (i) and (ii) are true

70.	Most important state functi the spontaneity of a chemic		deal gas that can be us	sed to determine
	(A) $G = -nRTln(N/q)$	(B)	G = -nRTln(nq/N)	
	(C) $G = -nRln(q/N)$	(D)	$\mathbf{G} = -\mathbf{n}\mathbf{R}T\mathbf{l}\mathbf{n}(\mathbf{q}/\mathbf{N})$	
71.	The bond length of HCl who	se moment of inerti	ia is $2.71 \times 10^{-40} \text{ gcm}^2$	is
	(A) 12.9 Å (B)	2.71 Å (C)	1.29 Å (D)	0.129Å
72.	Similarity transform of C3 is	n the similarity tran	nsformation $(\sigma''')^{-1}C_3\sigma'$	‴in ammonia is
	(A) C_3^2 (B)	C ₃ (C)	σ''' (D)	$(\sigma^{\prime\prime\prime})^{-1}$
73.	The point groups for the mo	lecules POCl3 and I	PtCl ₄ ⁻² are	
	$(A) C_{3v} \text{ and } D_{2h} \qquad (B)$	C_{2v} and D_{4h} (C)	C_{3v} and D_{4h} (D)	C_{3v} and D_4
74.	In a system, the number of	f molecules that is	phase points in each c	ell of the phase
	space, such as n_1 molecules	in cell1, n ₂ molecule	es in cell2 etc., is know	n as
	(A) microstate	(B)	macrostate	
	(C) ensemble	(D)	occupation number	
75.	Determine the order of the pressure of gaseous mixture 149 s and 336 mm was conv	e was (294 mm of me	ercury) converted into l	
	(A) 0 (B)	1 (C)	2 (D)	3
76.	Whenever the adsorption is related to multimolecular multimolecular (E ₁ >E ₂) in cl	$(E_1 \!\!<\!\! E_2)$ while the		
	(A) first statement is true	; second is false		
	(B) first statement is false	e; second is true		
	(C) first statement is true			
	(D) second statement is fa	lse		
		13		107

77.	Acrylic acid was polymerized at 330 K for 180 s and the resulting polymer was found to contain 20% of macromolecules with molecular weight 5000 and 80% of the macromolecules with molecular weight 25000. The weight average molecular weight is
	(A) 25000 (B) 5000 (C) 21000 (D) 30000
78.	Consider the cell: Pt/Fe^{2+} , Fe^{3+} /salt bridge/ H^+ ($a=1$) H_2 (Pt) 1 atm. When one faraday of current is passed through the cell from left to right, the cell reaction becomes
	(A) $Fe^{3+} + \frac{1}{2}H_2 = Fe^{2+} + H^+$ (B) $Fe^{3+} + H^+ = Fe^{3+} + \frac{1}{2}H_2$
	(C) $Fe^{3+} + H^{+} + 2e = Fe^{2+} + \frac{1}{2}H_{2}$ (D) $Fe^{2+} + \frac{1}{2}H_{2} = Fe^{3+} + H^{+} + 2e$
79.	Atomic heats of solid elements, at ordinary temperatures, are constant and approximately equal to
	(A) 4.6 (B) 46 (C) 6.4 (D) 64
80.	In a body centered cubic lattice, fraction of the total volume occupied by the spheres is
	(A) 0.32 (B) 0.62 (C) 0.9 (D) 0.1
81.	The α and β penta-acetyl glucoses show dipole moments of 3.52 and 2.48 Debye units respectively. Therefore, the β -form must be
	(A) less unsymmetrical (B) less symmetrical
	(C) more unsymmetrical (D) more symmetrical
82.	The bond energy of the molecule is 285.7 cal/mol. The wave length of a lightwhich can be used to dissociate the molecule is
	(A) 285.7 Å (B) 2857 Å (C) 1000 Å (D) 2000 Å
83.	The emf of the cell without liquid junction potential: $Cu/Cu^{2+}(0.005M)/Cu^{2+}(0.1M)/Cu$ (RT/F = 0.059) is
	(A) 3.8V (B) 0.38 V (C) 0.038 V (D) 0.0038 V
84.	The melting point of zinc is 420° C, magnesium is 650° C and that of $Mg(Zn)_2$ is 590° C. The composition of $Mg(Zn)_2$ when it is melted is
	(A) composition will change
	(B) composition will not change
	(C) both composition and melting point will change
	(D) melting point will change and composition will not change
107	14

85.	The product of molar volume of a liquid a 14 is known as	and its	surface tension raised to the power of
	(A) parachor	(B)	relative permittivity
	(C) molar viscosity	(D)	refractive index
86.	Enzyme catalysis is also known as		
	(A) micro-heterogeneous catalysis	(B)	heterogeneous catalysis
	(C) homogeneous catalysis	(D)	acid-base catalysis
87.	In the dissociation of magnesium fluor observed when	ride, N	${ m MgF}_{2(s)} \to { m Mg}^{2+}_{(aq)} + 2F^{(aq)},$ salting in is
	(A) $y_{\pm} < 1$ (B) $y_{\pm} > 1$	(C)	$y_{\pm} = 1$ (D) $y_{\pm} = 0$
88.	The following symmetry element is absen	nt in si	licon tetrachloride molecule
	(A) S_4 (B) C_3^2	(C)	I (D) σ
89.	Supercritical fluids are unique that they	exhibit	t favorable properties of
	(A) liquids	(B)	gases
	(C) liquids and gases	(D)	neither liquids nor gases
90.	Residual entropy of the molecular crystal dipole moment of the molecule which is	ls of Co	O at low temperature is due to electric
	(A) weak (B) strong	(C)	very weak (D) very strong
91.	Fourfold degeneracy is available only in		
	(A) T _h (B) T _d	(C)	O_h (D) I_h
92.	The lone pairs in water molecule belong t	o the i	rreducible representation
	(A) e _g	(B)	e _u
	(C) e		
	(0)	(D)	none of the above

93.	The e	ntries in the character table under ea	ch cla	ss of symmetry operation represents
00.	(A) the determinant of the associated matrix			
		the dimension of the associated matr		
		the trace of the associated matrix		
		the rank of the associated matrix		
94.	Whic	h of the following point groups has ce	nter o	f symmetry?
		S ₄ (B) T _d	(C)	
95.	A wa	ve function that is symmetric or ant ation of the molecule	isymm	etric with respect to every symmetr
	(A)	must be degenerate	(B)	must be HOMO
	(C)	must be LUMO	(D)	must be non-degenerate
96.	The	3d orbital in hydrogen atom lies		
50.	(A)	higher than 4s	(B)	higher than 3p
	(C)	equal to 3p	(D)	hydrogen has no 3d orbital
0.77	C - l	ing the classical Schrodinger's equati	on lea	ds to
97.	(A)	four quantum numbers	(B)	three quantum numbers
	(C)	antisymmetry principle	(D)	space quantization
98.	The Coulomb integral includes kinetic energy of electrons in			
	(A)	Molecular orbital theory of H2 molecular		
	(B)	Valence Bond theory of H ₂ molecule		
	(C)	Huckel theory		
	(D)	Hartree-Fock theory		
99.	The	extended Huckel theory is ideal in p	redicti	ng energy variations associated with
	(A)	bond-lengths (B) bond angles	(C)	
100	. The	Z-matrix is		** ***
	(A)	Unitary matrix	(B)	
	(C)	Real matrix	(D)	None of the above