Module Name : PhD Civil Engineering-E Exam Date : 18-Sep-2020 Batch : 12:30-14:30

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
Object	ive Question			
1	1	Clay exhibits negative surface charge characteristics because of the	4.0	1.00
		A1 Presence of Silica and Aluminium ions		
		A2 Cation exchange capacity		
		A3 Isomorphous substitution		
		A4 Surface charge property		
Object	ive Question			
2	2	Assign suitable particle classification symbol as per USCS for the following soil gradation: Sand=65%; Silt=23%; Clay=12%; C_u =3.5; C_c =1.95	4.0	1.00
		A1 Well graded sand		
		A2 Poorly graded sand		
		A3 Well graded gravel		
		A4 Poorly graded gravel		
Object 3	3	If the water content of a fully saturated soil is 100%, then void ratio of the sample is	4.0	1.00
		A1 Less than specific gravity of soils		
		A2 Equal than specific gravity of soils		
		A3 : More than specific gravity of soils		
		A4 : Independent of specific gravity of soils		
Object	ive Question			
4	4	The active pressure caused by chesionless backfill on a smooth vertical retaining wall may be reduced by	4.0	1.00
		A1 Compacting the backfill		

		A2 providing a surcharge load on the backfill		
		A3 Saturating the backfill with water		
		A4 : none of these		
Object	tive Question			
5	5	SPT 'N' value depends on	4.0	1.00
		A1 Relative density		
		A2 : Over burden pressure		
		A3 Soil type		
		A4 All of these		
Objec	tive Question			
6	6	For a purely cohesive soil, what will be the bearing capacity at ground surface for a circular footing as per Terzaghi's analysis?	4.0	1.00
		A1 5.14.c		
		A2 : 6.0.c		
		A3 4.0 c		
		A4 5.62 c		
Object	tive Question			
7	7	At similar depth, unit skin friction is higher for	4.0	1.00
		A1 Cast-in-situ piles		
		A2 Driven piles		
		A3 Bored piles		
		A4 : driven cast-in-situ piles		
Obiec	tive Question			
8	8	Pressure bulb indicates	4.0	1.00

		A1 Depth of exploration		
		A2 : type of loading		
		A3 : Intensity of loading		
		A4 Zone of influence		
Ohie	ctive Question			
9	9	Generally, bearing capacity of soil is determined based on	4.0	1.00
		A1 Shear failure of soil		
		A2 : Settlement of soil		
		A3 Footing geometry		
		A4 : Ultimate load		
Obje	ctive Question			
10	10	The appropriate field test to determine the undrained shear strength of soft clay is	4.0	1.00
		A1 Plate load test		
		A2 Static cone penetration test		
		A3 Standard penetration test		
		A4 Vane shear test		
Obje	11	If the effective shear strength parameters of a soil are c'=10 kPa and ϕ '=45°, the shear strength on a plane within the saturated soil mass at a point where the total normal stress is 300 kPa and pore pressure is 150 kPa will be	4.0	1.00
		A1 80 kPa		
		A2 120 kPa		
		A3 160 kPa		

		A4 200 kPa		
		:		
Objec	tive Question			
12	12	A saturated clay stratum draining at both the top and bottom undergoes 50 percent consolidation in 16 years under an applied load. If an additional drainage layer were present at the middle of the clay stratum, 50 percent consolidation would occur in	4.0	1.00
		Al 16 years		
		A2 8 years		
		A3 4 years		
		A4 2 years		
Obiec	tive Question			
objective Question				

13	13	If the ruling gradient on any highway is 3%, the gradient provided on the curve of 300 meter radius, is	4.0	1.00
		A1 2.00%		
		A2 2.50%		
		A3 3.00%		
		A4 : 4.00%		

Objective Question						
14	14	The convexity provided to the carriageway between the crown and edge of the pavement, is known as	4.0	1.00		
		A1 Superelevation				
		A2 camber				
		A3 Height of the pavement				
		A4 None of these.				
Object	ive Question					
15	15	If the width of carriage way is 12.5 meters, outer edge 50 cm higher than the inner edge, the required super elevation is	4.0	1.00		
		A1 50cm				
		A2 1 in 25				

		A3 1 in, 400 :		
		A4 1 in 40		
Object	tive Question			
16	16	For a vehicle moving with a speed of 80 km per hour, the brake reaction time, in ordinary cases, is	4.0	1.00

	A1 1 sec	
	A2 : 1.5 sec	
	A3 2.0 sec	
	A4 2.5 sec	
Objective Questier		

1/	The drain which is provided parallel to roadway to intercept and divert the water from hill slopes is known as	4.0	1.00
	A1 Sloping drain		
	A2 catchment drain		
	A3 Side drain		
	A4 : cross drain		
tive Question			
18	Which of the following represents a carpet of sand-bitumen mix without coarse aggregates?	4.0	1.00
	A1 Mastic asphalt		
	A2 Bituminous asphalt		
	A3 Sheet asphalt		
	A4 : Bituminous concrete		
tive Question			
19	When the bituminous surfacing is done on already existing black top road or over the existing cement concrete road, the type of treatment to be given is	4.0	1.00
	A1 Seal coat		
	tive Question 18 tive Question 19	1 A2 eatchment drain A3 Side drain A4 cross drain 10 A4 cross drain 118 Which of the following represents a carpet of sand-bitumen mix without coarse aggregates? A1 Mastic asphalt A2 Bituminous asphalt A3 Sheet asphalt A4 Bituminous concrete ive Question Image: Application of the provide of the pro	.

		A2 Tack coat		
		A3 Prime coat		
		A4 Spray of emulsion		
Objec	ctive Question			
20	20	Maximum daily traffic capacity of bituminous pavement is	4.0	1.00
		A1 500 tonnes per day		
		A2 1000 tonnes per day		
		A3 1500 tonnes per day		
		A4 2000 tonnes per day		
Objec	ctive Question			
21	21	Tie bars in cement concrete pavements are at	4.0	1.00
		A1 Expansion joint		
		A2 Contraction joint		
		A3 Warping joint		
		A4 Longitudinal joint		
Objec	ctive Question			
22	22	The group index for a soil, whose liquid limit is 40 percent, plasticity index is 10 percent and percentage passing 75 microns IS sieve is 35, is	4.0	1.00
		A1 0 :		
		A2 6		
		A3 5		
		A4 7 :		
Objec	ctive Question			
23	23	Softening point of bitumen to be used for road construction at a place where maximum temperature is 40 °C should be	4.0	1.00
II	II			

24	24	In CBR test, the value of CBR is calculated at	4.0	1.00	
Obje	Dijective Question				
		A4 none of these			
		A3 Equal to 40 °C			
		A2 : greater than 40 °C			
		A1 Less than 40 °C			

		A1 2.5 mm penetration only		
		A2 : 5.0 mm penetration only		
		A3 7.5 mm penetration only		
		A4 Both 2.5 mm and 5.0 mm penetrations		
Object	tive Question			
25	25	Maximum number of vehicles can be parked with	4.0	1.00
		A1 Parallel parking		
		$\frac{A2}{2}$ 30° angle parking		
		$\stackrel{A3}{.}$ 45° angle parking		

A4 90° angle parking

Objective Question

26	26	The reduced bearing of a 10 m long line is N30°E. The departure of the line is	4.0	1.00
		A1 10.00 m		
		A2 8.66 m		
		A3 7.52 m		
		A4 5.00 m		

27	27	The combined correction due to curvature and refraction (in m) for a distance of 1 km on the surface of Earth is	4.0	1.00
		A1 0.0673		
		A2 : 0.673		
		A3 7.63		
		A4 0.763		
Objec	tive Question			
28	28	The latitude and departure of a line AB are +78 m and -45.1 m, respectively. The whole circle bearing of the line AB is:	4.0	1.00
		A1 30°		
		A2 : 150°		
		A3 : 210°		
		A4 : 330°		
Objec	tive Question			
29	29	The plan of a map was photo copied to a reduced size such that a line originally 100 mm, measures 90 mm. The original scale of the plan was 1 : 1000. The revised scale is	4.0	1.00
		A1 1:900		
		A2 1:1111 :		
		A3 1:1121 :		
		A4 : 1:1221		
Ohiec	tive Question			
30	30	The alum, when added as a coagulant in water	4.0	1.00
		Al Does not require alkalinity in water for flocculation?		
		A2 : Does not affect pH value of water		
		A3 Increases pH of water		
		A4 Decreases pH of water		

Obiec	tive Ouestion			
31	31	In water treatment, rapid gravity filters adopted to remove	4.0	1.00
		A1 Dissolved organic substances		
		A2 dissolved solids and dissolves gases		
		A3 Floating solids and dissolved inorganic solids		
		A4 bacterial and colloidal solids		
Objec	tive Question			
32	32	Disinfection efficiency is	4.0	1.00
		A1 Reduced at higher pH value of water		
		A2 unaffected by pH value of water		
		A3 Increased at higher pH value of water :		
		A4 highest at pH value equal to 7		
Objec	ctive Question			
33	33	The most suitable section of sewer in separate sewage system is	4.0	1.00
		A1 Rectangular section		
		A2 : circular section		
		A3 Spherical section		
		A4 : square section		
Objec	ctive Question			
34	34	Composting and lagooning are the methods of	4.0	1.00
		A1 Sludge digestion		
		A2 Sludge disposal		
		A3 Sedimentation		

		A4 Filtration		
Objec	tive Question			
35	35	Which of the following methods is better for the solid waste problem?	4.0	1.00
		A1 Recycling		
		A2 Landfilling		
		A3 Both Recycling and Landfilling		
		A4 None of these		
Objec	tive Question			
36	36	Which of the following gas is produced from landfill wastes?	4.0	1.00
		A1 : Biogas		
		A2 Natural gas		
		A3 : Liquefied petroleum gas		
		A4 All of these		
Ohiaa	tive Question			
37	37	The working conditions in Imhoff tank are	4.0	1.00
		Al Aerobic only :		
		A2 : anaerobic only		
		A3 : Aerobic in lower compartment and anaerobic in upper compartment		
		A4 : Anaerobic in lower compartment and aerobic in upper compartment		
Objec	tive Question			
38	38	In trickling filter, B.O.D. is reduced to	4.0	1.00
		A1 30 to 40%		
		A2 40 to 60%		
		A3 60 to 80%		

		· ·		
		A4 80 to 90%		
Objec	tive Question			
39	39	What is the settling velocity of the particle if its diameter is 2×10^{-3} cm. Given G = 2.65, viscosity= 8×10^{-3} cm ² /Sec?	4.0	1.00
		A1 : 0.01cm/Sec		
		A2 0.13cm/Sec		
		A3 0.24cm/Sec		
		A4 0.36cm/Sec		
Obiec	tive Ouestion			
40	40	Range of displacement efficiency in the plain sedimentation tank is	4.0	1.00
		A1 0.25-0.5		
		A2 0.1-0.2		
		A3 0.5-0.8		
		A4 : 0.3-0.6		
Objec	tive Question			
41	41	Detention time for a circular tank is given by	4.0	1.00
		$ \overset{A1}{:} t = D (D + 0.785H) /Q $		
		$ \overset{A2}{:} t = D (0.1D + 0.785H) /Q $		
		$ \overset{A3}{:} t = D^2 (0.01D + 0.785H) $		
		$ \overset{A4}{:} t = D^2 (0.01D + 0.785H) /Q $		
Objec	tive Question			
42	42		4.0	1.00

45 45

4.0 1.00

		A3 10		
		44		
Obje	ctive Question			
48	48	A rectangular channel 6.0 m wide carries a discharge of 16.0 m ³ /s under uniform flow condition with normal depth of 1.60 m. Manning's 'n' is 0.015.A hump is to be provided on the channel bed. The maximum height of the hump without affecting the upstream flow condition is	4.0	1.00
		A1 0.50 m		
		A2 0.40 m		
		A3 0.30 m		
		A4 0.20 m		
Obje	ctive Question			
49	49	For a body completely submerged in a fluid, the centre of gravity (G) and centre of Buoyancy (O) are known. The body is considered to be in stable equilibrium:	4.0	1.00
		A1 O does not coincide with the centre of mass of the displaced fluid :		
		A2 G coincides with the centre of mass of the displaced fluid		
		A3 O lies below G		
		A4 O lies above G		
Obie	ctive Ouestion			
50	50	Ordinates of a 1-hour unit hydrograph at 1 hour intervals, starting from time $t = 0$, are 0, 2, 6, 4, 2, 1 and 0 m ³ /s. Ordinate of a 3-hour unit hydrograph for the catchment at $t = 3$ hours is	4.0	1.00
		$^{A1}_{:}$ 2.0 m ³ /s		
		$^{A2}_{:}$ 3.0 m ³ /s		
		$^{A3}_{:}$ 4.0 m ³ /s		
		$^{A4}_{:}$ 5.0 m ³ /s		
Obje	ctive Question			
51	51		4.0	1.00

		The runoff is affected by		
		A1 Type of precipitation		
		A2 Rain intensity and duration of rainfall		
		A3 Rain distribution and soil moisture deficiency		
		A4 All of these		
Object	tive Ouestion			
52	52	What is the hydraulic radius for a rectangular channel section with depth y and width 5y?	4.0	1.00
		A1 y/2		
		A2 5y/7		
		A3 y		
		A4 7y/5		
Object	tive Question			
53	53	The purpose of reinforcement in prestressed concrete is	4.0	1.00
		A1 To provide adequate bond stress		
		A2 : To resist tensile stresses		
		A3 To impart initial compressive strength		
		A4 All of these		
Object	tive Question			
54	54	What kind of stresses gets developed of a material is allowed to expand freely due to heating	4.0	1.00
		A1 Thermal stresses		
		A2 tensile stress		
		A3 Compressive stress		
		A4 no stress develops		

Ohier	tive Question			
55	55	The maximum strain an arout that can be stand in a bady is known as	4.0	1.00
55	55	The maximum strain energy that can be stored in a body is known as	1.0	1.00
		A1		
		Resilience		
		A2 p. c. iv		
		Proof resilience		
		A3 Modulus of resilience		
		A4 Toughness		
Objec	tive Question			4.00
56	56	In a loaded beam, the point of contraflexture occurs at a section where	4.0	1.00
		A1 Bending moment is maximum		
		A2 Bending moment is zero or changes sign		
		43		
		Shearing force is maximum		
		A4 of the second s		
		Shearing force is minimum		
Objec	tive Question			
57	57	The shape of the bending moment diagram over the length of a beam, having no external load, is always	4.0	1.00
		Al Linear		
		:		
		A2 parabolic		
		: Participation of the second se		
		A3 Cubical		
		A4 Circular		
01.				
Objec	se Question		4.0	1.00
58	58	The minimum number of rivets for the connection of a gusset plate, is	4.0	1.00
		A2		
		$\stackrel{A2}{:}$		
		A3 -		

Objec	tive Question			
59	59	The slenderness ratio of a vertical column of a square cross-section of 2.5 cm sides and 300 cm length is	4.0	1.00
		A1 200		
		A2 240		
		A3 360		
		A4 500 :		
Ohiao	tive Question			
Collec	uve Question		1.0	1.00
60	60	The algebraic sum of moments of the forces forming a couple about any point in their plane is	4.0	1.00

			The argeorate sum of moments of the forces forming a couple about any point in their plane is		
			A1 Equal to the moment of the couple :		
			A2 : Constant		
			A3 Both of above are correct		
			A4 : None of these		
	Object	ive Question		4.0	1.00
	51	01	The deformation of a bar under its own weight compared to the deformation of same body subjected to a direct load equal to weight of the body is	4.0	1.00
			A1 : Same		
			A2 : Double		
			A3 Half		
			A4 Four times		
	01.1				
	Object	ive Question		1.0	1.00
ľ	02	02	When two plates are butt together and riveted with cover plates with two rows of rivets, the joint is known as	4.0	1.00
			A1 : Lap joint		
			A2 : Butt joint		

	A3 Single riveted single cover butt joint :		
	A4 Double riveted double cover butt joint :		
Objective Qu	estion		
63 63	An inclined beam as shown in the figure below has a mass of 120 kg and centre of gravity at G. The beam is supported by a roller at A, cable AB, and a smooth peg in a slot at C. A 1500 N force is perpendicular to the beam. Calculate the reaction force at A? A1 2781 A2 193.9 A3 709.7 A4 209.3	4.0	1.00
Objective Oi	estion		
64 64	What force is required to punch a 20 mm diameter hole in a plate that is 25 mm thick? The shear strength is 350 MN/m².	4.0	1.00
Objective Qi	estion		

65	65	Modulus of rigidity is valid within	4.0	1.00
		Al Elastic limit		
		A2 Plastic limit		
		A3 Elasto-plastic limit		
		A4 None of these		
Objec	tive Question			
66	66	Which of the following materials has highest Poisson's ratio?	4.0	1.00
		A1 Steel		
		A2 Soil		
		A3 Concrete		
		A4 Rubber		
Objec	tive Question			
67	67	A rectangular bar having a cross section area 10000 mm^2 is subjected to an axial load of 20 kN. Determine the normal stress on a section which is inclined at an angle of 30° with the normal cross section of the bar.	4.0	1.00
		A1 0.5 MPa :		
		A2 : 1.0 MPa		
		A3 : 1.5 MPa		
		A4 2.0 MPa		
Objec	tive Question			
68	68	The maximum shear stress by Mohr's circle is equal to the	4.0	1.00
		A1 Diameter of the circle		
		A2 Radius of the circle		
		A3 Half the radius		
		A4 1/4 of the radius		

		:		
Object 69	tive Question	The maximum stress induced in a body due to suddenly applied load isthe stress induced when the same load is applied gradually	4.0	1.00
		Al Equal		
		A2 twice		
		A3 : thrice		
		A4 : four times		
Object	tive Question			
70	70	The ratio of section modulus of circular to rectangular section is	4.0	1.00
		Al πd/16b :		
		A2 : 2πd/16b		
		A3 3πd/16b		
		A4 πd/4b :		
Object	tive Ouestion			
71	71	Crash project duration is obtained by summing the	4.0	1.00
		A1 Normal durations for all the activities		
		A2 Crash durations for all activities		
		A3 Crash durations for all the activities along the critical path obtained by taking into account the normal duration for all the : activities		
		A4 Crash durations for all the activities along the critical path obtained by taking into account the crash duration for all the : activities		
Object	tive Question			
72	72	In PERT analysis, the time estimates of activities and probability of their occurrence follow	4.0	1.00
		A1 Normal distribution curve		
		A2 Poisson's distribution curve		
		A3 Beta distribution curve		

		A4 None of these :		
Objec	tive Question			
73	73	If an activity has its optimistic, most likely and pessimistic times as 2,3 and 7 respectively, then its expected time and variance are	4.0	1.00
		A1 3.6 and 5/6		
		A2 5 and 25/36		
		A3 3.5 and 25/36		
		A4 : 4 and 5/6		
Obied	tive Question			
74	74	In alkali silica reaction, alkali hydroxides react with	4.0	1.00
		A1 Silica		
		A2 : Aggregates		
		A3 Oxides		
		A4 Cement		
Ohia	tive Question			
75 75	75	The percentage composition of C ₂ S in ordinary Portland cement is	4.0	1.00
		A1 25-50		
		A2 20-45		
		A3 5-12		
		A4 : 6-12		
Objec 76	76	High carbon content in steel causes	4.0	1.00
		A1 Decrease in tensile strength but increase in ductility		
		A2 Increase in tensile strength but decrease in ductility		

		A3 Decrease in both tensile strength and ductility		
		A4 : Increase in both tensile strength and ductility		
Objec	ctive Question			
77	77	Admixtures that cause early setting and hardening of concrete are called	4.0	1.00
		A1 : Accelerators		
		A2 Workability admixtures		
		A3 Retarders		
		A4 : Air entraining agents		
Objec	tive Question			
78	78	For reinforced concrete section, the shape of shear stress diagram is	4.0	1.00
		Al Parabolic :		
		A2 : Rectangular		
		A3 Parabolic above neutral axis and rectangular below neutral axis		
		A4 Rectangular above neutral axis and parabolic below neutral axis :		
Objec	ctive Question			
79	79	If the permissible stress in steel in tension is 140 MPa, then the depth of neutral axis for a single reinforced rectangular balanced section is	4.0	1.00
		A1 : 0.35d		
		A2 : 0.40d		
		A3 : 0.45d		
		A4 : Dependent on grade of concrete		
Objec	ctive Question			
80	80	According to IS:456-1978, column or strut is the member whose effective length is greater than	4.0	1.00
		A1 The least lateral dimension		

	A2 2 times the least lateral dimension	
	A3 3 times the least lateral dimension	
	A4 4 times the least lateral dimension	

0	Objective Question							
8	1	81	Lap length in compression shall not be less thantimes the diameter of the bar	4.0	1.00			
			A1 15					
			A2 20					
			A3 24					
			A4 30					

Objective Question

82	82	The ratio of permissible stress in direct compression and bending compression is	4.0	1.00
		A1 Less than 1		
		A2 between 1 and 1.5		
		A3 Between 1 and 2.0		
		A4 greater than 2		

Objective Question

Objec	Objective Question					
83	83	The main reason for providing number of reinforcing bars at a support in a simply supported beam is to resist in that zone Al Compressive stress	4.0	1.00		
		A2 shear stress				
		A3 Bond stress				
		A4 tensile stress				
Objec	Dijective Question					

	A1 2					
	A2 0					
	A3 1					
	A4 3					
Objective Question						

	are Question			
85	85	The symmetry of stress tensor can be correlated with which theorem of structural analysis.	4.0	1.00
		A1 Castigliano's first theorem		
		A2 : Maxwell's reciprocal principle		
		A3 Castigliano's second theorem		
		A4 Saint Venant theorem		
Object	tive Question			
86	86	A simply supported reinforced concrete beam of length 10 m sags while undergoing shrinkage. Assuming a uniform curvature of 0.004 /m along the span, the maximum deflection (in m) at mid-span is	4.0	1.00
		A1 0.05		
		A2 0.005		
		A3 0.0005		
		A4 : 0.004		
Object	tive Question			
87	87	What angle maximum shear stress plane makes with any of the principal planes in case of the plane stress condition?	4.0	1.00

	what angle maximum shear stress plane makes with any of the principal planes in case of the plane stress condition:	
	A1 180°	
	A2 : 90°	
	A3 : 45°	
	A4 0°	

Obje	ctive Question			
88	88	The polar moment of inertia (in cm ⁴) for a rectangular cross section having width, 2 cm and depth 6 cm is?	4.0	1.00
		A1 22		
		A2 44		
		A3 20		
		A4 40		
Obie	ctive Question			
89	89	The modulus of elasticity, E=5000 $\sqrt{f_{ck}}$, where f_{ck} is the characteristic compressive strength of concrete, specified in IS:456-2000 is based on?	4.0	1.00
		A1 Tangent modulus		
		A2 : Initial tangent modulus		
		A3 Secant modulus		
		A4 Chord modulus		
Obje	ctive Question			
90	90	What nature of stress governs the side face reinforcement in deep beams?	4.0	1.00
		A1 Shear stress		
		A2 : Axial normal stress		
		A3 Bending stress		
		A4 None of these		
Obje	ctive Question			
91	91	The axial load in the member PQ (in kN) for the arrangement shown in figure is?	4.0	1.00
		Q° Beam R° 2m S $2m$		

Objective Question

93	93	A prismatic beam (as shown below) has plastic moment capacity of Mp. Define the collapse load P of the beam $\frac{P}{2}$	4.0	1.00
		$ \begin{array}{c} $		
		A1 2 Mp/L		
		A2 4 Mp/L		
		A3 6 Mp/L		
		A4 8 Mp/L		
Objec	tive Question			
94	94	The Von-Mises criteria of yield for isotropic metals is based on	4.0	1.00

		A1 Maximum strain energy						
		A2 : Maximum shear stress						
		A3 : Maximum distortional energy						
		A4 Haximum principal stress						
95 95 Equilibrium method of indeterminate system analysis is also known as								
		Equinorium method of meteoriminate system analysis is also known as						
		A1 Compatibility method						
		A2 Stiffness approach						
		A3 Force approach						
		A4 Flexibility approach						
Obiec	tive Ouestion							
96	96	To control deflection, what limit is specified by IS 456:2000 for span to effective depth ratio of cantilever beam having a length less than 10 m	4.0	1.00				
		A1 7 : 7						
		A2 10						
		A3 26						
		A4 20						
Objec	tive Question							
97	97	The criterion of lateral torsional buckling is specified for which structural member as per IS 800:2007	4.0	1.00				
		Al Column :						
		A2 Base plate						
		A3 Tension members						
		A4 : Beam						

Objective Question								
Object 98	ive Question 98	A column of height h with a rectangular cross section of size (a x 2a) has a buckling load of P. If the cross section dimensions are changed to (0.5a x 3a) and height is changed to 1.5h, the buckling load of the column will be A1 P/4 A2 P/2 A3 P/12 A4 P . P	4.0	1.00				
Object 99	tive Question	Assuming there is no possibility of shear buckling of web, the maximum reduction permitted by IS 800:2007 in the low-shear design bending strength of a semi-compact steel section due to high shear is	4.0	1.00				
		A1 25%						
		A2 : 0%						
		A3 50%						
		A4 : 10%						
Object	tive Question							
100	100	What does plane section remains plane after deformation imply in bending theory?	4.0	1.00				
		A2 Linear strain variation						
		A3 : Linear stress variation						
		A4 No shear deformation						