Module Name : PhD Electronic and Communication Engineering-E Exam Date : 18-Sep-2020 Batch : 09:00-11:00

Objective Question Image: A standard of IIIIed rectangular wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode that can be used to transmit electromagnetic wave with wavelength . 4 = 10 cm is Image: A standard at IIIed rectangular wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode that can be used to transmit electromagnetic wave with wavelength . 4 = 10 cm is Image: A standard at IIIed rectangular wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode that can be used to transmit electromagnetic wave with wavelength . 4 = 10 cm is Image: A standard at IIIed rectangular wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode had can be used to transmit electromagnetic wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode had can be used to transmit electromagnetic wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode had can be used to transmit electromagnetic wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode had can be used to transmit electromagnetic wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode had can be used to transmit electromagnetic wavegulae has dimensions a 7.21 cm and b=3.4 cm. The hype of mode had can be used to transmit electromagnetic wavegulae has dimensions a 7.21 cm and has dimensioned wavegulae has dimensioned with a 100 cm. The hype of mode has dimensioned with a 100 cm. The hyper operate wavegulae has dimensioned with a 100 cm. The hyper operate wavegulae has dimensioned with a 100 cm. The hyper operate wavegulae has dimensioned with a 100 cm. The hyper operate wavegulae has a standard with a 100 cm. The hyper operate wavegulae has dimensioned with a 100 cm. The hyper operate wavegulae has a standard with a 100 cm. The hyper operate wavegulae has a standard with a 100 cm. The hyper operate wavegulae has a standard with a 100 cm. The hyper operate wavegulae has a standard with a 100 cm. The hyp	Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
1 1 Astandard off filed rectangular waveguide has dimensions a =7.21 cm and b=3.4 cm. The type of mode that can be used to transmit electromagnetic wave with wavelength λ =10cm is 1.00 A: TE:10 A: TE:10 A: A: TE:20 A: A: TE:00 A: 1:20 GHz A: A: A: A: 21:30 GHz A: A: A: A: 1:20.0 A: A: A: A: A: 1:20.0 A: A: A: A: A: 1:20.0 A: A: A: A: <	Object	tive Question			
$ \begin{array}{ c c c } \hline \\ \hline $	1	1	A standard air filled rectangular waveguide has dimensions a =7.21 cm and b=3.4 cm. The type of mode that can be used to transmit electromagnetic wave with wavelength λ =10cm is	4.0	1.00
$ \begin{array}{ c c c } \hline & & & & & & & & & & & & & & & & & & $			A1 TE ₁₀		
$ \begin{array}{ c c c } \hline \\ \hline $			A2 TE ₁₁		
$\begin{array}{ c c c } \hline Objective Question & & & & & & & & & & & & & & & & & & &$			A3 TE ₂₀		
Objective Question Image: Constraint of the perturbation of the perturbatic perturbation of the perturbation of the perturbation of the per			A4 TE ₂₁		
$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c }$	Object	tive Question			
$\begin{array}{ c c c c } \hline \\ \hline $	2	2	The operating frequency of TRAPATT diode is	4.0	1.00
$ \begin{array}{ c c c c } \hline & A_{2}^{2} & 1-10 \text{ GHz} \\ & A_{3}^{2} & 31-40 \text{ GHz} \\ & A_{2}^{3} & 31-40 \text{ GHz} \\ & A_{1}^{4} & 21-30 \text{ GHz} \\ \hline & A_{1}^{4} & 50.7 \text{ GL} \\ \hline & A_{1}^{4} & A_{1}$			A1 11-20 GHz		
A^3 31-40 GHz A^4 21-30 GHz A^4 21-30 GHz Objective Question The most appropriate value of the radiation resistance of a quarter wave monopole antenna is 4.0 1.00 3 3 The most appropriate value of the radiation resistance of a quarter wave monopole antenna is 4.0 1.00 A^1 120Ω A^1 120Ω A^2 73 Ω A^2 73 Ω A^3 36.5 Ω A^4 50.7 Ω A^4 70.7 Ω			A2 : 1-10 GHz		
A4 $21-30 \text{ GHz}$ Image: Constraint of the constraint of			A3 : 31-40 GHz		
Objective Question 3 3 The most appropriate value of the radiation resistance of a quarter wave monopole antenna is 4.0 1.00 $A1$ 120 Ω $A1$ 120 Ω $A2$ 73 Ω $A2$ 73 Ω $A3$ 36.5 Ω $A4$ 50.7 Ω $A4$ 50.7 Ω $A1$ 1.00 $A1$ 1.00 Objective Question 4 4 A transmission line of 50 ohm characteristic impedance is terminated with a 100ohm resistance. The minimum impedance 4.0 1.00			A4 21-30 GHz		
3 3 The most appropriate value of the radiation resistance of a quarter wave monopole antenna is 4.0 1.00 $A1$ 120 Ω $A2$ 73 Ω $A3$ 36.5 Ω $A4$ 50.7 Ω Objective Question 4 4 A transmission line of 50 ohm characteristic impedance is terminated with a 100ohm resistance. The minimum impedance 4.0 1.00	Object	tive Question			
$\begin{array}{ c c c c c } \hline A1 & 120 \ \Omega \\ \hline A2 & 73 \ \Omega \\ \hline A3 & 36.5 \ \Omega \\ \hline A4 & 50.7 \ \Omega \\ \hline \end{array}$	3	3	The most appropriate value of the radiation resistance of a quarter wave monopole antenna is	4.0	1.00
$\begin{array}{ c c c c } \hline A^2 & 73 \ \Omega \\ \hline & A^3 & 36.5 \ \Omega \\ \hline & A^4 & 50.7 \ \Omega \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$			$\stackrel{\text{A1}}{:}$ 120 Ω		
$\begin{array}{ c c c c }\hline A3 & 36.5 \ \Omega \\ \hline A4 & 50.7 \ \Omega \\\hline \hline Objective Question \\\hline 4 & \hline 4 & \hline A \ transmission line of 50 \ ohm \ characteristic \ impedance \ is \ terminated \ with a 100 \ ohm \ resistance. \ The minimum \ impedance \\\hline 4.0 & \hline 1.00 \\\hline \end{array}$			A2 : 73 Ω		
A4 50.7 Ω Objective Question 4 4 A transmission line of 50 ohm characteristic impedance is terminated with a 100ohm resistance. The minimum impedance 4.0 1.00			A3 36.5 Ω		
Objective Question 4 4 A transmission line of 50 ohm characteristic impedance is terminated with a 100ohm resistance. The minimum impedance measured on the line is equal to 1.00			^{A4} 50.7 Ω		
4 4 A transmission line of 50 ohm characteristic impedance is terminated with a 100ohm resistance. The minimum impedance measured on the line is equal to 4.0 1.00	Object	tive Question			
	4	4	A transmission line of 50 ohm characteristic impedance is terminated with a 100ohm resistance. The minimum impedance measured on the line is equal to	4.0	1.00

A1 100 Ω	
A2 : 75 Ω	
$\stackrel{A3}{:}$ 50 Ω	
A4 25 Ω	

Objective Question					
5	5	Wave Tilt occurs in	4.0	1.00	
		A1 Ground Wave Propagation			
		A2 Space Wave Propagation			
		A3 Ionospheric Propagation			
		A4 Under-Water Propagation			
Object	tive Question				
6	6	The depth of penetration of wave in a lossy dielectric increases with increasing	4.0	1.00	
		A1 Conductivity			
		A2 : Wavelength			
		A3 Permeability			
		A4 Permittivity			
Object	tive Question				
7	7	When electromagnetic waves are propagated in a waveguide	4.0	1.00	
		A1 They travel along the broader walls of the guide			
		A2 : They travel through the dielectric without touching the walls			

 $\overset{A3}{:}$ They are reflected from the walls but do not travel along them

A4 : They travel along all four walls of the waveguide

Object	ive Question			
8	8	Waveguides are used mainly for microwave signals because	4.0	1.00
		A1 They depend on straight line propagation which applies to microwaves only :		
		A2 Losses would be too heavy at lower frequencies		
		A3 There are no generators powerful enough to excise them at lower frequencies		
		A4 They would be too bulky at lower frequencies		
Ohiaat	ing Onesting			
9	9	The line of sight communication requires the transmit and receive antenna to face each other. If the transmit antenna is vertically polarized for best reception, the receive antenna should be	4.0	1.00
		A1 Vertically polarized		
		A2 Horizontally polarized		
		A3 At 45 with respect to horizontal polarization		
		A4 At 45 with respect to vertical polarization		
Object	iva Quastian			
10	10	The magnitude of open circuit and short circuit input impedances of a transmission line are 100Ω and 25Ω respectively. The characteristic impedance of the line is	4.0	1.00
		$\stackrel{A1}{:}$ 25 Ω		
		$\stackrel{A2}{:}$ 50 Ω		
		A3 75 Ω		
		A4 100 Ω :		
Object	ive Question			
11	11	The phase velocity of the TE_{10} mode in an air filed rectangular waveguide is	4.0	1.00
		A1 Equal to C		
		A2 : Less than C		
		A3 : Greater than C		
	II		II	I II

		A4 None of these		
Object	ive Ouestion			
12	12	When the free space wavelength of signal equals the cut off wavelength of the waveguide, the characteristics impedance of the waveguide becomes	4.0	1.00
		Al Negligible		
		$^{A2}_{:}$ 1K Ω		
		^{A3} 300KΩ		
		A4 : Infinite		
01				
Object	ive Question		4.0	1.00
15	15	One can provide two or more voice circuits on the same carrier by using	4.0	1.00
		A1 ISB system		
		A2 SSB-SC system		
		A3 DSB-SC system		
		A4 SSB with pilot carrier		
Object	ive Question		4.0	1.00
14	14	A signal of maximum frequency of 8 KHz is sampled at Nyquist rate. The time intervals between two successive samples will be	4.0	1.00
		A1 : 6.25 μsec		
		A2 : 62.5 μsec		
		A3 : 125 μsec		
		A4 : 1250 μsec		
Object	ive Question		4.0	1.00
15	15	A communication channel has bandwidth of 5KHz and if signal-to-noise ratio is 5, the corresponding channel capacity will be	4.0	1.00
		A1 5000 bits/sec		
		A2 2000 bits/sec :		

		A3 18000 bits/sec		
		A4 11000 bits/sec		
Object	tive Question			
16	16	The minimum required bandwidth for transmission of n signals , each band-limited to f_m Hz is	4.0	1.00
		$\stackrel{A1}{:} f_m/2Hz$		
		A2 f _m Hz		
		$\stackrel{A3}{:}$ f _m /2n Hz		
		A4 2n f _m Hz		
Object	tive Question			
17	17	If E_b the energy per bit of a binary digital signal is 10^{-6} Watt-sec and one sided power spectral density of the White noise N_o is 10^{-5} W/Hz, then the output SNR of the matched filter is	4.0	1.00
		A1 13 dB		
		A2 25 dB		
		A3 37 dB		
		A4 48 dB		
Object	tive Question			
18	18	The angle modulated signal is given by $s(t) = \cos 2\pi (2 \times 10^6 t + 30 \sin 150t + 40 \cos 150t)$.The maximum frequency deviation in radian/sec is	4.0	1.00
		A1 750		
		A2 7500		
		A3 75000		
		A4 : 750000		
Object	tive Question			
19	19	A signal has a bandwidth of 1 MHz. It is sampled at a rate 50% higher than the Nyquist rate and quantized into 256 level using a μ -low quantizer with μ = 225. It was found that a sampling rate 20% above the rate would be adequate. So the	4.0	1.00

	maximum SNR, that can be realized without increasing the transmission bandwidth, would be		
	A1 60.4 dB		
	A2 70.3 dB		
	A3 50.1 dB		
	A4 40.5 dB		
Objective Question			

Objec	live Question			
20	20	At a given probability of error, binary coherent FSK is inferior to binary coherent PSK by	4.0	1.00
		A1 0 dB		
		A2 1 dB		
		A3 2 dB		
		A4 3 dB		
Objec	tive Ouestion			
21	21	How many AM broadcast stations can be accommodated in a 100KHz bandwidth if the highest frequency modulating a carrier is 5KHz	4.0	1.00
		A1 10 :		
		$\stackrel{A2}{:}_{30}$		
		A3 50		
		A4 70 :		
Ohiaa	time Overstien			
22	22	In a single sideband suppressed carrier AM system, the modulation index is changed from 0 to 1, the power content of the	4.0	1.00
		signal		
		A1 will increase by 50 percent		
		A2 will increase by 25 percent		
		A3 will be doubled		

A4 will be quadrupled

Objec	tive Question			
23	23	Four voice signals, each limited to 4KHz and sampled by Nyquist rate are converted into binary PCM using 256 quantization levels. The bit transmission rate for the time division multiplexed signal will be	4.0	1.00
		A1 8Kbps		
		A2 32 Kbps		
		A3 256Kbps		
		A4 512Kbps		
Objec	tive Question			
24	24	Compression in PCM refers to relative compression of	4.0	1.00
		A1 Lower signal frequencies		
		A2 Higher signal frequencies		
		A3 : Lower signal amplitudes		
		A4 : Higher signal amplitudes		
Objec	tive Question			
25	25	The maximum data rate supported by IEEE 802.11 b at 2.4GHz is	4.0	1.00
		A1 11 Mbps		
		A2 54 Mbps		
		A3 100 Mbps		
		A4 125 Mbps		
OF	tive Oreation			
26	26	A normal GSM has 3 start bits, 3 stop bits, 26 training bits for allowing adaptive equalization, 8.25 guard bits and 2 bursts of 58 bits of encrypted data which is transmitted at 270.833Kbps in the channel.	4.0	1.00
		A1 417.66 frames/sec		
		A2 216.66 frames/sec		

		A3 318.66 frames/sec		
		A4 519.66 frames/sec		
Objec 27	tive Question	The frame length of WCDMA is given by	4.0	1.00
		Al 2ms		
		A2 5ms		
		A3 10ms		
		A4 20 ms		
Objec	ctive Question			
28	28	If the coherence bandwidth of the channel is smaller than the bandwidth of the signal, then the type of fading is	4.0	1.00
		A1 Flat fading		
		A2 : Slow fading		
		A3 Fast fading		
		A4 Frequency selective fading		
Objec	ctive Question		4.0	1.00
29	29	CDMA 2000 1xEV provides high speed data access with channel allocation of	4.0	1.00
		A1 : 1.25 MHz		
		A2 5 MHz		
		A3 25 MHz		
		A4 50 MHz		
Objec	ctive Question			
30	30	The types of modulation used in IS-95 (CDMA) is	4.0	1.00
		: GFSK		
		A2 ULSK		

		A3 GMSK		
		A4 DQPSK		
Objecti	ve Question			
31	31	The speech coding used in D-AMPS is	4.0	1.00
		A1 QCELP		
		A2 : :		
		A3 VSELP		
		A4 None of these		
Objecti	ve Question			
32	32	Under normal operating conditions, GaAs LED will have a forward voltage between	4.0	1.00
		A1 3.1 and 5V :		
		A2 5.1 and 7V		
		A3 0 and 1V		
		A4 1.1 and 3V :		
Objecti	ve Question			
33	33	In an optical fiber, the concept of Numerical Aperture is applicable in describing the ability of	4.0	1.00
		A1 Light Collection		
		A2 Light Scattering		
		A3 : Light Dispersion		
		A4 Light Polarization		
Objecti	ve Question			
34	34	In Kerr effect, induced index change has its proportionality with respect to	4.0	1.00
		A1 one fourth of electric field		

	A2 : square of electric field		
	A3 cube root of electric field		
	A4 : cube of electric field		
Objecti	Question		
35	Ear a photo diade with responsivity of 0.50 A/W and antical power of about 12 uW. What would be the value of generated	4.0	1.00
	photocurrent?		
	Α1 12μΑ :		
	$^{A2}_{:}$ $^{9\mu A}$		
	Α3 ₆ μΑ		
	Α4 3μΑ :		
Objecti	Question		
36	In the fiber optic link, power transfer from one fiber to another and from fiber to detector must take place with	4.0	1.00
	coupling efficiency		
	Al Unpredictable		
	A2 Stable		
	A3 minimum		
	A4 maximum		
Objecti	Question		
37	If a fiber operates at 1400nm with the diameter of about 10 μ m, n1 = 1.30, Δ = 0.80% , V = 3.5, then how many modes will it have?	4.0	1.00
	A1 6.125 :		
	A2 9.655		
	A3 12.950		
	A4 16.550		

Objec	tive Question			
38	38	A system with an input $x(t)$ and output $y(t)$ is described the relation $y(t) = tx(t)$. This system is	4.0	1.00
		A1 Non-linear and time-invariant		
		A2 Non-linear and time-varying		
		A3 Linear and time-invariant		
		A4 Linear and time-varying		
Objec	tive Question			
39	39	The Fourier series of an odd periodic function contains only	4.0	1.00
		A1 Even harmonics		
		A2 : Odd harmonics		
		A3 Sine terms		
		A4 Cosine terms		
Objec	tive Ouestion			
40	40	If $G(f)$ represents the Fourier transform of a signal $g(t)$ which is real and odd symmetric in time, then	4.0	1.00
		A1 : G(f) is real and non-negative		
		$\frac{A2}{C}$ G(f) is complex		
		$\stackrel{A3}{:}$ G(f) is real		
		A4 G(f) is imaginary		
Objec	tive Question			
41	41	Which of the following signals is periodic?	4.0	1.00
		$A1 = \cos 2t + \cos 3t + \cos 5t$		
		A2 $s(t) = \exp(-7t) \sin 10 \pi t$		
		$A3 s(t) = \cos 2t \cos 4t$		

	A4 None of the above		
Objective	Question	4.0	1.00
42 42	For an N-point FFT algorithm with N=2 ^m , which one of the following statements is TRUE?	4.0	1.00
	t is not possible to construct a signal flow graph with both input and output in normal order.		
	A2 Computation of a butterfly requires only one complex multiplication.		
	A3 : Number of butterflies in the m th state is N/m 3600 samples/sec.		
	A4 In-place computation requires storage of only 2N node data		
Objective	Question		
43 43	The impulse response $h[n]$ of a linear time invariant system is given by	4.0	1.00
	h[n] = u[n+3] = u[n-2] - 2u[n-7] where $u[n]$ is the unit step sequence. The		
	above system		
	A1 Unstable and not causal		
	A2 Causal but unstable		
	A3 Stable but not causal		
	A4 Stable and causal		
Objective	Question		
44 44	A causal system having the transfer function $H(s) = \frac{1}{2}$ is excited with	4.0	1.00
	s+2 10 $u(t)$. The time at which the output reaches 99% of its steady state value is		
	A1 2.9 sec		
	A2 2.7sec		
	A3 2.5 sec		
	A4 2.3sec		

45

	A1 Nearest Neighbour Interpolation :	
	A2 Bilinear Interpolation	
	A3 Cubic Interpolation	
	A4 Bicubic Interpolation	
Objective Question		

46	46	The smallest discernible change in intensity level is called	4.0	1.00
		A1 Contour		
		A2 : Intensity Resolution		
		A3 Saturation		
		A4 : Contrast		
Objec	tive Question			
47	47	Which of the following is a second-order derivative operator?	4.0	1.00
		A1 Histogram :		
		A2 : Gaussian		
		A3 Laplacian		
		A4 None of these		
Objec	tive Question			
10	10		4.0	1.00

Objective Question					
48	48	Which of the following fails to work on dark intensity distributions?	4.0	1.00	
		A1 Power Law Transformation			
		A2 : Laplacian Transform			
		A3 Gaussian Transform			
		A4 Histogram Equalization			

49	49	Final step of enhancement lies in of the sharpened image	4.0	1.00
		Al Increase dynamic range		
		A2 Increase range of contrast		
		A3 Increase range of brightness		
		A4 None of these :		
Objec	tive Question			
50	50	Which of the following is the primary objective of sharpening of an image?	4.0	1.00
		A1 Blurring the image		
		A2 Highlight fine details in the image		
		A3 Increase the brightness of the image		
		A4 Decrease the brightness of the image		
Objec	tive Question			
51	51	What is the name of process used to correct the power-law response phenomena?	4.0	1.00
		A1 Beta correction		
		A2 Alpha correction		
		A3 Gamma correction		
		A4 Pie correction		
Objec	tive Question			
52	52	The effective dielectric constant of a micro strip line with relative permittivity being equal to 2.6 with a width of 5mm and thickness equal to 8mm is given by	4.0	1.00
		A1 3.16		
		A2 2.62		
		A3 2.43		
		A4 1.97		

Object	tive Question			
53	53	The mask in a hybrid microwave circuit is made of	4.0	1.00
		Al Rubylith		
		A2 Silicon		
		A3 Quartz		
		A ⁴ Arsenic		
Object	tive Question			
54	54	To fabricate a low frequency circuit using the hybrid microwave IC methodology, the material with is preferred.	4.0	1.00
		A1 low dielectric constant		
		A2 : high dielectric constant		
		A3 low resistivity		
		A4 high resistivity		
Object	tive Question			
55	55	The mode of propagation in a Microstrip Line is	4.0	1.00
		A1 Quasi TE mode		
		A2 TE mode		
		A3 ; Quasi TEM mode		
		A4 TEM mode		
Object 56	56	What is the maximum device handling capacity of serial standard protocol RS485 in terms of drivers and receivers on a single line?	4.0	1.00
		A1 8		
		A2 10		
		A3 16		

	:		
	A4 32		
tive Question			
57	Which development tool has the potential to allocate the specific addresses so as to load the object code into memory?	4.0	1.00
	A1 Locator		
	A2 : Loader		
	A3 : Linker		
	A4 Library		
tive Question			
58	Which operations are not feasible to perform by simulator programs in accordance to real time programming?	4.0	1.00
	A1 Memory operations		
	A2 I/O operations		
	A3 Register operations		
	A4 Debugging operations		
tive Question			
59	Which functioning element of microcontroller generates and transmits the address of instructions to memory through internal bus?	4.0	1.00
	A1 Instruction Decoding Unit		
	A2 Timing and Control Unit		
	A3 Program Counter		
	A4 Arithmetic Logic Unit		
tive Question			
60	What is the possible range of current limiting resistor essential for lightening the LED in certain applications after pressing the push-button?	4.0	1.00
	A1 25-55 Ω		
	tive Question 57 tive Question 58 tive Question 59 tive Question 60	in A 32 Which development tool has the potential to allocate the specific addresses so as to load the object code into memory? A1 Locator A2 Lodacr A3 Lobar A4 Lobary A5 Memory operations A4 Debugging operations A5 Dopugging operations A5 Debugging operations A6 Debugging operations A6 Instruction Decoding Unit	i A 32 tree Question 40 A ¹ Locator 40 A ¹ Locator 40 A ¹ Locator 40 A ¹ Locator 40 A ² Locator 40 A ¹ Inferror 40 A ¹ Properations 40 A ¹ Polyaging operations 40 Interview A ¹ Instruction decoret of microcontroller generates and transmits the address of instructions to memory through intermation Ver A ¹ Instraction Dec

		Α2 55-110 Ω		
		A3 110-220 Ω		
		A4 220-330 Ω		
Objec	ctive Question			
61	61	How is the address and data buses removed in external memory type of microcontrollers?	4.0	1.00
		A1 Through multiplexing by external latch & ALE signal		
		A2 : Through multiplexing by external latch & DLE signal		
		A3 Through demultiplexing by external latch & ALE signal		
		A4 Through demultiplexing by external latch & DLE signal		
Objec	ctive Question			
62	62	What does the RAM location at 44H indicates about the seven-segment code?	4.0	1.00
		A1 7-segment code for the fourth character		
		A2 7-segment code for the third character		
		A3 Display of select code for fourth display		
		A4 Display of select code for third display high :		
Objec	ctive Question			
63	63	The magnitude of the charge of a hole is	4.0	1.00
		A1 Zero		
		A2 Equal to that of proton		
		A3 Equal to that of electron :		
		A4 Equal to that of neutron		
Objec	ctive Question			
64	64	What is associated with random motion due to thermal agitation in the movement of holes and electrons in a silicon crystal?	4.0	1.00
		A1 Recombination		

: A2 Doping :	
A3 Drift	
A4 Diffusion	

65	65	Recombination refers to	4.0	1.00
		A1 Annihilation of holes and electrons		
		A2 Ionization of impurity atom		
		A3 Breaking of pair-bond		
		A4 : Thermionic emission		

66	66	The electron mobility of Silicon at 300K is	4.0	1.00
		$\frac{A1}{2200} \text{ cm}^2/(\text{V-s})$		
		$\frac{A2}{2}$ 1400 cm ² /(V-s)		
		$^{A3}_{:}$ 980cm ² /(V-s)		
		$\frac{A4}{2}$ 450cm ² /(V-s)		
Objec	tive Question			

67	67	In a MOS capacitor with an oxide layer thickness of 10mm. The maximum depletion layer thickness is 100mm. the permittivities of the semiconductor	4.0	1.00
		and the oxide layer are ε_z and ε_{ox} respectively. Assume $\frac{\mathcal{E}_z}{\mathcal{E}_{ox}}$ =3, then ratio of the maximum capacitance to the minimum capacitance of this MOS capacitor is		
		A1 2.15 :		
		A2 3.42		
		A3 4.33		

		A4 5.24		
Objec 68	ctive Question		4.0	1.00
08	08	The bandgap of Gallium Arsenide(GaAs) at 300K is	4.0	1.00
		A1 : 0.66eV		
		A2 1.12eV		
		A3 1.35eV		
		A4 : 1.44eV		
Objec	ctive Question			
69	69	The percentage of reduction in power dissipation by is achieved by using SOI MOSFET	4.0	1.00
		A1 66%		
		A2 55%		
		A3 44%		
		A4 33%		
Obied	ctive Ouestion			
70	70	In modern MOSFET, the material used for the gate is	4.0	1.00
		A1 High purity silica		
		A2 Heavily doped polycrystalline silicon		
		A3 High quality silicon		
		A4 Epitaxial grown silicon		
Obied	ctive Ouestion			
71	71	The overall delay of nMOS inverter pair is	4.0	1.00
		$\stackrel{A1}{:}$ τ		
		$A2$ 3τ		

A3 :	5τ
A4 :	7 τ

Object	tive Question			
72	72	K Shell means	4.0	1.00
		A1 Fourth orbit		
		A2 : Third orbit		
		A3 : Second orbit		
		A4 : First orbit		

oojee				
73	73	Lifetime is the amount of time between the creation and disappearance of	4.0	1.00
		A1 free electron		
		A2 proton		
		A3 neutron		
		A4 ion		
Objec	tive Question			
74	74	Diffusion or storage capacitance is the term used to refer to	4.0	1.00
		A1 The reverse bias capacitance of a diode		
		A2 : The forward bias capacitance of a diode		
		A3 The breakdown capacitance of a zener diode		
		A4 The effective capacitance of the rectifier		
Objec	tive Question			
75	75	The drain of an n-channel MOSFET is shorted to the gate so that $V_{GS}=V_{DS}$. The threshold voltage V_{th} of the MOSFET is 1V. If the drain current (I_D) is 1ma for $V_{GS}=2V$, then for $V_{GS}=3V$, I_D is	4.0	1.00
		Al 2mA		

	A2 3mA :		
	A3 4mA		
	A4 6mA		
Objective Questio	n		
76 76	The difficulty in achieving high doping concentration leads to	4.0	1.00
	A1 i distribution error		
	A2 : error in doping		
	A3 : error in concentration		
	A4 error in variation		
Objective Questio	n		
77 77	As die size shrinks, the complexity of making the photo masks	4.0	1.00
	A1 increases :		
	A2 decreases		
	A3 remains the same		
	A4 cannot be determined		
Objective Questio	n		
78 78	In CMOS fabrication, the photoresist layer is exposed to	4.0	1.00
	A1 Visible light		
	A2 Ultraviolet light		
	A3 Infrared light		
	A4 Fluorescent		
Objective Questio	n		
79 79	Among the VHDL features, which language statements are executed at the same time in parallel flow?	4.0	1.00
	A1 Sequential		

	A2 : Net-list	
	A3 Concurrent	
	A4 : Test-bench	

80	80	In VLSI design, which process deals with the determination of resistance & capacitance of interconnections?	4.0	1.00
		A1 Floor planning		
		A2 Placement & Routing		
		A3 Testing		
		A4 Extraction		

Objective Question

81	81	According to body effect, substrate is biased with respect to	4.0	1.00
		A1 Source		
		A2 : Drain		
		A3 Gate		
		A4 SiO ₂ layer		
Object	tive Question			
82	82	Transconductance of MOS device can be increased by	4.0	1.00
		A1 decreasing the width		
		A^2 increasing the width		

A3 increasing the length

A4 decreasing the length

A1 Less than zero :		
A2 Lesser than the threshold voltage	ge	
A3 Equal to the threshold voltage		
A4 Greater than the threshold volta	age	

Objec	Objective Question					
84	84	CMOS has	4.0	1.00		
		A1 : high noise margin				
		A2 : high power dissipation				
		A3 high complexity				
		A4 : high packaging density				
Ohiec	tive Question					
85	85	The chemical used for shielding the active areas to achieve selective oxide growth is	4.0	1.00		
		A1 Silicon Nitride				
		A2 : Silver Nitride				
		A3 Polysilicon				
		A4 : :				
Object	tive Question					
86	86	The first second second to the second of the second state of the second s	4.0	1.00		
50		Two fair dices are infown simultaneously. The probability that the sum of numbers on the dice exceeds 8 is		1.00		
		$\begin{array}{c} A1 \\ \vdots \\ 36 \end{array}$				

:	36
A2 :	$\frac{10}{36}$
A3 :	7 36
A4 :	$\frac{4}{36}$

Objective Oue	tion		
87 87	Lifetime of an electric bulb is a random variable with density $f(x) = kx^2$ where x is measured in years. If the minimum and maximum lifetimes of bulb are 1 and 2 years respectively, then the value of k is	4.0	1.00
	A1 0.231		
	A2 0.357 :		
	A3 0.428		
	A4 0.519		
01:			
88 88	If the standard deviation of the speed of vehicles in a highway is 8.8kmph and the mean speed of the vehicles is 33kmph. The coefficient of variation in speed is	4.0	1.00
	A1 0.1867		
	A2 0.1517		
	A3 0.3646		
	A4 : 0.2666		
Objective Ques 89 89	Which among the below mentioned standard PDFs is/are applicable to discrete random variables?	4.0	1.00
	A1 Poission Distribution		
	A2 Gaussian Distribution		
	A3 : Rayleigh Distribution		
	A4 Exponential Distribution		
Objective Oues	tion		
90 90	What would happen if the two events are statistically independent ?	4.0	1.00
	A1 Conditional as well as elementary probabilities will exhibit no change :		
	A2 Conditional probability becomes equal to the elementary probability		

		A3 Conditional probability becomes less than the elementary probability		
		A4 Conditional probability becomes more than the elementary probability		
Objec	tive Question			
91	91	Mutually Exclusive events	4.0	1.00
		A1 Contain all sample points		
		A2 : Contain all common sample points		
		A3 Does not contain any common sample point		
		A4 Does not contain any sample point		
Objec	tive Question			
92	92	Which property is exhibited by the auto-correlation function of a complex valued signal?	4.0	1.00
		A1 Commutative property		
		A2 : Distributive property		
		A3 Associative property		
		A4 Conjugate property :		
Objec	tive Question			
93	93	If E denotes the expectation, the variance of a random variable X is	4.0	1.00
		$\sum_{i=1}^{A1} E(X^2) - (E(X))^2$		
		$\sum_{i=1}^{A^2} E(X^2)$		
		$\frac{A_3}{E} (E(X))^2$		
		$\frac{A4}{2} 2E(X)$		
Objec	tive Question			
94	94	Runs scored by batsman in 5 one day matches are 50, 70, 82, 93, and 20. The standard deviation is	4.0	1.00
		A1 25.89		

A2 25.79	
A3 25.69	
A4 25.59	

Objec	Objective Question						
95	95	The expected value of a discrete random variable 'x' is given by	4.0	1.00			
		$\frac{A1}{2} P(x)$					
		$\frac{A2}{2} \sum P(\mathbf{x})$					
		$\frac{A_3}{2} \sum x P(x)$					
		A4 1					
Objec	tive Question						
96	96	A coin is tossed up 4 times. The probability that tails turn up in 3 cases is	4.0	1.00			
		A1 1/6					
		A2 1/4					
		A3 1/3					
		A4 1/2					
Objec	tive Question						
97	97	A man walking at the rate of 6 km/hr crosses a bridge in 15 minutes. The length of the bridge is	4.0	1.00			
		A1 1500m					
		A2 1400m					
		A3 1350m					
		A4 1200m					

	A1 20 Years	
	A2 15 Years	
	A3 : 12 Years	
	A4 10 Years	

99	99	S.P. of 10 candles is same as C.P. of 12 candles. Find the gain percent.	4.0	1.00
		A1 11 %		
		A2 15 %		
		A3 20 %		
		A4 25 %		
Object	tive Question			
100	100	6, 24,, 120, 210, 336	4.0	1.00
		A1 95 :		
		A2 84		
		A3 72 :		
		A4 60		