Module Name : PhD Electrical and Electronics Engineering-E Exam Date : 18-Sep-2020 Batch : 12:30-14:30

Objective Question 1 1 A DC power supply has a no l output resistance and load region A1 5 Ω and 29 % : 5 Ω and 29 % : 25 Ω and 20 % : 5 Ω and 16.7 %	oad voltage of 30 volts, and a full load voltage of 25 volts at a full load current of one amp. Its alation respectively are	4.0	1.00							
11A DC power supply has a no l output resistance and load regA1 :5 Ω and 29 %A2 :25 Ω and 20 %A3 :5 Ω and 16.7 %	oad voltage of 30 volts, and a full load voltage of 25 volts at a full load current of one amp. Its a lation respectively are	4.0	1.00							
$\begin{array}{c} A1 \\ \vdots \\ A2 \\ 25 \ \Omega \text{ and } 29 \% \\ A3 \\ \vdots \\ A3 \\ 5 \ \Omega \text{ and } 16.7 \% \end{array}$										
$\begin{array}{c} A2 \\ \vdots \\ A3 \\ \vdots \\ 5 \ \Omega \text{ and } 16.7 \ \% \end{array}$										
$^{A3}_{\cdot}$ 5 Ω and 16.7 %										
$\stackrel{A4}{:}$ 25 Ω and 16.7 %										
Objective Outstien										
2 2 A Zener diode when used in v	oltage stabilization circuits, is biased in	4.0	1.00							
A1 : Reverse bias region below	v the breakdown voltage									
A2 : Reverse breakdown regio	n									
A3 Forward bias region										
A4 Forward bias constant cur	rent mode									
Objective Question 3 3 A DMA transfer implies		4.0	1.00							
A1 Direct transfer of data bet	ween memory and accumulator									
A2 : Direct transfer of data bet	ween memory and I/O devices without use of microprocessor									
A3 Transfer of data exclusive	ly within microprocessor									
A4 A fast transfer of data bet	ween microprocessor and I/O devices									
Ubjective Question										
The number of hardware intern A1 :	rupts (which require an external signal to interrupt) present in 8085 microprocessor are	4.0	1.00							

	^{A2} ₄		
	A3 5		
	A4 13		
Directive Question			
5	Indicate which of the following logic gates can be used to realized all possible combinational logic gates:	4.0	1.00
	Al NAND gates only :		
	A2 EX-OR gates only :		
	A3 AND gates only :		
	A4 OR gates only :		
Dbjective Question			1.00
6	Which of the following is the steady state error of a control system with step error, ramp error and parabolic error constants $k_{\rm p}$, $k_{\rm v}$ and $k_{\rm a}$ respectively for the input $(1-t^2)3u(t)$?	4.0	1.00
	$\frac{A1}{2} \frac{3}{1+k_p} - \frac{3}{2k_a}$		
	$\frac{A2}{2} \frac{3}{1+k_p} + \frac{6}{2k_a}$		
	$\begin{array}{c} A3 \\ \vdots \\ 1+k_p \\ -\frac{3}{k_a} \end{array}$		
	$\frac{A4}{2} \frac{3}{1+k_p} - \frac{6}{k_a}$		
Objective Question			
7	The unit impulse response of a system is given as $c(t) = -4e^{-t} + 6e^{-2t}$. The step response of the same system for $t \ge 0$ is equal to	4.0	1.00
	$ \stackrel{A1}{:} {}^{3e^{-2t}} 4e^{-t} + 1 $		
	$ \begin{array}{c} A_{1} \\ \vdots \\ B_{2} \\ B_$		
	$ \begin{array}{c} \text{A1} \\ \text{:} & 3e^{-2t} - 4e^{-t} + 1 \\ \text{A2} \\ \text{:} & -3e^{-2t} + 4e^{-t} + 1 \\ \text{A3} \\ \text{:} & -3e^{-2t} + 4e^{-t} - 1 \\ \end{array} $		

8	8	The Nyquist plot for the closed loop control system with the loop transfer function $G(s)H(s) = \frac{100}{s(s+10)}$ is plotted. Then, the critical point (-1, j0) is $\frac{A1}{2}$ Never enclosed $\frac{A2}{2}$ Enclosed under certain conditions $\frac{A3}{2}$ Just touched $\frac{A4}{2}$ The set of the se	4.0	1.00
Obja	ntive Question	A4 Enclosed		
9	9		4.0	1.00
		A unity feedback system has an open loop transfer function as	-	
		$G(s) = \frac{K}{s(1+0.2s)(1+0.05s)}$		
		The phase crossover frequency of the Nyquist plot is given by		

A1 5 rad/s

A2 10 rad/s : 10 rad/s A3 50 rad/s : 100 rad/s

Object	tive Question			
10	10	The compensator $G_c(s) = \frac{5(1+0.3s)}{1+0.1s}$ would provide a maximum phase shift of	4.0	1.00
		A1 20°		
		A2 : 30°		
		A3 : 45°		
		A4 : 60°		
Object	tive Question			
11	11	The state space representation in phase variable form for the transfer function $G(s) = \frac{2s+1}{s^2+7s+9}$ is	4.0	1.00
		A1 $\dot{x} = \begin{bmatrix} 0 & 1 \\ -9 & -7 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 1 & 2 \end{bmatrix} x$		

$$\begin{vmatrix} A^{2} \\ \vdots \\ x = \begin{bmatrix} 1 \\ -9 \\ -7 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 2 \\ 0 \end{bmatrix} x$$

$$A^{3} \\ x = \begin{bmatrix} -9 \\ 0 \\ -7 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 2 \\ 0 \end{bmatrix} x$$

$$A^{4} \\ x = \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 1 \\ 2 \end{bmatrix} x$$

$$Dijective Question$$

$$12 \qquad 12 \qquad Two 10 kV/440 v, 1 phase transformers of ratings 600 KVA and 350 KVA are connected in parallel to share a load of 800 KVA. The reactances of the transformers, referred to the secondary side are 0.0198 \Omega and 0.0304 \Omega respectively (resistance negligible). The load shared by the two transformers will be respectively
$$A^{1} \\ 484.5 kVA and 315.5 kVA$$

$$A^{2} \\ 315.5 kVA and 484.5 kVA$$

$$A^{3} \\ 533 kVA and 267 kVA$$

$$A^{4} \\ 267 kVA and 533 kVA$$$$

Objec	Objective Question							
13	13	Assertion (A): The distribution transformers are designed for minimum core losses. Reason (R): Primary windings of distribution transformers are energized throughout the day.	4.0	1.00				
		A1 Both A and R are true and R is the correct explanation of A :						
		A2 Both A and R are true but R is the NOT the correct explanation of A :						
		$\frac{A3}{A}$ A is true but R is false						
		$\frac{A4}{A}$ A is false but R is true						

Objective Question

17	A 10 kVA, 2	2500/250 sing	gle phase tr	ansformer	has the fo	owing results:			
		O.C. Test	250 Volts	0.8 amp.	50 W				
		S.C. Test	60 Volts	3 amp.	45 W				
	Then efficie	ncy at half	full load at	0.8 power 1	factor will	be			
	Al an inter								
	: 98.49%								
	A2 07 68%								
	: 97.0870								
	A3 08 289/								
	: 98.2870								
	14	 A 10 kVA, 2 Then efficie A1 98.49% A2 97.68% A3 98.28% 	A 10 kVA, 2500/250 sing O.C. Test S.C. Test Then efficiency at half A1 98.49% A2 97.68% A3 98.28%	A 10 kVA, 2500/250 single phase tr O.C. Test 250 Volts S.C. Test 60 Volts Then efficiency at half full load at A1 98.49% A2 97.68% A3 98.28%	A 10 kVA, 2500/250 single phase transformer O.C. Test 250 Volts 0.8 amp. S.C. Test 60 Volts 3 amp. Then efficiency at half full load at 0.8 power the A1 98.49% A2 97.68% A3 98.28%	A 10 kVA, 2500/250 single phase transformer has the foll O.C. Test 250 Volts 0.8 amp. 50 W S.C. Test 60 Volts 3 amp. 45 W Then efficiency at half full load at 0.8 power factor will b A1 98.49% A2 97.68% A3 98.28%	A 10 kVA, 2500/250 single phase transformer has the following results: O.C. Test 250 Volts 0.8 amp. 50 W S.C. Test 60 Volts 3 amp. 45 W Then efficiency at half full load at 0.8 power factor will be A1 98.49% A2 97.68% A3 98.28%	A 10 kVA, 2500/250 single phase transformer has the following results: O.C. Test 250 Volts 0.8 amp. 50 W S.C. Test 60 Volts 3 amp. 45 W Then efficiency at half full load at 0.8 power factor will be A1 98.49% A2 97.68% A3 98.28%	A 10 kVA, 2500/250 single phase transformer has the following results: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

		A4 96.85%		
Ohiec	tive Question			
15	15	A 100 kVA, 2400/240 V, 50 Hz single phase transformer has an exciting current of 0.64 A and core loss 700 W when its high voltage side is energized at rated voltage and frequency. If load current is 40 A at 0.8 p.f. lagging on the LV side, then magnitude of the primary current will be	4.0	1.00
		A1 4.58 A		
		A2 4 A		
		A3 4.64 A		
		A4 4.85 A		
Objec	ctive Question			
16	16	What is the ratio of starting torque and maximum torque of a 3 phase, 50 Hz, 4 pole induction motor for a maximum torque at 1200 rpm?	4.0	1.00
		A1 : 0.421		
		A2 0.384		
		A3 0.6		
		A4 0.5		
Objec	tive Question			
17	17	A 6 pole, 50 Hz, 3 phase induction motor with a rotor resistance of 0.25 Ω develops a maximum torque of 10 Nm at 875 rpm. The rotor reactance and slip at maximum torque is	4.0	1.00
		$\stackrel{A1}{:}$ 2 Ω and 0.125 p.u		
		$\stackrel{A2}{:}$ 2 Ω and 0.25 p.u		
		$\stackrel{A3}{:}$ 1 Ω and 0.25 p.u		
		A4 : 1 Ω and 0.125 p.u		
Objec	tive Question			
18	18	Assertion (A): The short circuit ratio (SCR) of a three phase alternator should be high. Reason(R): A high value of SCR will decrease the value of voltage regulation and will increase the maximum power output.	4.0	1.00
		A1 Both A and R are true and R is the correct explanation of A :		

A2	Both A a	ind R are	true but	R is NOT	the correct	explanation of A
:						

 A^3 : A is true but R is false

A4 A is false but R is true

Objec	Objective Question									
19	19	The direction of rotation of a d.c. series motor can be reversed	4.0	1.00						
		A1 By interchanging supply terminals								
		A2 By interchanging field terminals								
		A3 Either by interchanging supply terminals or by interchanging field terminals								
		A4 By interchanging supply terminals as well as file terminals								

Objective Question						
20	20	What is the approximate efficiency of a normal thermal power station?	4.0	1.00		
		A1 30-40%				
		A2 : 45-55%				
		A3 20-25%				
		A4 : 60-70%				
Objective Question						
21	21	A power station plant load factor is defined as the ratio of	4.0	1.00		
		A1 The energy generated to that of maximum energy that could have been generated				

		A2 : Average load to peak load		
		A3 Minimum load to peak load		
		A4 : Minimum load to average load		
Object	ive Question			
22	22	A generating station has a maximum demand of 30 MW, a load factor of 60 % and a plant capacity factor of 50%. The reserve capacity of the plant is	4.0	1.00

A1 5 MW :	
A2 4 MW	
^{A3} 6 MW	
^{A4} 10 MW	

Object	tive Question			
23	23	The surge impedance of a 3 phase, 400 kV transmission line is 400 Ω . The surge impedance loading(SIL) is	4.0	1.00
		A1 400 MW		
		A2 100 MW		
		A3 1600 MW		
		A4 200 MW		
Object	tive Ouestion			
24	24	Consider the following statements regarding corona: 1. It causes radio interference. 2. It attenuates lightning surges. 3. It causes power loss. 4. It is more prevalent in the middle conductor of transmission line employing flat conductor configuration. A1 1,2 and 3 only :	4.0	1.00
		A2 1,2 and 4 only		
		A3 1,2,3 and 4		
		A4 3 and 4 only		
Object	tive Question			
25	25	In a short transmission line, voltage regulation is zero when the power factor angle of the load at the receiving end side is equal to	4.0	1.00
		$\frac{A1}{2}$ tan ⁻¹ (X/R)		
		$\frac{A2}{2} \tan^{-1}(R/X)$		
		$\frac{A3}{2} \tan^{-1}(X/Z)$		

	A4 $\tan^{-1}(R/Z)$		
Objective Question	n		
26 26	The insulation level of a 400 kV, EHV overhead transmission line is decided on the basis of	4.0	1.00
	A1 : Lightening over voltage		
	A2 Switching over voltage		
	A3 Corona inception voltage		
	A4 Radio and TV interference		
Objective Questio			
27 27	The insulation resistance of a cable of length 10 km is 1 M Ω . For a length of 100 km of the same cable, the insulation resistance will be	4.0	1.00
	Α1 1 MΩ :		
	A2 10 MΩ		
	A3 0.1 MΩ		
	A4 0.01 MΩ		
Objective Question			
28 28	Consider a long, two-wire line composed of solid round conductors. The radius of both conductors is 0.25cm and the distance between their centers is 1m. If this distance is doubled, then the inductance per unit length	4.0	1.00
	A1 Doubles :		
	A2 Halves		
	A3 Increases but does not double		
	A4 Decreases but does not double		
Objective Question			
29 29	An HVDC link consists of rectifier, inverter transmission line and other equipments. Which one of the following is true for this link?	4.0	1.00
	A1 The transmission line produce/supplies reactive power		
	A2 The rectifier consumes reactive power and the inverter supplies reactive power from/to the respective connected : consumes		

A3 Rectifier supplies reactive power and the inverted consumes reactive power to/from the respective connected AC : systems

A4 Both the converters (rectifier and inverter) consume reactive power from the respective connected AC systems

Object	ive Question			
30	30	In a long transmission line with r, l, g and c are the resistance, inductance, shunt conductance and capacitance per unit length respectively, the condition for distortionless transmission is	4.0	1.00
		Al rc=lg		
		$ \sum_{r=l/r}^{A2} r^{-l/r} $		
		$r_{g=lc}^{A3}$		
		$\frac{A4}{r} r = \sqrt{c/l}$		
Object	ive Question			
31	31	Bundled conductors are mainly used in high voltage overhead transmission lines to	4.0	1.00
		Al Reduce transmission line losses		
		A2 Increase mechanical strength of the line		
		A3 Reduce Corona		
		A4 Reduce Sag		
Object	ive Question			
32	32	In order to have a lower cost of electrical energy generation,	4.0	1.00
		A1 The load factor and diversity factor should be low		
		A2 The load factor should be low but diversity factor should be high		
		A3 The load factor should be high but diversity factor should be low :		
		A4 The load factor and diversity factor should be high :		

4.0

1.00

Objective Question

 33
 For a fully transposed line

 $\stackrel{A1}{:}$ Positive, negative and zero sequence impedance are equal :

		A2 Positive and negative sequence impedance are equal		
		A3 Zero and positive sequence impedances are equal		
		A4 Negative and zero sequence impedance are equal		
Objec	tive Question		1	
34	34	Three generators rated 100 MVA, 11 kV have an impedance of 0.15 p.u.each. if in the same plant, these generators are being replaced by a single equivalent generator, the effective impedance of equivalent generator will be	4.0	1.00
		A1 0.05 p.u.		
		A2 0.15 p.u.		
		A3 0.25 p.u.		
		A4 0.45 p.u.		
Object	tive Question			
35	35	A 10 kVA, 400/200 V single phase transformer with 10 % impedance draws a steady short circuit current of	4.0	1.00
		$\stackrel{A1}{:}$ 50 A		
		A2 150 A		
		A3 250 A		
		A4 350 A		
Ohiaa	tive Question			
36	36	The positive, negative and zero sequence per unit impedances of two generators connected in parallel are X1=0.12 p.u., X2=0.096 p.u. and X0=0.036 p.u. For a L-G fault at generator terminals(with 1 p.u. voltage) the positive sequence current will be	4.0	1.00
		A1 7.936 p.u.		
		A2 11.936 p.u.		
		A3 10.936 p.u.		
		A4 8.936 p.u.		
Objec	tive Question			

37	37	The YBUS matrix of a 100 bus interconnected system is 90% sparse. Hence the number of transmission of lines in the system must be	4.0	1.00
		A1 450		
		A2 500		
		A3 900		
		A4 1000		
Objec	tive Question			
38	38	Assertion (A): The main advantage of decoupled load flow (DLF) method as compared to Newton Raphson method is its reduced memory requirements in storing the Jacobian. Reason(R): An important characteristics of any practical electric power transmission system operating in steady state is the strong interdependence between the real power and bus voltage angles, and between the reactive powers and voltages magnitudes.	4.0	1.00
		A1 Both A and R are true and R is the correct explanation of A :		
		$\stackrel{A2}{:}$ Both A and R are true but R is NOT the correct explanation of A		
		A3 A is true but R is false		
		A4 : A is false but R is true		
Objec	ctive Question			
39	39	Two 50 Hz generating units operate in parallel within the same power plant and have the following ratings: Unit 1: 500 MVA, 0.85 pf, 20 kV, 3000 rpm, H1=5 MJ/MVA Unit 2: 200 MVA, 0.9 pf, 20 kV, 1500 rpm, H2=5 MJ/MVA The equivalent inertia constant H in MJ/MVA on 100 MVA base is	4.0	1.00
		A1 2.5		
		A2 5.0		
		A3 10.0		
		A4 35.0		
Ohier	tive Question			
40	40	If a 500 MVA, 11 kV three phase generator at 50 Hz feeds, through a transfer impedance of $(0.0 + j 0.605) \Omega$ per phase, an infinite bus also at 11 kV; then the maximum steady state power transfer on the base of 500 MVA and 11 kV is	4.0	1.00
		A1 1.0 p.u.		

		A2 0.8 p.u. :		
		A3 0.5 p.u.		
		A4 0.4 p.u.		
Objec	ctive Question			
41	41	The steady state stability limit of a synchronous machine connected to infinite bus is 2.2 p.u. Infinite bus voltage is 1 p.u. and synchronous machine voltage is 1.1 p.u. The transfer reactance between generator and infinite bus is	4.0	1.00
		A1 j 0.5		
		A2 : -j 0.5		
		A3 j 1.0		
		A4 : -j 1.0		
Objec	tive Ouestion			
42	42	A 50 Hz, 3 phase synchronous generator has inductance per phase of 15 mH. The capacitance of generator and circuit breaker is $0.002 \ \mu$ F. What is its natural frequency of oscillation?	4.0	1.00
		A1 29 KHz		
		A2 2.9 KHz		
		A3 290 KHz		
		A4 29 MHz		
	, i.e. o i.e.			
43	43	Which type of connection is employed for current transformers for the protection of a star delta connected 3 phase transformer?	4.0	1.00
		Al Delta-delta		
		A2 Star-star		
		A3 Star-delta		
		A4 : Delta-star		
Objec	ctive Question			
44	44	A relay is connected to a 400/5 A current transformer and set for 150 %. The primary fault current of 2400 A needs a plug	4.0	1.00

		setting multiplier of		
		A1 2		
		A2 4 :		
		A3 6		
		A4 8 :		
Obje	ctive Question			
45	45	The loss formula coefficient matrix of a two plant system is given by $B = \begin{bmatrix} 0.001 & -0.0001 \\ -0.0001 & 0.0013 \end{bmatrix} MW^{-1}$ The economic schedule for a certain load is given as	4.0	1.00
		P1=150 MW and P2=275 MW		

What is the penalty factor for plant 1 for this condition?

A1 : 1.324

A2 : 1.515

A3 : 1.575

A4 1.721

Object	tive Question			
46	46	The method used to implement a asynchronous link is	4.0	1.00
		A1 Dc back to back connected converter		
		$\frac{A2}{2}$ 0-360° static phase shifter		
		A3 Rotary transformer		
		A4 Static VAR compensator		
Object	tive Question			
47	47	The per unit impedance of an alternator corresponding to base values of 13.2 kV and 30 MVA is 0.2 p.u. The p.u. value of the impedance for the base values 13.8 kV and 50 MVA in p.u. will be	4.0	1.00
		A1 0.131 :		
		A2 0.226		

		A3 0.305		
		A4 : 0.364		
Object	tive Question			
48	48	A travelling wave of 400/1/50 means crest value of	4.0	1.00
		A1 400 V with raise time of 1/50 ms		
		$\frac{A2}{2}$ 400 kV with raise time of 1 s and fall time of 50 s		
		$^{A3}_{:}$ 400 kV with raise time of 1 µs with fall time of 50 µs		
		$^{A4}_{:}$ 400 MV with raise time 1µs and fall time of 50 µs		
Obiect	tive Question			
49	49	Snubber circuits are used to protect thyristor from which of the following?	4.0	1.00
		A1 : High di/dt and low dv/dt		
		A2 : High dv/dt and low di/dt		
		A3 Low dv/dt and low di/dt		
		A4 High dv/dt and high di/dt		
Object	tive Question			
50	50	The anode current through a conducting SCR is 10 A. If its gate current is made one fourth, then what will be the anode current?	4.0	1.00
		A1 0 A		
		A2 5 A		
		A3 10 A		
		A4 20 A		
Obiect	tive Ouestion			
51	51	In a three phase full wave a.c to d.c converter, the ratio of output ripple-frequency to the supply voltage frequency is	4.0	1.00

	A2 3 :		
	A3 6		
	A4 12		
Directive Question			
52 52 52	When the firing angle α of a single phase fully controlled rectifier feeding constant d.c current into load is 30° , what is the displacement factor of the rectifier?	4.0	1.00
	A1 1 :		
	A2 0.5		
	$\stackrel{A3}{:}$ $\sqrt{3}$		
	$\stackrel{A4}{:} \frac{\sqrt{3}}{2}$		
Dbjective Question			
53	A three pulse converter is feeding a purely resistive load. What is the value of firing delay angle α , which dictates the boundary between the continuous and discontinuous mode of current conduction?	4.0	1.00
	$\stackrel{A1}{:} \alpha = 0^0$		
	$A2_{:} \alpha = 30^{\circ}$		
	$A_{1}^{A_{3}} = 60^{0}$		
	A4 $\alpha = 150^{\circ}$		

Obje	ctive Question			
54	54	A single phase full converter feeds power to RLE load with R= 10 Ω , L = 10 mH, E = 50 V, the ac source voltage is 230 V, 50 Hz. For continuous conduction, what is the average value of load current for firing angle delay of 60°?	4.0	1.00
		A1 4.63 A		
		A2 6 A		
		A3 6.5 A		
		A4 5.35 A		
		A4 5.35 A		

5	55		4.0	1.00
,	55	An ideal chopper operating at a frequency of 500 Hz, supplies a load having resistance of 3 Ω and inductance of 9 mH from a 60 V battery. The mean value of the load voltage for on/off ratio of 4/1 (assuming that load is shunted by a perfect commutating diode and battery is loss-less) is	4.0	1.00
		A1 240 V		
		A2 48 V		
		A3 15 V		
		A4 4 V :		
Dhiaot	tive Question			
56	56	For elimination of 5 th harmonics from the output of an inverter, what will be the position of pulse in a PWM inverter?	4.0	1.00
		$\stackrel{A1}{:} 72^{\circ}$		
		A2 36°		
		A3 60°		
		A4 90°		
Object	tive Question			
57	57	A constant current source inverter supplies 20 A to a load resistance of 1 Ω . If the load resistance changes to 5 Ω , then the load current	4.0	1.00
		A1 Remains 20 A and the load voltage changes to 100 V		
		A2 Changes to 4 A from 20 A and the load voltage changes to 20 V :		
		A3 Changes to 4 A from 20 A and the load voltage changes to 80 V :		
		A4 Load voltage stay at 20 A and 20 V respectively.		
Object	tive Question			
58	58	In a single phase VSI bridge inverter, the load current is $I_0 = 200 \sin(wt-45^\circ)$ mA. The d.c. supply voltage is 220 V. What is the power drawn from the supply?	4.0	1.00
		A1 9.8 W		
		A2 19.8 W		
		A3 27.25 W		

	A4 34.03 W		
Objective Question			
59 59	The most suitable solid state converter for controlling the speed of the three phase cage motor at 25 Hz is	4.0	1.00
	Al Cycloconverter		
	A2 Current source inverter		
	A3 Voltage source inverter		
	A4 : Load commuted inverter		
Objective Ouestion			
60 60	A DC chopper is used in regenerative braking mode of a dc series motor. The dc supply is 600 V, the duty cycle is 70%. The average value of armature current is 100 A. It is continuous and ripple free. What is the value of power feedback to the supply?	4.0	1.00
	A1 3 kW		
	A2 9 kW		
	A3 19 kW		
	A4 35 kW		
Objective Question			
61 61	Which one of the following is used as the main switching element in a switched mode power supply operating in 20 kHz to 100 kHz range?	4.0	1.00
	A1 Thyristor		
	A2 : MOSFET		
	A3 Triac		
	A4 UJT :		
Objective Question			
62 62	A band-limited signal with a maximum frequency of 5 kHz is to be sampled. According to the sampling theorem, the sampling frequency in kHz which is not valid is	4.0	1.00
	A1 5		

	A2 : 12		
	A3 15		
	A4 20		
Objective Ques	tion	1.0	1.00
63 63	The impulse response of a continuous time system is given by $h(t) = \delta(t - 1) + \delta(t - 3)$. The value of the step response at $t = 2$ is	4.0	1.00
	A1 0		
	A2 1 :		
	A3 2 :		
	A4 3 :		
Objective Ques	tion		
64 64	If $u(t)$, $r(t)$ denote the unit step and unit ramp functions respectively and $u(t)*r(t)$ their convolution, then the function $u(t+1)*r(t-2)$ is given by	4.0	1.00
	$\frac{A1}{:}$ (1/2)(t-1)(t-2)		
	$\stackrel{A2}{:}_{:}^{2(t+1)(t-2)}$		
	$\stackrel{A3}{:} (1/2)(t-1)^2 u(t-1)$		
	A4 : None of these		
Objective Ques	tion		
65 65	The value of the contour integral in the complex – plane $\oint \frac{z^3-2z+3}{z-2} dz$ along the contour $ z = 3$, taken counter clockwise is	4.0	1.00
	$^{A1}_{:}$ -18 πi		
	A2 0		
	$\stackrel{A3}{:}$ 14 πi		
	$\stackrel{A4}{:}$ 48 πi		

bjective Questi	n		
66	Let the eigenvalues of a 2×2 matrix A be 1,-2 with eigenvectors x_1 and x_2 respectively. Then the eigenvalues and eigenvectors of the matrix A ² -3A+4I would respectively, be	4.0	1.00
	A1 2, 14; x ₁ ,x ₂		
	$\begin{array}{c} A2 \\ 2,14; x_1+x_2, x_1-x_2 \\ \vdots \end{array}$		
	$\begin{array}{c} A3 \\ 2, 0; x_1, x_2 \\ \vdots \end{array}$		
	$ \stackrel{A4}{:} {}_{2,0; x_1+x_2, x_1-x_2} $		
iective Questi	nn		
67	Two in-phase, 50Hz sinusoidal waveform of unit amplitude are fed into channel-1 and channel-2 respectively of an oscilloscope. Assuming that the voltage scale, time scale and other settings are exactly the same for both the channels, what would be observed if the oscilloscope is operated in x-y mode?	4.0	1.00
	Al A circle of unit radius		
	A2 An ellipse		
	A3 A parabola :		
	A4 : A straight line inclined at 45° with respect to the x-axis		
ojective Questi	n n		
68	Instrument transformers are known to introduce magnitude and phase errors in measurements. These are primarily due to	4.0	1.00
	A1 Improper connections on the primary side		
	A2 Measurement errors inherent in the meter connected to the transformer secondary :		
	A3 Open and short circuit parameters of the instrument transformers :		
	A4 None of these :		
jective Questi	<u>n</u>		
69	Which of the following instrument will be used to measure a small current of very high frequency?	4.0	1.00
	A1 Electrodynamic ammeter		
	A2 : Moving coil galvanometer		
	A3 Thermocouple type instrument		

Objective Quasition 70 71 71 71 71 71 71 70 70 70 70 70 70 70 70 70 70 70 70 70 70 71 71 71 71 71 71 70 <td< th=""><th></th></td<>	
10 10 A current i-5-14.14 sin (314t-150) is passed through a center zero PMMC, hot wire and moving ion instrument, the respective readings are: 41 $\frac{1}{2}$ $\frac{5}{2}$, $\sqrt{125}$ and $\sqrt{125}$ $\frac{1}{2}$ $\frac{5}{2}$, $\sqrt{125}$ and $\sqrt{125}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{5}{2}$, $\sqrt{125}$ and $\sqrt{125}$ $\frac{1}{2}$ $\frac{5}{2}$, $\sqrt{125}$ and $\sqrt{125}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{5}{2}$, $\sqrt{125}$ and $\sqrt{125}$ $\frac{1}{2}$ $\frac{5}{2}$, $\sqrt{125}$ and $\sqrt{125}$ $\frac{1}{2}$ Difference Weight and 10 $\frac{1}{2}$ $\frac{1}{2}$, $\frac{1}{$	
$\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 $.0 1.00
$\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 $	
Visite A3 -5, √125 and 19.14 A4 5, 10 and 10 Objective Question Visite Visite Visite A4 5, 10 and 10 Visite 71 71 71 Visite Visite Visite A1 Zero lagging A2 Zero lagging A2 Zero leading A1 S lagging A4 0.5 lagging A4 0.5 lagging A1 30 S lagging A4 0.5 lagging A4 0.5 lagging A1 30 S lagging A4 0.5 lagging A4 0.5 lagging A1 30 S lagging A4 0.5 lagging A4 0.5 lagging A1 30 S lagging A4 0.5 lagging A4 0.5 lagging A1 30 S lagging A4 0.5 lagging A4 0.5 lagging A1 30 S lagging A4 0.5 lagging A1 30 S lagging A4 0.5 lagging A2 1.77° A1 30 A2 1.77° A3 1.80° A2 1.77° A3 1.80° A4 1.83° A5 1.60° A4 1.83	
Objective Question 71 71 Two wattmeter method is employed to measure power in a 3 phase balanced system with the current coil connected in the A and C lines. The phase sequence is ABC. If the wattmeter with its current coil in A phase line reads zero, then the power factor of the 3 phase load will be 41 71 71 71 Two wattmeter method is employed to measure power in a 3 phase balanced system with the current coil in A phase line reads zero, then the power factor of the 3 phase load will be 41 $\frac{A_1}{a}$ Cero leading $\frac{A_2}{a}$ Zero leading $\frac{A_2}{a}$ d.5 lagging $\frac{A_4}{a}$ 0.5 leading Objective Question $\frac{A_1}{a}$ 0.5 lagging $\frac{A_4}{a}$ 0.5 leading $\frac{A_1}{a}$ 0.5 leading $\frac{A_2}{a}$ 177° $\frac{A_1}{a}$ 3° A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is $\frac{A_1}{a}$ 3° $\frac{A_1}{a}$ 180° $\frac{A_1}{a}$ 183° $\frac{A_2}{a}$ 177° $\frac{A_1}{a}$ 183° Objective Question $\frac{A_1}{a}$ 183° $\frac{A_2}{a}$ 177° $\frac{A_3}{a}$ 180° $\frac{A_1}{a}$ 183° $\frac{A_2}{a}$ 183° $\frac{A_2}{a}$ 177° $\frac{A_3}{a}$ 180°	
Polymetry Question 71 71 71 71 72 Two wattmeter method is employed to measure power in a 3 phase balanced system with the current coil in A phase line reads zero, then the power factor of the 3 phase load will be 41 A1 Zero lagging A2 A2 Zero lagging A2 A3 0.5 lagging A4 A4 0.5 leading A1 72 72 A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is 41 A1 3° 3 180° A2 177° A3 180° A4 183° 183° 183°	
71 71 71 Two wattreeter method is employed to measure power in a 3 phase balanced system with the current coil onnected in the A and C lines. The phase sequence is ABC. If the wattreeter with its current coil in A phase line reads zero, then the power factor of the 3 phase load will be 41 1 A1 Zero lagging A2 Zero langing A2 2 Zero leading A3 0.5 leading A4 0bjective Question A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is 41 1 30 A2 177° A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is 41 2 72 A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is 41 1 30 A2 177° A3 180° 2 12 A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is 41 1 30 A2 177° A3 180° 2 13 180° A 183° 183°	
A^1 Zero lagging A^2 Zero leading A^2 Zero leading A^3 0.5 lagging A^4 0.5 leading A^4 0.5 leading Objective Question A^2 A^2 A^2 0.5 leading A^4 0.5 leading A^4 0.5 leading A^4 0.5 leading A^4 1.3° A^2 A^2 1.77° A^2 A^2 1.77° A^3 A^2 A^4 A^3 A^4 A^3 A^3 A^4 A^3 A^4 A^4 A^4 A^3 A^4 A^3 A^4 A^5 A^4 A^4 A^4	.0 1.00
$ \begin{array}{ c c c c } \hline A2 & Zero leading \\ \hline A3 & 0.5 & lagging \\ \hline A4 & 0.5 & leading \\ \hline Objective Question \\ \hline 72 & 72 & A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is \\ \hline A1 & 3° \\ \hline A2 & 177° \\ \hline A3 & 180° \\ \hline A4 & 183° \\ \hline Objective Question \\ \hline Objective Question \\ \hline 73 & 73 & A Kelvin double bridge is best suited for the measurement of \\ \hline 74 & 74 \\ \hline 75 & 73 \\ \hline 73 & A Kelvin double bridge is best suited for the measurement of \\ \hline 74 & 74 \\ \hline 74 & 74 \\ \hline 75 & 73 \\ \hline 74 & 74 \\ \hline 75 & 73 \\ \hline 75 & 73 \\ \hline 75 & 74 \\ \hline 75 & 74 \\ \hline 75 & 73 \\ \hline 75 & 74 \\ 75 $	
A^3 0.5 lagging A^4 0.5 leading Objective Question A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is A^1 7^2 7^2 A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is A^1 A^2 177° A^2 177° A^3 180° A^4 183° Objective Question A Kelvin double bridge is best suited for the measurement of 4.4	
Objective Question A 72 7^2 A current transformer has a phase error of +3°. The phase angle between the primary and secondary current is 4.4 x^1 3° x^{-1}	
Objective Question A current transformer has a phase error of $+3^{\circ}$. The phase angle between the primary and secondary current is 4.1 72 72 A current transformer has a phase error of $+3^{\circ}$. The phase angle between the primary and secondary current is 4.1 A^1 $_3^{\circ}$ A^2 $_{177^{\circ}}$ A^2 $_{177^{\circ}}$ A^3 $_{180^{\circ}}$ A^4 $_{183^{\circ}}$ A^4 $_{183^{\circ}}$ A	
72 72 A current transformer has a phase error of $+3^{\circ}$. The phase angle between the primary and secondary current is 4.1 A1 3° A^{2} 177° A^{2} 177° A2 177° A^{3} 180° A^{4} 183° Objective Question 73 73 A Kelvin double bridge is best suited for the measurement of 4.0	
$ \begin{array}{c ccccc} A1 & 3^{\circ} \\ A2 & 177^{\circ} \\ A3 & 180^{\circ} \\ A4 & 183^{\circ} \\ \hline \end{array} $ Objective Question $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0 1.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c } \hline A3 & 180^{\circ} \\ \hline A4 & 183^{\circ} \\ \hline Objective Question \\\hline 73 & \hline 73 & A Kelvin double bridge is best suited for the measurement of \\\hline 4.6 & \hline 4.6 & \hline$	
A4 183° Objective Question 73 73 A Kelvin double bridge is best suited for the measurement of 4.0	
Objective Question 73 73 A Kelvin double bridge is best suited for the measurement of 4.0	
73 73 A Kelvin double bridge is best suited for the measurement of	
	.0 1.00
A1 Inductance	

	A2 Capacitance :		
	A3 Low resistance		
	A4 : High resistance		
bjective Question			
l 74	The bridge method commonly used for finding mutual inductance is	4.0	1.00
	A1 Heaviside Campbell bridge		
	A2 Schering bridge		
	A3 : De Sauty bridge		
	A4 : Wien bridge		
bjective Question			
5 75	A 3-phase balanced load which has a power factor of 0.707 is connected to a balanced supply. The power consumed by the load is 5 kW. The power is measured by the two-wattmeter method. The readings of the two wattmeters are	4.0	1.00
	A1 3.94 kW and 1.06 kW		
	A2 : 2.50 kW and 2.50 kW		
	A3 5.00 kW and 0.00 kW		
	A4 2.96 kW and 2.04 kW		
bjective Question			
5 76	A dynamometer type wattmeter responds to the	4.0	1.00
	A1 : Average value of active power		
	A2 : Average value of reactive power		
	A3 Peak value of active power		
	A4 : Peak value of reactive power		
biective Ouestion			

	$\stackrel{A1}{:}$ 0.8 Ω in series with the meter		
	$\frac{A2}{2}$ 1.0 Ω in series with the meter		
	$^{A3}_{:}$ 0.04 Ω in series with the meter		
	$^{A4}_{:}$ 0.05 Ω in series with the meter		
78 78		4.0	1.00
/8 /8	A moving coil galvanometer is made into a d.c. ammeter by connecting	4.0	1.00
	A1 : A low resistance across the meter		
	A2 : A high resistance in series with the meter		
	$\stackrel{A3}{:}$ A pure inductance across the meter		
	A4 : A capacitor in series with the meter		
79 79	on	4.0	1.00
	The equivalent resistance between the terminals A and B is Ω	4.0	1.00
	$ \begin{array}{c} 10 \\ 20 \\ 10 \\ 10 \\ 30 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 5$		
	$\stackrel{A1}{:}$ 1 Ω		
	$\stackrel{A2}{:}$ 4 Ω		
	$\stackrel{A3}{:}$ 3 Ω		
	A4 : 1.5 Ω		
80 80		4.0	1.00
00 00		4.0	1.00

		What is the driving point impedance of the two-port network shown in Figure below with output port open? $ \begin{array}{c} 1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
		A2 : 16 Ω		
		$ \overset{A3}{:} 2\Omega $		
Object	ive Question			
81	81	If the z-parameters of a two-port network are $z_{11}=6\Omega$, $z_{22}=8\Omega$, $z_{12}=z_{21}=4\Omega$, then the <i>ABCD</i> -parameters are respectively given by	4.0	1.00
		$ \stackrel{A1}{:} \frac{3}{2}, 8, \frac{1}{4}, 2 $		
		$\begin{array}{c} A2 \\ \vdots \\ 2, \frac{1}{4}, 6, 3 \\ \vdots \end{array}$		
		$ \begin{array}{c} A3 \\ \vdots \\ 6'\frac{1}{4'}\frac{1}{4'}\frac{1}{8} \end{array} $		
		A4 : 8,4,4,6		
Object	ive Question			1.00
82	82	If a network contains b branches and n nodes, then the number of mesh current equations would be	4.0	1.00
		$\stackrel{\text{A1}}{:} b - (n-1)$		
		A2 : n-(b-1)		
		A3 b-n-1		
		A4 : n-b-1		
Object	ive Question		4.0	1.00
83	83	For Figure shown below, the inductance matrix is	4.0	1.00
	1 I	I I I I I I I I I I I I I I I I I I I	. I	1

A1 :	$\begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}$	$ \begin{bmatrix} 4 & -2 \\ 2 & -1 \\ -1 & 5 \end{bmatrix} $
A2 :	3 - 4 -2	$\begin{bmatrix} -4 & -2 \\ 2 & -1 \\ 1 & 5 \end{bmatrix}$
A3 :	$\begin{bmatrix} 3 & 4 \\ 4 & 2 \\ -2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2\\ -1\\ 5 \end{bmatrix}$
A4 :	$\begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}$	

Objective Question 84 84 4.0 1.00 Dot convention in coupled circuits is used A1 to measure the mutual inductance $\frac{A2}{C}$ to determine the polarity of mutually induced voltages in coils $\stackrel{A3}{:}$ to determine the polarity of the self induced voltages in coils A4 none of these **Objective** Question 85 85 4.0 1.00 A series resonant circuit has $R=10\Omega$, L=100mH, C=100µF. At what frequency does it resonate? A1 503.3 Hz

 A^2_2 203.3 Hz A^3_3 853.3Hz A^3_1 853.3Hz A^4_1 103.3HzObjective Question A^4_1 103.3Hz A^4_1 103.3Hz A^4_1 103.3Hz8686If f_r is the resonance frequency and BW is the bandwidth, the Q factor of the circuit is given byA.0A.0 A^1_1 f_r/BW A^2_2 $f_r x BW$ A^2_1 $f_r x BW$ A^3_1 BW/f_r

		$A4 \ 1/BW x f_r$		
Obiec	tive Ouestion			
87	87	In a three-phase balanced, star-connected system, the phase relation between the line voltages and their respective phase voltages is	4.0	1.00
		A1 : the line voltages lead their respective phase voltages by 30°		
		A2 : the phase voltages lead their respective line voltages by 30°		
		A3 : the line voltages lead their respective phase voltages by 120°		
		A4 : the line voltages are in phase with phase voltages		
01	i			
38 38	88	Three equal impedances are first connected in star across a three-phase balanced supply. If the same impedances are connected in delta across the same supply, then	4.0	1.00
		A1 phase current will be one third		
		A2 line current will be 3 times		
		A3 power consumed will be one third		
		A4 power consumed will be 3 times		
Objec	tive Question			
;9	89	The venin's equivalent of a circuit, operating at $\omega = 5 \text{ rad/s}$, has $V_{oc}= 3.71 \angle -15.9^{\circ} V$ $Z_o= 2.38 - j 0.667 \Omega$	4.0	1.00
		At this frequency, the minimal realization of the thevenin's impedance will have A1 : A resistor, a capacitor and an inductor		
		A2 : A resistor and a capacitor		
		A3 A resistor and an inductor		
		A4 : A capacitor and an inductor		
Obiec	tive Question			
0	90	Assertion (A): A unit current impulse applied to a capacitor of C farads instantly inserts ½ C joules of energy in it. Reason (R): A unit current impulse has infinite current for zero duration and encloses a charge of one coulomb in it.	4.0	1.00
		A1 Both A and R are true and R is the correct explanation of A :		

		A2 Both A and R are true but R is NOT the correct explanation of A :		
		A3 A is true but R is false		
		A4 : A is false but R is true		
Objec	tive Question			
91	91	Two bulbs of 100 W/250 V and 150 W/250 V are connected in series across a supply of 250 V. The power consumed by the circuit is	4.0	1.00
		A1 30 W		
		A2 60 W		
		A3 100 W		
		A4 250 W		
Objec	tive Question			
92	92	The average power delivered to an impedance (4–j3) Ω by a current 5cos(100 π t+100)A is	4.0	1.00
		A1 44.2 W		
		$^{A2}_{:}$ 50 W		
		A3 62.5 W		
		A4 : 125 W		
Obiec	tive Ouestion			
93	93	With 10 V dc connected at port A in the linear nonreciprocal two-port network shown below, the following were observed: (i) 1 Ω connected at port B draws a current of 3 A	4.0	1.00
		(ii) 2.5 Ω connected at port B draws a current of 2 A		
		+ A B		
		With 10 V dc connected at port A, the current drawn by 7 Ω connected at port B is		
		A1 3/7 A		

		A2 5/7 A	
		A3 1 A	
		A4 9/7 A	
Object	ive Question		

J	and Quebulon			
94	94	In a uniform electric field, field lines and equipotentials	4.0	1.00
		A1 Are parallel to one another		
		A2 : Intersect at 45°		
		A3 : Intersect at 30°		
		A4 Are orthogonal		
Ohiaa	tive Ouestien			
95	95	A solid iron cylinder is placed in a region containing a uniform magnetic field such that the cylinder axis is parallel to the magnetic field direction. The magnetic field lines inside the cylinder will	4.0	1.00
		A1 Bend closer to the cylinder axis		
		A2 Bend farther away from the axis		
		A3 Remain uniform as before		
		A4 Cease to exist inside the cylinder		
Object	tive Question			
96	96	The concept of an electrically short, medium, and long line is primarily based on the	4.0	1.00
		A1 Nominal voltage of the line		
		A2 Physical length of the line		
		A3 Wavelength of the line		
		A4 Power transmitted over the line		

		Consider the following statements with reference to the equation $\nabla \vec{j} = -\frac{\partial p}{\partial t}$ 1. This is a point from the continuity equation 2. Divergence of current density is equal to the decrease of charge per unit volume per unit time at every point. 3. This is Maxwell's divergence equation 4. This represents the conservation of charge. A1 Only 2 and 4 are true A2 1, 2 and 3 are true A3 2, 3 and 4 are true A4 1, 2 and 4 are true		
Object	ive Question			
98	98	Two electric charges q and -2q are placed at (0,0) and (6,0) on the x-y plane. The equation of the zero equipotential curve in the x-y plane is $A^{1} X = -2$ $A^{2} Y = 2$ $A^{3} X^{2} + Y^{2} = 2$ $A^{4} (X-2)^{2} + Y^{2} = 16$	4.0	1.00
Object	ive Question			
99	99	A 50 Hz, 4-pole, 500 MVA, 22 kV turbo-generator is delivering rated megavolt-amperes at 0.8 power factor. Suddenly a fault occurs reducing is electric power output by 40%. Neglect losses and assume constant power input to the shaft. The accelerating torque in the generator in MNm at the time of fault will be A1 1.528 A2 1.018 A3 0.840 A4 0.509 A50 Hz, 4-pole, 500 MVA, 22 kV turbo-generator is delivering rated megavolt-amperes at 0.8 power factor. Suddenly a fault occurs reducing is electric power output by 40%. Neglect losses and assume constant power input to the shaft. The accelerating torque in the generator in MNm at the time of fault will be A1 1.528 A2 1.018 A3 0.840 A4 0.509 A4 0.509 A50 Hz, 4-pole, 500 Hz, 500	4.0	1.00
Object	ive Question			·
100	100	The transmission line distance protection relay having the property of being inherently directional is A1 : MHO relay	4.0	1.00

A3 OHM relay	
A4 Reactance relay	