ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. Electronics Engineering

COURSE CODE: 166

Register Number :	
	Signature of the Invigilate
	(with date)

COURSE CODE: 166

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the **ANSWER SHEET** using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Radar rai	nge primarily	deper							
	(A) Pea	k transmitte	d powe	er	(B)	Average transmitted power				
	(C) Squ	are of transn	nitted	power	(D)	Independent o	f trans	smitted power		
2.	One method of solving 'blind speed' problems is to									
		a variable Pl		opeca proble	(B)	change Dopple	er frequ	iency		
	1	digital MTI			(D)	use short wave				
	(0)	magaves and a			(2)	abo bilozo man	ororigu.	•		
3.	The type	of modulatio	n sche	me used in Iri	dium	system is				
	(A) 16-H	PSK	(B)	BPSK	(C)	QAM	(D)	QPSK		
4.	Earth station figure-of-merit is defined as									
	(A) 10 le	og(G/T)	(B)	10 Ln(G/T)	(C)	10 log (GT)	(D)	20 log(G/T)		
5.	When the	orbit eccent	ricity(e) equals zero,	the or	rbit is				
	(A) A pa	arabola	(B)	Circular	(C)	A hyperbola	(D)	Elliptical		
6.	Satellite	capacity depe	ends o	n						
	(A) Wei	ght that can	be pla	ced in orbit						
	(B) Panel area available for energy dissipation									
	(C) Tran	nsmitter pow	er							
	(D) All	the above						To the same of		
_	G 1			and the second						
7.				the earth onc						
	(A) 1 ho	our (B)	24 F	nours	(C)	10 hours	(D)	365 days		
8.	When r is		of circu	ular orbit of a	satelli	ite, then orbital	period	of the satellite		
	(A) r				(B)	r^2				
	(C) $r^{3/2}$				(D)	r^3				
9.	Which of	the following	diode	is used as de	tector	in radar?				
		in diode			(B)	Schottky diode	9			
	(C) Zen	er diode			(D)	IMPATT diode				
10.	The resol	ution of a pu	lsed ra	dar can be im	prove	d by				
		easing pulse								
		easing pulse								
		easing the p								
				epetition frequ	ency					
				The second secon						

11.	Whi	ich of the following is not limitation	of AMPS	?						
	(A)	limited spectrum	(B)	poor privacy protection						
	(C)	low calling capacity	(D)	wide coverage area						
12.	The	type of handoff used in CDMA (IS-9	5) syster	m ·						
	(A)	Soft handoff	(B)	Hard handoff						
	(C)	Fast handoff	(D)	Seamless handoff						
13.	The	access method used in DECT system	n is							
	(A)	FDMA/TDD	(B)	TDMA/TDD						
	(C)	FDMA/FDD	(D)	TDMA/FDD						
14.	Lar	ger cells are more useful in								
	(A)	densely populated urban areas	(B)	lightly populated urban areas						
	(C)	rural areas	(D)	mountain areas						
15.	The modulation scheme used in GSM system									
	(A)	QPSK	(B)	QAM						
	(C)	GMSK	(D)	FSK						
16.	If the bandwidth of the signal is lesser than the bandwidth of the channel, then the type of fading is									
	(A)	Fast fading	(B)	Flat fading						
	(C)	Slow fading	(D)	None of the above						
17.	Hat	a model is valid from								
	(A)	1500MHz to 2000MHz	(B)	150MHz to 1920 MHz						
	(C)	150MHz to 1500MHz	(D)	None of the above						
18.	Whi	ch of the outdoor model is known as	ITS irre	gular terrain model?						
	(A)	Okumura model	(B)	Hata model						
	(C)	PCS model	(D)	Longley Rice model						
19.	The	other name for Antenna diversity								
	(A)	Frequency diversity	(B)	Space diversity						
	(C)	Time diversity	(D)	Hybrid diversity						
20.	A ba	aud is a unit of								
	(A)	Channel capacity	(B)	Information						
	(C)	Signaling speed	(D)	None of the above						

21.	Whi	ch of the following material is havi	ng the hig	hest refractive index?								
	(A)	diamond	(B)	air								
	(C)	water	(D)	glass								
22.	Opti	cal core can be satisfactorily opera	ted if									
	(A)	(A) RI of the core is lesser than that of cladding										
	(B)	RI of the core is greater than that	of claddin	ng								
	(C)	RI of the core is equal to that of c	ladding									
	(D)	3 - 30 to 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10										
23.	Fun	Function of receiver in optical fibre is to										
	(A)	(A) reshape the degraded signal only										
	(B) only amplify the degraded signal											
	(C)	both amplify and reshape of the o	legraded s	ignal								
	(D)	none of the above										
24.	Tota	Total internal reflections can take place when light travels from										
	(A)	Air to glass	(B)	Water to glass								
	(C)	Air to water	(D)	Diamond to glass								
25.	The color of a LED can be changed by											
	(A)											
	(B)	(B) Changing the doping level of semiconductor										
	(C)	Increasing applied voltage										
	(D)	None of the above										
26.	Whi	ich of the following device is more s	sensitive?									
	(A)	PIN diode	(B)	APD								
	(C)	Neither (A) or (B)	(D)	Either (A) or (B)								
27.	Whi	ich of the following is not applicabl	e for LASI	ER?								
	(A)	Provision for confinement	(B)	Higher emission efficiency								
	(C)	No tuning arrangement	(D)	Narrow spectral width								
28.	Los	s in fibre is not due to										
	(A)	Impurities	(B)	Micro bending								
	(C)	Attenuation in fibre	(D)	Stepped index operation								

29.	The	cable that offers lowest dispersion is								
	(A)	SMSI	(B)	MMGI						
	(C)	MMSI	(D)	None of the above						
30.	Q-sv	witched LASER is								
	(A)	Continuous LASER								
	(B)	Short burst LASER								
	(C)	LASER produced by switching operat	ion							
	(D)	Low powered laser								
31.	In a	receiver the input signal is 100 μ V	, whil	le the internal noise at the input is						
	10μ	V. With amplification the output sign	nal is	2 V, while the output noise is 0.4 V.						
	The	noise figure of receiver is								
	(A)	2	(B)	0.5						
	(C)	0.2	(D)	None of the above						
32.	have	ceiver is operated at a temperature of e an average output resistance of 1 kg a a bandwidth of 200 kHz is	2. The	e Johnson noise voltage for a receiver						
	3 5	1.8 ΩV	(B)	8.4 ΩV						
	(C)	4.3ΩV	(D)	12.6 ΩV						
33.	ther	peech signal has a total duration of 20 a PCM encoded. The signal-to-quantizatimum storage capacity needed to accom	tion n nmoda	oise ratio is required to be 40 dB. The ate this signal is						
		1.12 KBytes	(B)							
	(C)	168 KBytes	(D)	None of the above						
34.	In a PCM system, if the code word length is increased from 6 to 8 bits, the signal to quantization noise ratio improves by the factor.									
	(A)	8/6	(B)	12						
	(C)	16	(D)	8						
35.		low FH/MFSK system has the followi bol = 4. Number of MFSK symbol per								
	(A)	13.4 dB	(B)	37.8 dB						
	(C)	6 dB	(D)	26 dB						
36.	both	ansmitting antenna with a 300 MHz can antennas has unity power gain, the ance of 1 km is								
	(A)	11.8 mW	(B)	18.4m W						
	(C)	8.4 μ W	(D)	12.7 μW						
		7//								

37.	The radiation resistance of an antenna is 63 Ω and loss resistance 7Ω . If antenna has power gain of 16, then directivity is										
	(A)	48.26 dB	(B)	12.5 dB							
	(C)	38.96 dB	(D)	24.7 dB							
38.		antenna is desired to operate bandwidth of antenna is	te on a frequency	of 40 MHz whose qu	uality factor is 50.						
	(A)	5.03 MHz	(B)	800 kHz							
	(C)	127 kHz	(D)	None of the above							
39.	A th	A thin dipole antenna is $\lambda/15$ long. If its loss resistance is 1.2 Ω , the efficiency is									
	(A)	41.1%	(B)	59%							
	(C)	74.5%	(D)	25.5%							
40.	The air filled cavity resonator has dimension $a=3$ cm, $b=2$ cm, $c=4$ cm. The resonant frequency for the TM_{110} mode is										
	(A)	5 GHz	(B)	6.4 GHz							
	(C)	16.2 GHz	(D)	9 GHz							
41.	Ionospheric preparation is not possible for microwaves because:										
	(A) Microwave will be fully absorbed by the Ionospheric layers										
	(B) These will be an abrupt scattering in all directions										
	(C) Microwaves will penetrate through the Ionospheric layers										
	(D)	(D) There will be dispersion of microwave energy									
42.	A waveguide section in a microwave circuit will act as a										
	(A)	Low pass filter	(B)	Band pass filter							
		High pass filter		Band Stop filter							
43.	Which one of the following is a transferred electron devices?										
	(A)	BARITT diode	(B)	IMPATT diode							
	(C)	Gunn diode	(D)	Step recovery diod	le						
44.	In a	a microwave test bench, w	by is the microv	vave signal amplit	ude modulated at						
	(A)	To increase the sensitivity	y of measurement								
	(B)	To transmit the signal to	a far-off place								
	(C)	To study amplitude modu	lation								
	(D)	Because crystal detector f	ails at microwave	frequencies							

45.	Consider a 150 m long air-filled hollow rectangular waveguide with cutoff frequency 6.5 GHz. If a short pulse of 7.2 GHz is introduced into the input end of the guide, the time taken by the pulse to return the input end is										
	(A)	920 ns	(B)	460 ns							
	(C)	230 ns	(D)	430 ns							
46.	A fi	lm integrated circuit is									
	(A)	MMIC	(B)	HIC							
	(C)	Not useful at microwave frequency	(D)	Direct circuit							
47.	Sub	strate material in MMIC is									
	(A)	Glass	(B)	Cu							
	(C)	Gold	(D)	SiO							
48.	Con	ductor material in MMIC is									
	(A)	Alumina	(B)	Ag							
	(C)	GaAs	(D)	SiO							
49.	Diff	usion is									
	(A)	The same as evaporation	(B)	Epitaxial growth							
	(C)	Adding dopants	(D)	A method of lithography							
50.	Lith	lography is									
	(A)	The process of deposition									
	(B)	The process of evaporation									
	(C)	The process of transferring patterns	of geor	metric shapes							
	(D)	The process of etching									
51.	A 2 be	kW carrier is to be modulated to a 90	% leve	d. The total transmitted power would							
	(A)	3.62 kW	(B)	2.81 kW							
	(C)	1.4 kW	(D)	None of the above							
52.	with	odulating signal is amplified by a 80% a 20 kW carrier to generate an AM solifier, for the system to operate at 100	signal.	The required DC input power to the							
	(A)	5 kW (b) 8.46 kW	(C)	12.5 kW (D) 6.25 kW							

53.	If the	e modulation index	of an	AM wave is ch	nange	d from 0 to 1, the	tran	smitted power		
	(A)	increases by 50%			(B)	increases by 75%	6			
	(C)	increases by 100%	ó		(D)	remains unaffec	ted			
54.	mod	AM signal is dete ulating signal frequ he time constant of	uency	are 1 MHz and	d 2 kF					
	(A)	$500~\mu~{ m Sec}$	(b)	$20~\mu~{ m Sec}$	(C)	$0.2~\mu~{ m Sec}$	(D)	$1 \mu \text{ sec}$		
55.		an AM signal, the ent is 705 kHz. The						ncy component		
	(A)	695 kHz	(B)	$700~\mathrm{kHz}$	(C)	$705~\mathrm{kHz}$	(D)	$710~\mathrm{kHz}$		
56.	Circ	ularly polarized an	tenna	is						
		Parabolic dish		Dipole	(C)	Yagi-uda	(D)	Helical		
57.	Ante	enna efficiency is								
	(A)	$g_p \! / g_d$	(B)	gd/gp	(C)	$g_{\rm p}$	(D)	g_d		
58.	Ante	enna radiation effic	ciency	is high when i	ts len	gth is				
	(A)	λ	(B)	λ/2	(C)	2/4	(D)	2/8		
59.	For a 100 Ω antenna with 2 A of current, the radiated power is									
	(A)	400 W	(B)	200 W	(C)	50 W	(D)	25 W		
60.	Half	f wave beamwidth	of opt	imum flare hor	n in l	E-plane is				
	(A)	$56\lambda/d_{\rm E}$	(B)	$28 \lambda/d_{\rm E}$	(C)	$122\lambda/d_{\rm E}$	(D)	112°		
61.		he impedance of a PF/m, the time re-								
	(A)	0.371 nm	(B)	$0.0371 \mathrm{\ ms}$	(C)	3.71 ns	(D)	3.71 ms		
62.	Mag	gic Tee is used as								
	(A)	An amplifier	(B)	An oscillator	(C)	Mixer	(D)	A filter		
63.	Н-р	lane Tee junction								
	(A)	S13 = S23	(B)	S31 = S23	(C)	S33 = 0	(D)	S12 = S22		

64.	For	a reciprocity netwo	ork								
	(A)	$S_{ij} = S_{ii} \label{eq:Sij}$	(B)	$\mathbf{S}_{ij} = \mathbf{S}_{ji}$	(C)	$\mathbf{S}_{ii} = \mathbf{S}_{jj}$	(D)	$\mathbf{S}_{ji} = \mathbf{S}_{ii}$			
65.	The	electron velocity is	n refle	x klystron is							
	(A)	$\sqrt{2e/m^{\frac{1}{v_b}}}$	(B)	$\sqrt{2e/mv_b}$	(C)	$\sqrt{2m/ev_b}$	(D)	$\sqrt{1/2e/mv_b}$			
66.	Way	elength of Microst	rip lir	ne is							
	(A)	V_0 / $\sqrt{arepsilon_{\it reff}}$	(B)	$\lambda_0 / \sqrt{\varepsilon_r}$	(C)	$V_o / \sqrt{\varepsilon_r}$	(D)	V_0/f			
67.	Round wire inductor has $1 = 100$ mils, $d = 10$ mils and its inductance is										
	(A)	2.451 nH/mil	(B)	1.366 nH/mil	(C)	1000 mH/mil	(D)	10 nH/mil			
68.	The dimensions of the parameters of a gold planar resistor are 1 = 11 m, d = 0.2 μ m, w = 8 mm and its resistance is										
	(A)	$1.68~\Omega$	(B)	0.234Ω	(C)	0.168Ω	(D)	0.0168Ω			
69.	Mici	rostrip line invente	ed by								
	(A)	Barrett	(B)	Barnes	(C)	Engelmann	(D)	Wen			
70.	Important plat forms for RFMEMS is										
	(A)	Coaxial line			(B)	Two wire line					
	(C)	Planar line			(D)	Parallel plate li	ine				
71.	The distribution function of a random variable is obtained by ———————————————————————————————————										
	(A)	Differentiation	(B)	Integration	(C)	Multiplication	(D)	Division			
72.		probability function $p(4) = 0.0469$ and $p(4)$					1219,	p(2) = 0.2109			
	(A)	1.000, 0.750			(B)	1.500, 3.250					
	(C)	1.000, 0.500			(D)	None of the abo	ove				
73.	Let	'E' bean event and	let E	be its compler	nent.	If $P(E) = 1/3$, the	en				
	(A)	$P(E^c)=1/3$	(B)	$P(E^c) = 5/6$	(C)	$P(E^c) = 2/3$	(D)	$P(E^c) = 1/6$			

74			be a discrete r 1/3 and Fx(3) =			enote	its distribution	function	on by Fx(x).	I
	(A) 1	$P(2 \le X < 3) = 1/3$			(B)	$P(X \ge 2) = 1/3$			
	(C) 1	P(X<2)=1/3				$P(2 < X \le 3) = 1$	/3		
78	th		s numbered 1 to obability that the	tick		numb	er which is a m	ultiple		is
	(2.2	, -		(1)	1/2	(0)	0120	(D)	0/10	
76	3. A	Vect	or space consisti	ng of		ve	ctors is called T	rivial V	Vector space.	
	(A) 3		(B)	2	(C)	0	(D)	1	
77			se a population ion of 40. The pro				with a mean of	200 a	nd a standa	ro
	(A	.) 0	.1056	(B)	0.1438	(C)	0.1634	(D)	0.3944	
78	8. W	hich	two distribution	s are	useful in anal	yzing	waiting lines or	"queue	es"?	
	(A) E	Sinomial and Poi	sson		(B)	Binomial and	normal		
	(C) P	oisson and expo	nenti	al	(D)	Exponential ar			
79			ndard normal d	listrik	oution has a	mean	of ———		and standa	ro
		.) 0		(B)	0,1	(C)	1,1	(D)	1,0	
80			ndom variable λ of x is 5, what is					of 10	and the lowe	s
) 5			10	(C)		(D)	20	
81	l. Ar	n ima	age function $f(x)$	y) is	characterized	by $f(x)$	(x,y) = i(x,y) r(x,y)) wher	re	
			$0 < f(x, y) < \infty$				0 < f(x, y) < 1			
	(C) 1	$< f(x, y) < \infty$			(D)	0 < f(x, y) < 255			
82	2. Sa	mpl	ing of an image i	s req	uired for					
	(A) 6	uantization	(B)	Sharpening	(C)	Smoothening	(D)	Digitization	1
88	3. Th	ie us	e of Translation	prop	erty of Fourier	trans	form is			
	(A	.) (Centering the lov	v freq	uency compon	ent				
	(B		Centering the DC							
	(C		Centering the his	gh fre	quency compo	nent				
	(D) A	all the above							
1	66				10					

	(A)			is used.	· (O)	F-1			
	(A)	Restoration	(B)	Segmentation	n (C)	Enhancement (D) Compression			
5.	To f		ints in	ı an image, —		smoothing filter should			
	(A)	Mean	(B)	Median	(C)	Maximum (D) Minimum			
6.		sider a gray scale How will the resu				sformation with a scaling constant			
	(A)	high contrast im	age		(B)	low contrast image			
	(C)	high brighten im	age		(D)	low brighten image			
7.		ume that a digital roximately how m				corrupted with impulse noise of 0.1 vith noise?			
	(A)	625	(B)	750	(C)	1000 (D) 1500			
8.	The concept behind law of large numbers is used to ———————————————————————————————————								
	(A)	(A) Reduce noise				Perform segmentation			
	(C)	Perform Compre	ssion		(D)	None of the above.			
9.		ixel p at coordina dinates are given		, y) has four	horizo	ontal and vertical neighbours who			
	(A)	(A) $(x+1,y+1)$, $(x,y+1)$, $(x-1,y-1)$, $(x,y-1)$							
	(B)	(x+1,y+1), (x+1)	1, y-1), $(x-1, y+1)$,	(x-1,	y-1)			
	(C)	(x+1,y), (x-1,y)), $(x +$	(x-1,y+1), (x-1,y+1)	y-1)				
	(D)	(x+1,y), (x-1,y)	(x, y)	+1), (x, y-1)					
0.		D ₈ distance (Che) is defined as	ssboar	d distance) be	tweer	n p and q with coordinates (x, y) an			
	765	x-s + y-t			(B)	$\operatorname{Max} (x-s , y-t)$			
	(A)								
		$\operatorname{Min} \left(x-s , y-t \right)$			(D)	$\left x-s\right ^2+\left y-t\right ^2$			
1.	(C)	$\operatorname{Min} \left(x-s , y-t \right)$		l show up as a		$ x-s ^2 + y-t ^2$ rrect analog output			
	(C)	$\operatorname{Min} \left(x-s , y-t \right)$	AC wil	103					

92.	Of t	he methods listed,	the fe	stost A/D con	Tropesio.	a ia dana hy a						
04.	(A)	Single slope ram			iversion	i is done by a						
	(B)	Dual slope ramp										
	(C)	Successive appro										
	(D)	Tracking convert		aon converter								
	(D)	Tracking convert	er									
93.	Con	volution is used to	find									
	(A)	The impulse resp	onse	of an LTI Sys	tem							
	(B)	Frequency respon	nse of	a System								
	(C)	The time respons	se of a	LTI system								
	(D)	The phase respon	nse of	a LTI system								
94.	The	anastral danaity a	fhit									
94.		spectral density o			(0)	Deissen	(D)	C				
	(A)	Exponential	(B)	Uniform	(C)	Poisson	(D)	Gaussian				
95.	IIR	IIR filters										
	(A)	(A) use feedback										
	(B)	are sometimes ca	alled r	ecursive filter	rs							
	(C)	can oscillate if no	ot prop	perly designed	d							
	(D)	all the above										
96.	Coe	fficient symmetry	is imp	ortant in FIR	filters	because it pro	vides					
96.	(A)	a smaller transit			(B)	less passban						
	(C)	less stopband rip			(D)	a linear phas		nse				
0.5	TC	1' 1 0'1'	,		0		**					
97.	If a linear phase filter has a phase response of 40 degrees at 200 Hz, what will be it phase response be at a frequency of 400 Hz (assuming that both frequencies are in the passband of the filter)?											
	(A)		(B)	40 degree	(C)	45 degree	(D)	80 degree				
98.	The	final value of $x(t)$ =	=[2 + e	-3t] $u(t)$								
	(A)		(B)	3	(C)	e^{-3t}	(D)	0				
99.		OSP convolves eac 25 and -0.25. This			with t	hese coefficie	nts : -0	.25, -0.25, 1.				
	(A)	low pass filter			(B)	high pass fil	ter					
	(C)	band pass filter			(D)	band stop fil						
100.	The	basic process that	's goir	ng on inside a	DSP cl	hip is						
	(A)	Quantisation	9-14	6	(B)	MAC						
	(C)	Logarithmic calc	ulatio	n	(D)	vector calcul	ations					
	1-/			10	(2)	, octor outour	COLUMN					