ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

Ph.D. (ELECTRONICS AND COMMUNICATION ENGINEERING)

COURSE CODE: 138

Register Number :		
	Signature of the Invi (with date)	gilator

COURSE CODE: 138

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Sem	iconductors are t	hose	which hav	re					
	(A)	no physical dist	inctio	n between	n the two	ba	nds			
	(B)	an empty condu	ction	band and	a filled v	ale	ence band			
	(C)	current due to	electro	ons only						
	(D)	current due to l	noles	only						
2.	Inpu	it resistance of a	n idea	l voltage a	and curre	nt	amplifier is			
	(A)	0, 0			(H	3)	0, infinity			
	(C)	Infinity, 0		4	(I))	Infinity, infinity			
3.	The	high frequency r	espon	se of an a	mplifier i	s d	letermined by its			
	(A)	Hybrid π model			(H	3)	Hybrid T model			
	(C)	Cascade model			(I))	Eber Moll's mode	el		
4.	Q fa	ctor of an induct	or is g	riven by						
	(A)	ωL	(B)	ωL/R	((2)	$\omega^2 LR$	(D)	$\omega L R$	
5.	Ava	lanche breakdow	n occı	ırs when						
	(A)	forward current	beco	mes exces	sive					
	(B)	the potential ba	rrier	is reduced	d to zero					
	(C)	forward bias ex	ceeds	a certain	value					
	(D)	reverse bias exc	eeds	a certain	value	-				
6.		ne dc value of a re le factor is	ectifie	d output i	s 300 V a	nd	peak to peak ripp	le va	lue is 1	0 V, the
	(A)	1.18%	(B)	3%	((3)	40.6%	(D)	90%	
7.	A P	N PN device havi	ng no	gate is ca	lled					
	(A)	UJT			(H	3)	Free wheeling di	ode		
	(C)	Rectifying diode	9		(I))	Shockley diode			
8.	The	Kirchoff's law fa	ils in							
	(A)	Linear circuits			(H	3)	Nonlinear circuit	s		
	(C)	Dual circuits			(I))	Distributed para	mete	r circui	ts
9.	Con	dition of reciproc	ity of	network			-			
	(A)	$y_{11} = y_{22}$	(B)	$Z_{12} = Z_{21}$	((C)	A = D	(D)	h ₁₂ = h	21
138					2					

10.	Tran	nsformer coupling	g in tra	ansistor amplifi	er cir	cuits provides hig	h effic	eiency because		
	(A)	flux linkages ar	e inco	mplete	(B)					
	(C)	collector voltage	es is st	epped up	(D)	dc resistance is l	ow			
11.	Whe	en an opamp is op	erated	d in common mo	ode fa	shion, its CMRR s	should	l be		
	(A)	Zero	(B)	10 db	(C)	Infinity	(D)	20 db		
12.		gain of inverti lifier using ident				——— than tha	t of	non-inverting		
	(A)	slightly lesser	(B)	greater	(C)	equal to	(D)	10 times		
13.	Sola	r cell is basically	a							
	(A)	Photometer			(B)	Photoemissive co	ell			
	(C)	Photoconductiv	e cell		(D)	Photovoltaic cell	l			
14.	In G	lunn diode, nega	tive re	sistance is obtain	ined b	ecause of				
(A) Avalanche breakdown with high voltage gradient										
	(B)	Electrons doma	ins ar	e formed at the	junct	ion				
	(C)	Electron transf	er to a	less mobile ene	ergy l	evel				
	(D)	Tunneling effec	et acros	ss the junction						
15.	The	tunnel diode								
	(A)	has a tiny hole	for tur	nneling						
	(B)	has a point con	tact w	ith high reverse	resis	stance				
	(C)	uses a high do	ping le	evel to provide a	narr	ow junction				
	(D)	uses an alloyed	juncti	ion for tunnelin	g					
16.	-	arametric amplif Iz. It is a	ier has	an input and o	utput	t frequency of 2.5	GHz,	it is pumped at		
	(A)	Backward amp	lifier		(B)	Degenerate amp	olifier			
	(C)	Doubler amplif	ier		(D)	Travelling wave	ampl	ifier		
17.	Ligh	nt emitting diode	s fabri	cated from Ga	As em	it radiation in the	e regio	on of		
	(A)	Green	(B)	Infra red	(C)	Ultra violet	(D)	Visible		
18.	Ten	nperature coeffic	ient of	resistance of se	nsito	r is				
	(A)	Negative	(B)	Positive	(C)	Zero	(D)	Large		

19.	Cap	acitors for ICs can b	oe fa	abricated usin	g			
	(A)	Isolation process			(B)	Integrators		
	(C)	Masks			(D)	SiO ₂ as dielectr	ric	
20.	Lap	lace transform of Co	os a	ot is				
	(A)	$\omega/(s^2 + \omega^2)$	B)	$s/(s^2 + \omega^2)$	(C)	$\omega^2/(s^2 + \omega^2)$	(D)	$s^2/(s^2+\omega^2)$
21.	In th	he Fourier series ex	par	sion of an eve	n funct	ion there are		
	(A)	sine terms only			(B)	cosine terms or	nly	
	(C)	both sine and cosi	ne t	terms	(D)	neither sine an	d cosir	ie terms
22.	Z tr	ansform of a step in	put	function is				
	(A)	1 (B)	Z/(Z-1)	(C)	$Z/(Z-1)^2$	(D)	$Z(Z-1)^2$
23.	For	a decade counter, n	um	ber of RS flipf	lops to	be used in casca	de are	
	(A)	10 ((B)	2	(C)	4	(D)	5
24.	In a	RS flip flop no cha	nge	in state will o	ccur du	e to —	in	put.
	(A)	0-1	(B)	1 - 0	(C)	0 - 0	(D)	1 – 1
25.	Emi	itter coupled logic e	xhil	bits fastest sw	itching	speed because t	he gate	es use
	(A)	Saturated transis	tors	3	(B)	Saturated diod	es	
	(C)	Thyristor			(D)	Unsaturated to	ransist	ors
26.	A co	omputer having 4K	me	mory means –		storage lo	ocation	s.
	(A)	4	(B)	400	(C)	4096	(D)	$4\times2^{\wedge}8$
27.	Den	norgan's theorem ca	an b	e expanded to	three v	variables as		
	(A)	$(X+Y+Z)'=(XY)'\cdot$	+(Y	(Z)' + (ZX)'	(B)	(X+Y+Z)'=X'+	+ Y' + Z	Z'
	(C)	(X+Y+Z)'=XYZ			(D)	(X+Y+Z)' = X'	Y' Z'	
28.	The	three variable Boo	lear	n expression f	= Σ 0, 1	, 3, 4 means		
	(A)	A'B'C' + ABC' + A	BC		(B)	A'B'C' + A'BC'	+ A'B(C + ABC
	(C)	A'BC' + AB'C' + A	BC	+ A'BC	(D)	A'B'C' + A'B'C	+ A'B(C + ABC'

29.	Bina	ry 1100101 is e	quival	ent to ———		in Gray code.		
	(A)	1100101	(B)	1010011	(C)	0010111	(D)	0100101
30.	In a	four input NAN	D gate	all inputs are	1 the o	output is		
	(A)	4	(B)	1/4	(C)	1	(D)	0
31.	An e	exclusive OR gate	e can b	e realized by u	sing			
	(A)	2 OR gates			(B)	2 NOT gates a	nd one	OR gate
	(C)	4 NAND gates	and or	e NOR gate	(D)	5 NAND gates		
32.	An	example of a con	binati	ional circuit is				
	(A)	Counters			(B)	Shift registers		
	(C)_	Full adder			(D)	Flip flop		
33.	In M	Ioore sequential	machi	ne the output i	s a fui	nction of		
	(A)	all the inputs						
	(B)	all the present	states					
	(C)	all possible con	nbinat	ions of input a	nd pre	sent states		
	(D)	a few combinat	ion of	inputs and pre	sent s	tate		
34.	The	ROM consists of	of					
	(A)	a multiplexer f	ollowe	d by a decoder	(B)	a demultiplex	er	
	(C)	a multiplexer			(D)	a decoder follo	wed by	an encoder
35.	Shif	ft of a register by	one b	it to the left is	equiva	alent to ———		by 2.
	(A)	Addition			(B)	Subtraction		
	(C)	Multiplication			(D)	Division		
36.		a four input re age for a digital			ing 0	= 0 V, 1 = +1	5 V the	e analog output
	(A)	1.5 V	(B)	5 V	(C)	11¼ V	(D)	13 V
37.	Lea	st propagation d	elay is	exhibited by				
	(A)	ECL	(B)	HTL	(C)	TTL	(D)	RTL

38.	The	function of two	paralle	el switches is si	milar	to logic gate which	h is	
	(A)	AND	(B)	NAND	(C)	NOR	(D)	OR
39.	Pick	out the invalid	relatio	n according to	Boolea	an algebra		
	(A)	X+X' = 1	(B)	X.X = X	(C)	1.X = 1	(D)	0.X = 0
40.	The	Boolean expres	sion X	Y(X'YZ + XY'Z)	+ X'Y'Z	Z') will be simplifi	ed as	
	(A)	1	(B)	0	(C)	X	(D)	X'
41.	The	complement of	(X + Y	Z + XY) will be				
	(A)	XY'Z'	(B)	X'Y'Z'	(C)	X'(Y'+Z')	(D)	X(Y'+Z')
42.	Fan	nily of 7400 seri	es of di	gital IC is				
	(A)	CMOS	(B)	DTL	(C)	ECL	(D)	TTL
43.	The	electrical condu	uctivity	σ is related to	mobili	ity μ by		
	(A)	$\sigma=n\mu$	(B)	$\sigma = ne\mu$	(C)	$\sigma=e\mu$	(D)	$\sigma = \tfrac{1}{2}ne^2\mu$
44.		Broglie waveler tron m as	ngth λ	of an electron	relate	es to Plank's cons	stant	h and mass o
	(A)	$\lambda = hmv$	(B)	$\lambda = h / mv$	(C)	$\lambda = h / m$	(D)	$\lambda = 2 \pi / hm$
45.	The	conductivity of	a cond	uctor can be in	crease	d by		
	(A)	increasing its	tempe	rature				
	(B)	decreasing its	tempe	rature				
	(C)	increasing its	vibrati	ions				
	(D)	decreasing its	tempe	rature and vib	rations	3		
46.	The	value of e/m of	an elec	etron is				
	(A)	$1.758 \times 10^{11} \text{ C}$	/Kg		(B)	$1.601 \times 10^{-9} \text{ C/F}$	ζg	
	(C)	$3.62 \times 10^{-11} \text{ C}$	/Kg		(D)	$5.613 \times 10^{9} \text{ C/K}$	g	
47.	The	relative permit	ttivity (of silica is				
	(A)	1.006	(B)	4.5	(C)	8.1	(D)	3.8

18.	Dipo	le moment per u	nit vo	lume is called					
	(A)	Electric flux de	nsity		(B)	Magnetic flux	density		
	(C)	Charge density			(D)	Polarization			
19.		relative permea e μ ₀ as	bility	of a medium µ	ı, is re	elated to its ow	n perme	eability of	free
	(A)	$\mu_{\rm r}=\mu/\mu_0$	(B)	$\mu_{\rm r} = \mu \; \mu_0$	(C)	$\mu_r \mu_0 = \mu$	(D)	$\mu = \mu_r / \mu_c$)
50.		ohere of 10 m en n in c / m² by	nclose	s a charge of	1000 d	coulombs the di	splacen	ent dens	ity is
	(A)	100	(B)	10,000	(C)	0.834	(D)	1.667	
51.	Sele	ct the equation v	vhich	is not Maxwell					
	(A)	$D = \varepsilon E$	(B)	$E = \varepsilon D$	(C)	$J = \sigma E$	(D)	$B = \mu H$	
52.	For	normal incidence	e the a	angle of inciden	ce is				
	(A)	90	(B)	180	(C)	0 .	(D)	45	
53.		en a wave is inc al to or exceeding					e mediu	ım at an	angle
	(A)	Total internal	refrac	tion	(B)	Total interval	transm	ission	
	(C)	Total internal	reflect	ion	(D)	Surface wave			
54.	The	phase velocity o	f a tra	nsmission line	in ter	ms of its R, L,	C and G	paramete	ers is
	(A)	V = L/R			(B)	V = 1/LC			
	(C)	$V = 1/(LC)^{1/2}$			(D)	V = GC/RL			
55.	VSV	WR of a transmis	sion l	ine is defined a	S				
	(A)	V_{max} / V_{min}			(B)	V_{min} / V_{max}			
	(C)	$v_{\text{max}}.v_{\text{min}}$			(D)	1 / (V _{max} . V _r	min)		
56.	For	a reflection coef	ficient	of 0.5 the valu	e of S	WR is			
	(A)	0.5	(B)	0	(C)	1	(D)	3	
57.		ine of characteri			hm is	terminated by	a 100 o	hm impe	lance.
	(A)	Zero	(B)	10 ohm	(C)	50 ohm	(D)	100 ohm	1
				7					138

48.

58.	The	directive gain in	a give	en direction is t	he rat	io of				
	(A)									
	(B)	Average power	to ma	ximum power						
	(C)	R.M.S. power to	peak	power						
	(D)	Radiation inten	sity i	n that direction	to the	e average power i	adiate	ed.		
59.	One	among the follow	ring i	a non voconan	t anto	nno				
00.	(A)	Rhombic anteni		s a non resonar	(B)	Yagi antenna				
	(C)	Adcock antenn			(D)	Log periodic an	tonna			
	(0)	Aucoca antenn	а		(D)	Log periodic an	teima			
60.	An a	antenna that is ci	rcula	rly polarized is						
	(A)	Parabolic reflec	tor		(B)	Small circular l	oop			
	(C)	Helical			(D)	Yagi uda				
61.	Whe	en microwave sign	nals f	ollow the curva	ture o	f the earth, this i	s knov	vn as		
	(A)	Faraday effect	(B)	Ducting	(C)	Ground wave	(D)	Troposcatter		
62.	The	radiation resista	nce of	a folded dipole	ante:	nna is				
	(A)	292 ohms	(B)	73 ohms	(C)	146 ohms	(D)	50 ohms		
63.	In a	communication s	syster	n, noise is most	likely	to affect the sign	nal			
	(A)	at the transmit	ter		(B)	in the channel				
	(C)	in the informat	ion so	urce	(D)	in the receiver				
64.	The	advantage of AM	[over	FM is						
	(A)	SNR is small			(B)	Lower bandwid	th req	uirement		
	(C)	Less modulatin	g pow	er	(D)	More useful tra	nsmit	ted power		
65.	The	advantage of DS	B ove	r SSB full carri	ier AM	I is				
	(A)	less available cl	hanne	el space						
	(B)	signal is less re	sistar	nt to noise						
	(C)	more stable tra	nsmit	ter circuit give	s bette	er reception				
	(D)	more power to t	ransı	nit same signal	l.					

66.	The frequency deviation in a FM transmitter its bandwidth is	having modulation index 6 is 60 KHz,
	(A) 60 KHz (B) 360 KHz (C)	10 KHz (D) 140 KHz
67.	The term neutralization refers to	
	(A) Inhibiting spurious oscillations	
	(B) Stabilizing the frequency of an oscillator	
	(C) Modulating at very low levels	
	(D) Tuning an antenna for maximum gain	
68.	The Hartley law states that	
	(A) the maximum rate of information tra modulation	ansmission depends on the depth of
	(B) the maximum rate of information depend	s on the channel bandwidth
	(C) only binary codes may be used	- (
	(D) redundancy is essential	
69.	An FM signal with a modulation index m_f is p wave in the output of the tripler will have a modulation	
	(A) $m_f / 9$ (B) $m_f / 3$ (C)	m_f (D) $3 m_f$
70.	In the spectrum of a FM wave	
	(A) the carrier frequency disappears when the	e modulation index is large
	(B) the amplitude of any side band depends u	ipon the modulation index
	(C) the total number of sidebands depends up	pon the modulation index
	(D) the carrier frequency cannot disappear	
71.	Pulse width modulation may be generated	
	(A) by differentiating a PPM signal (B)	by a monostable multivibrator
	(C) by integrating a PPM signal (D)	by a bistable multivibrator
72.	Quantizing noise occurs in	
	(A) TDM (B) FDM (C)	PWM (D) PCM

73.	Com	panding is used						
	(A)	in delta modula	tor to	combat noise				
	(B)	to protect small	signa	als in PCM from	n quan	tizing distortion		
	(C)	in PWM for wor	rking	it with TDM				
	(D)	in PCM to redu	ce SN	R				
74.	mixe	uperheterodyne i er and converted luce the original	l to a	lower fixed fr	equenc	y which is amp	lified a	
	(A)	Internal freque	ncy		(B)	Intermediate fi	requen	су
	(C)	International fi	reque	ncy	(D)	Image frequenc	су	
75.	_	heme in which s wn as	everal	channels are	interle	aved and then to	ansmi	tted together is
	(A)	group	(B)	subgroup	(C)	super group	(D)	multiplexing
76.	A se	quence of symbo	ls whi	ch are depende	ent upo	on one another is	called	
	(A)	D-entropy	(B)	D-bit	(C)	Redundancy	(D)	Reliability
77.	Har	tley Shannon lav	v is ex	pressed in bits	per se	cond as		
	(A)	C = W(1 + SNR))		(B)	C = W / (1 + SN	VR)	
	(C)	$C = W \log(1 + S)$	NR)		(D)	$C = W / \log(1 +$	SNR)	
78.	The	entropy for tossi	ngac	oin is ———		bit/message.		
	(A)	2	(B)	$\frac{1}{2}$	(C)	0	(D)	1
79.	Coh	erent detection e	mploy	78 ————	— of c	arrier envelope.		
	(A)	Amplitude	D 100		(B)	Phase		
	(C)	Phase and freq	uency		(D)	Amplitude and	freque	ency
80.		takes the trans						
	(A)	30	(B)	100	(C)	150	(D)	300
81.	A w	ave guide is a —		——— filter.				
		mechanical			(C)	low pass	(D)	high pass
138				10	,			1

82.	A Kl	ystron a cavity	acting a	as a buncher ar	nd cate	her works on	the princ	iple of	
	(A)	Velocity modul	ation		(B)	Frequency m	odulation	1	
	(C)	Guiding waves	· ′-		(D)	Impedance tr	ansform	ation	
09	The	nango of V hand	ie						
83.		range of X band		2-4 GHz	(C)	4-8 GHz	(D)	8-12 GHz	
	(A)	1-2 GHz	(D)	2-4 GHZ	(0)	4-8 G112	(D)	0-12 0112	
84.	The	modulation tech	nique	used in GSM s	ystem	is			
	(A)	FSK	(B)	BPSK	(C)	QPSK	(D)	GMSK	
85.		he same LAN.	layer i	s concerned w	ith loc	al delivery of	frames b	etween device	s
	(A)	Data link	(B)	Transport	(C)	Network	(D)	Physical	
			1.						
86.		se figure is relat	ed to n	oise factor as	(D)	$NF = \log_{10} F$			
		NF = log _e F					177		
	(C)	$NF = 10 \log_{10} 1$	F.		(D)	$NF = 20 \log_{10}$	₀ F		
87.		en through the versa, the even				the event B	cannot t	ake place an	d
	(A)	Exclusive			(B)	Independent			
	(C)	Mutual			(D)	Mutually exc	clusive		
88.	In a	Delta Modulati	on the	granular noise	occur	s when the mo	dulating	signal	
	(A)	decreases rapi	idly		(B)	increases ra	pidly		
	(C)	remains const	ant		(D)	remains idle			
89.		0 GHz signal wa n the signal und				ary satellite a	t a dista	nce of 36000 ki	m
	(A)	10 db	(B)	20 db	(C)	200 db	(D)	365 db	
90.	For	frequency f and	distan	ce D, the free s	space a	attenuation of	a RF sign	nal is equal to	
	(A)	20 log ₁₀ (D / f)			(B)	$20 \log_{10} \mathrm{D} +$	20 log ₁₀ f	•	
	(C)	$32.5 \log_{10} (D f)$)		(D)	$32.5 \; \mathrm{log_{10}} \mathrm{D}$	+ 20 log ₁	o f	
91.	Sou	ınd travels faste	r in						
	(A)		(B)	Aluminium	(C)	Vacuum	(D)	Water	

92.	II th	ie absolute power	ratio	18 10,000, the p	ower	gain in db is		
	(A)	4 db	(B)	1 db	(C)	10 db	(D)	40 db
93.		an electronic determine the therm			pera	ture of 17 C and	band	width 10 KHz
	(A)	4×10^{-17} watts			(B)	3×10^{-16} watts		
	(C)	$5\times 10^{-15}~\rm watts$			(D)	1×10^{-14} watts		
94.		ptical fibre by mo				nformation source t wavelengths.	es are	propagated of
	(A)	TDM	(B)	FDM	(C)	WDM	(D)	SDM
95.	The	most commonly	used l	SM band refers	to the	e frequency range	,	
	(A)	$1.2-2.2~\mathrm{GHz}$	(B)	$2.4-2.5\;\mathrm{GHz}$	(C)	$5-6~\mathrm{MHz}$	(D)	10 – 12 MHz
96.	_	is the	char	acteristic imped	ance	of free space.		
	(A)	478 ohms	(B)	377 ohms	(C)	50 ohms	(D)	75 ohms
97.	Wha	at is the line spee	d of a	PCM system for	r voic	e transmission?		
	(A)	8 Kbps	(B)	32 Kbps	(C)	64 Kbps	(D)	128 Kbps
98.	A —	is a	mak	e before break p	roces	s in mobile comm	unica	tion.
	(A)	hard handoff			(B)	soft handoff		
	(C)	strict handover			(D)	turbo handover		
99.	SDE	I is the name of						
	(A)	Wireless standa	ırd		(B)	LAN standard		19
	(C)	Optical network	stan	dard	(D)	Microwave stan	dard	
100.	UM'	TS employs ——		—— as the air i	nterf	ace.		
	(A)	FDMA			(B)	TDMA		
	(C)	CDMA			(D)	Wideband CDM	A	