

English

1.

If a sequence $\{a_n\}$ is bounded and monotonic then it is

- (A) Convergent
- (B) divergent
- (C) oscillatory
- (D) periodic

Correct Option(s): A

English

2.

If $f(x)$ is a continuous function on $[a, b]$ then it attains

- (A) No maximum
- (B) only minimum
- (C) both maximum and minimum
- (D) only maximum

Correct Option(s): C

English

3.

A series $\sum \frac{1}{n^p}$ is convergent if

- (A) $p \leq 1$
- (B) $p \geq 1$
- (C) $p < 1$
- (D) $p > 1$

Correct Option(s): D

English

4.

The complex analytic function $f(x)$ with the imaginary part $(y \cos y + x \sin y)$ is

- (A) ze^{z+c}
- (B) $(z + c)e^z$
- (C) ze^z
- (D) $(z^2 + z)e^{z^2+z}$

Correct Option(s): C

English

5.

In a ring, an element 'a' is called a unit if

- (A) $a^2 = a$
- (B) a has a multiplicative inverse
- (C) a is zero
- (D) $a^2 = 0$

Correct Option(s): B

English

6.

The function $f(z) = \tan z$ has

- (A) Poles at $z = (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
- (B) an entire function
- (C) No zeros in \mathbb{C}
- (D) a removable singularity at $z=0$

Correct Option(s): A

English

7.

Let $u(x, y) = x^3 - 3xy^2 + 2x$. For which of the following functions v is $u + iv$ a holomorphic function on \mathbb{C} ?

- (A) $v(x, y) = y^3 - 3x^2y + 2y$
- (B) $v(x, y) = 3x^2y - y^3 + 2y$
- (C) $v(x, y) = x^3 - 3xy^2 + 2x$
- (D) $v(x, y) = 0$

Correct Option(s): B

English

8.

The Set of discontinuities of a monotone function on \mathbb{R} is

- (A) Countable
- (B) Uncountable
- (C) Finite
- (D) Uncountable

Correct Option(s): A

English

9.

The row space of a 20×50 matrix A has dimension 13. What is the dimension of the space of Solutions of $Ax = 0$?

- (A) 7
- (B) 13
- (C) 33
- (D) 37

Correct Option(s): D

English

10.

. Let V be the vector space of all 5×5 real skew symmetric matrices. Then the dimension of V is

- (A) 20
- (B) 15
- (C) 10
- (D) 5

Correct Option(s): C

English

11.

Let P be a 2×2 complex matrix such that $P * P$ is the identity matrix, where P^* is The conjugate transpose of P. Then the Eigen values of P are

- (A) Real
- (B) complex conjugate of each other
- (C) Reciprocal of each other
- (D) of modulus 1

Correct Option(s): D

English

12.

The matrix $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ is

- (A) Positive definite
- (B) Non negative definite but not positive definite
- (C) Negative definite
- (D) Neither negative nor positive definite

Correct Option(s): A

English

13.

The residue of $f(z) = \frac{1}{z^2(z-1)}$ at $z = 0$ is

- (A) 0
- (B) 1
- (C) -1
- (D) Undefined

Correct Option(s): A

English

14.

The contour integral of an analytic function over a closed curve is

- (A) 0
- (B) 1
- (C) Equal to the sum of residues
- (D) Depends on the curve

Correct Option(s): A

English

15.

The solution of $y' = y$ with the initial condition $y(0) = 1$ is

- (A) $y = e^x$
- (B) $y = x$
- (C) $y = 1$
- (D) $y = e^{-x}$

Correct Option(s): A

English

16.

If $y_1(x)$ and $y_2(x)$ are two solutions of a linear homogeneous ODE, then their wronskian is

- (A) Zero
- (B) constant
- (C) Non Zero
- (D) variable

Correct Option(s): C

English

17.

The method of variation of parameters is used to find

- (A) Particular solution
- (B) General solution
- (C) Feasible solution
- (D) Optimal Solution

Correct Option(s): A

English

18.

The relation $z = (x + a)(y + b)$ represents the partial differential equation

(A) $z = \frac{p}{q}$

(B) $z = pq$

(C) $z = p - q$

(D) $z = p + q$

Correct Option(s): B

English

19.

The solution of $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{z}{a}$ is

(A) $z = e^{\frac{y}{a}} f(x - y)$

(B) $z = e^{\frac{y}{a}} f(x)$

(C) $z = e^y f(y)$

(D) $z = e^x f(x + y)$

Correct Option(s): A

English

20.

The solution derived from complete primitive by giving values to arbitrary constants is

(A) Single solution

(B) Particular integral

(C) Complete solution

(D) Definite integral

Correct Option(s): B

English

21.

What is the order of the differential equation, derived from $y = Ae^{2x} + Be^{-2x}$? Here A, B are arbitrary constants.

(A) 3

(B) 2

(C) 1

(D) 0

Correct Option(s): B

English

22.

The integral $\varepsilon \int_a^b \left(t \frac{\partial F}{\partial s} - \frac{dt}{dx} \frac{\partial F}{\partial s'} \right) dx$, where $y = s(x), t = t(x)$ and $F = F(x, y, y')$ is referred as

- (A) First variation
- (B) Second variation
- (C) Third variation
- (D) Fourth variation

Correct Option(s): A

English

23.

In the group $\{1, 2, 3, \dots, 16\}$ under the operation of multiplication modulo 17, the order of the element 3 is

- (A) 4
- (B) 8
- (C) 12
- (D) 16

Correct Option(s): D

English

24.

. The number of group homomorphisms from the symmetric group S_3 to the additive group $\frac{\mathbb{Z}}{6\mathbb{Z}}$ is

- (A) 1
- (B) 2
- (C) 3
- (D) 0

Correct Option(s): B

English

25.

The number of conjugacy classes in the permutation group S_6 is

- (A) 12
- (B) 11
- (C) 10
- (D) 6

Correct Option(s): B

English

26.

For any group G of order 36 and any subgroup H of G order 4

- (A) $H \subset Z(G)$
- (B) $H = Z(G)$
- (C) H is normal in G
- (D) H is an abelian group

Correct Option(s): D

English

27.

Let G be a group and let $a \in G$. If $o(a) = n$ and k is any integer, then which one of the follo

Correct?

- (A) $o(a^k) > n$ Only
- (B) $o(a^k) \geq n$
- (C) $o(a^k) < n$ only
- (D) $o(a^k) \leq n$

Correct Option(s): D

English

28.

Let I be any ideal in the ring \mathbb{Z} of integers Then

- (A) I can be generated by one element
- (B) $I = \langle 0 \rangle$ or $I = \mathbb{Z}$
- (C) There is an ideal I' such that $I \oplus I' = \mathbb{Z}$
- (D) I is generated by a prime number

Correct Option(s): A

English

29.

Let G be a simple group of order 168. What is the number of subgroups of G of order 7?

- (A) 1
- (B) 7
- (C) 8
- (D) 28

Correct Option(s): C

English

30.

The number of abelian groups of order 108 is

- (A) 12
- (B) 9
- (C) 6
- (D) 5

Correct Option(s): C

English

31.

Let R be the ring $\mathbb{Z}[x]/\langle (x^2 + x + 1)(x^3 + x + 1) \rangle$ what is the cardinality of the ring R ?

- (A) 27
- (B) 32
- (C) 64
- (D) Infinite

Correct Option(s): D

English

32.

The number of subfields of a field of cardinality 2^{100} is

- (A) 2
- (B) 4
- (C) 9
- (D) 100

Correct Option(s): C

English

33.

Backward differences is defined as

- (A) $\nabla f(x) = -f(x - h)$
- (B) $\nabla f(x) = f(x) + f(x - h)$
- (C) $\nabla f(x) = f(x) - f(x - h)$
- (D) $\nabla f(x) = f(x - h)$

Correct Option(s): C

English

34.

Which of the following relation is true?

(A) $E^n \equiv (1 - \Delta)^n$

(B) $E^2 \equiv 1 + \Delta$

(C) $\Delta \equiv E - 1$

(D) $\Delta \equiv E + 1$

Correct Option(s): C

English

35.

Shifting the origin in Gauss's backward formula one have

(A) String's formula

(B) Bessel's formula

(C) Everett's formula

(D) Newton's formula

Correct Option(s): B

English

36.

In Newton's cotes formula, if $f(x)$ is interpolated at equally spaced nodes by a polynomial of Degree two then it represents

(A) Trapezoidal rule

(B) Simpson rule

(C) Three-eighth rule

(D) Boole's rule

Correct Option(s): B

English

37.

Given the function $F = F(x, y, y')$, the differential equation $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$, is referred as

(A) Euler's characteristic equation

(B) Lagrange's equation

(C) Hamilton equation

(D) Differential equation

Correct Option(s): A

English

38.

The integral $\frac{\varepsilon}{2!} \int_a^b \left(t^2 \frac{\partial^2 F}{\partial s^2} - 2tt' \frac{\partial^2 F}{\partial s \partial s'} + t^{12} \frac{\partial^2 F}{\partial s^{12}} \right) dx$, where $y = s(x)$, $t = t(x)$ and $F = F(x, y, y')$ is referred as

- (A) First variation
- (B) Second variation
- (C) Third variation
- (D) Fourth variation

Correct Option(s): B

English

39.

A kernel $K(x, y)$ which is quadratically integrable in the square ($0 \leq x \leq h, 0 \leq y \leq h$) is referred as

- (A) L_1 – kernel
- (B) L_2 – kernel
- (C) L_3 – kernel
- (D) L_4 – kernel

Correct Option(s): B

English

40.

The equation $\int_0^x \frac{\varphi(y)}{(x-y)^\alpha} dy = f(x)$, ($0 < \alpha < 1$) is referred as

- (A) Fredholm equation
- (B) Able equation
- (C) Maxwell equation
- (D) Picard's equation

Correct Option(s): B

English

41.

The solution to Able's equation is given by

- (A) $\varphi(x) = \frac{\sin \alpha \pi}{\pi}$
- (B) $\varphi(x) = \frac{\sin \alpha \pi}{\pi} \left[\frac{f(0)}{x^{1-\alpha}} + \int_0^x \frac{f'(y)}{(x-y)^{1-\alpha}} dy \right]$
- (C) $\varphi(x) = x$
- (D) $\varphi(x) = \sin x$

Correct Option(s): B

English

42.

A Volterra integral equation has

- (A) One eigen values
- (B) Two eigen values
- (C) Three eigen values
- (D) No eigen values

Correct Option(s): D

English

43.

The kernel is symmetric if

- (A) $k(x, y) = k(y, x)$
- (B) $k(x, y) > k(y, x)$
- (C) $k(x, y) < k(y, x)$
- (D) $k(x, y) \leq k(y, x)$

Correct Option(s): A

English

44.

Equation of constraints that does not contain time as explicit variable are referred as

- (A) Holonomic constraints
- (B) Rheonomous constraints
- (C) Non-holonomic constraints
- (D) Scleronomous constraints

Correct Option(s): D

English

45.

Hamiltonian Function is

- (A) $H = L \sum_k p_k q_k$
- (B) $H = \sum_k p_k q_k - L$
- (C) $H = \sum_k p_k q_k + L$
- (D) $H = \sum_k p_k q_k L$

Correct Option(s): B

English

46.

. What is the probability to get two aces in succession (with replacement) from a deck of 52 cards?

(A) $\frac{1}{52}$

(B) $\frac{2}{169}$

(C) $\frac{2}{159}$

(D) $\frac{1}{169}$

Correct Option(s): D

English

47.

For the random variable X, which has the probability function $f(x) = \frac{k}{x!}$ ($x = 0, 1, 2, \dots$) the distribution function is

(A) Ke

(B) $\frac{k}{e}$

(C) e

(D) $k+e$

Correct Option(s): A

English

48.

If X has the probability density

$f(x) \begin{cases} e^{-x} & x > 0 \\ 0 & \text{otherwise} \end{cases}$ and $g(X) = e^{3X/4}$ What is the expected value of g(X)?

(A) 4

(B) 3

(C) 2

(D) 1

Correct Option(s): A

English

49.

. If a feasible solution of linear programming problem exist, then the region of feasible solution is

- (A) Convex set
- (B) Connected set
- (C) Non-convex set
- (D) Non-connected set

Correct Option(s): A

English

50.

If rate of birth is 12 per minute, then the average number of birth per year is

- (A) 43,800
- (B) 45,000
- (C) 40,000
- (D) 42,000

Correct Option(s): A